J. W. Barrett and C. M. Elliott, Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces, IMA Journal of Numerical Analysis, vol.7, issue.3, pp.3-283, 1987.
DOI : 10.1093/imanum/7.3.283

L. Botti and D. A. Di-pietro, Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods, p.1581883, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581883

E. Burman and A. Ern, An unfitted Hybrid High-Order method for elliptic interface problems, ArXiv e-print 1710, p.10132, 2017.

B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.2-1319, 2009.
DOI : 10.1137/070706616

D. A. Di-pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Computer Methods in Applied Mechanics and Engineering, vol.283, issue.1, 2015.
DOI : 10.1016/j.cma.2014.09.009

URL : https://hal.archives-ouvertes.fr/hal-00979435

D. A. Di-pietro, A. Ern, and S. Lemaire, Abstract, Computational Methods in Applied Mathematics, vol.14, issue.4, pp.4-461, 2014.
DOI : 10.1515/cmam-2014-0018

URL : https://hal.archives-ouvertes.fr/hal-00318390

V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan Journal of Industrial and Applied Mathematics, vol.33, issue.3, pp.3-487, 1995.
DOI : 10.1007/BF03167240

A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche???s method, for elliptic interface problems, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.47-48, pp.47-48, 2002.
DOI : 10.1016/S0045-7825(02)00524-8

URL : https://hal.archives-ouvertes.fr/hal-01352903

A. Johansson and M. G. Larson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary, Numerische Mathematik, vol.190, issue.46???47, pp.4-607, 2013.
DOI : 10.1016/S0045-7825(01)00215-8