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DOI: 10.12762/2017.AL13-01 T he H∞ control problem was posed by G. Zames in 1981 [1], and various attempts 
to address it had been made over the years. Ultimately, in 2006, the authors 

presented their solution, which is based on a tailored non-smooth optimization 
technique [2]. In this treatise we present the rationale of H∞ control, give a brief 
history, and recall the milestones reached before our 2006 solution. We clarify why our 
novel approach is welcomed in the high-tech and aerospace industry. Recent MATLAB 
functions, hinfstruct and systune, based on work by Apkarian, Noll and 
Gahinet (The MathWorks) are available in the Robust Control Toolbox, since R2010b 
and R2012b respectively.

What has Rosetta got to do with H∞-control?

The Rosetta space probe developed by the European Space Agency 
was launched on March 2, 2004 with an Ariane-5 launcher, and its 
lander module Philae was successfully placed on the comet 67P/
Churyumov-Gerasimenko by November 12, 2014. What is less 
known is that in 2011 an unexpected off-pointing of the satellite was 
detected. In-depth on-ground analysis revealed a loss of efficiency 
in one of the thrusters. It then became evident that the successful 
accomplishment of the mission hinged on re-designing the control-
lers. New sophisticated attitude controllers were synthesized by Air-
bus Defense and Space in March 2014, using the multi-model fea-
tures of a novel controller synthesis technique called hinfstruct. 
These new controllers were uploaded in May 2014, just before engag-
ing the final maneuver to get closer to the comet 67P/Churyumov-
Gerasimenko [35]. The novel control design tool that was behind this 
had been pioneered by the authors [2] between 2004 and 2006. It 
became available to control engineers between 2006 and 2010 via 
the MATLAB functions hinfstruct and systune. The math-
ematical principle underlying these tools is the H∞-rationale, which 
we will explain in this treatise.

We mention that a change of paradigm in control engineering is cur-
rently underway, where our novel structured H∞-control design tech-
nique is being adopted by leading aerospace industries. For instance, 
Dassault and ONERA [36] use the H∞-technique in tandem with the 
MORE software [37] to test new strategies for anti-vibration control 
of civil aircraft. Design of new atmospheric flight pilots for the Ariane 
launcher is being investigated by Airbus Safran Launchers, CNES 
and ONERA. Other applications include control of flexible satellites 
by Thales Alenia Space and ADS, inertial line of sight stabilization by 

SAGEM [34], the design of structured estimators for microsatellites 
by CNES [33], motor torque control in haptics by the CEA LIST 
robotics [32], and the list could be continued.

A mathematical principle, the H∞-paradigm, has found its way 
into control engineering practice. We investigate its rationale, and 
gauge the potential of the new method for the high-tech industry.

The H∞ control problem

The H∞-problem was framed by G.  Zames in two plenary talks at 
the IEEE CDC in 1976 and the Allerton Conference in 1979, and was 
posed formally in his 1981 paper [1]. However, the origins of the 
H∞‑problem are much older and date back to the 1960s, when Zames 
discovered the small gain theorem [4]. After more than 30 years, the 
H∞-problem was "solved" by P. Apkarian and D. Noll in 2006 [2] in a 
sense that is defined hereafter. Note a related, though very different, 
technique of stochastic nature has been developed in [3].

In this section we introduce the H∞-control problem formally, discuss 
its rationale, and present the context leading to our 2006 solution.

Some history

In their seminal 1989 paper [5], Doyle, Glover, Khargonekar and 
Francis show that the H∞ problem requires the solution of two 
algebraic Riccati equations (AREs). Doyle [6] discusses how this 
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milestone is reached and mentions an earlier 1984 solution. In 1994, 
P. Gahinet and P. Apkarian give a solution [7] of the H∞ problem by 
reducing it to a linear matrix inequality (LMI), the 1995 solution. How 
can a problem be solved several times? What do we mean when we 
say that we solved the problem in 2006 [2], when the 1984, 1989, 
and 1995 solutions existed already?

Formal statement of the problem

The H∞ control problem can be stated as follows. Given a real rational 
transfer matrix ( )P s , called the plant, and a space  of real rational 
transfer matrices ( )K s , called the  controller space, characterize and 
compute an optimal solution *K ∈ to the following optimization 
program 

	

( ),w zT P K
K P
K

→ ∞

∈

 



minimize

subject to stabilizes internally 	 (1)

Here, the objective function is the H∞-norm of the closed-loop per-
formance channel ( ),w zT P K→ , see Figure 1. As we shall see, the 
choice of the controller space   in (1) is the key to a proper under-
standing of the problem.

w
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z

Figure 1 – Standard closed-loop LFT model

Let us recall the notions used to formulate (1). The plant ( )P s  has a 
state-space representation of the form 

( )
1 2 1 2

1 11 12 1 11 12

2 21 22 2 21 22

=
: = :

=

x Ax B w B u A B B
P z C x D w D u P s C D D

y C x D w D u C D D

+ +  
  + +  
  + +  



	 (2)

where 
npx∈  is the state, nuu∈  the control, yny∈  the measured 

output, nww∈  the exogenous input, and nzz∈  the regulated out-
put. Similarly, ( )K s  has the state-space representation 

	 ( )
=

: :
=

K KK K K K

K KK K K

A Bx A x B y
K K s C Du C x D y

 +
  +    



	 (3)

where k
Kx ∈  is the state of K . As soon as 22 = 0D , the closed-loop 

transfer channel ( ),w zT P K→  in (1) has the state-space representation 

	 ( ) ( ) ( )
( ) ( )

, :w z

A K B K
T P K

C K D K→

 
 
 

	 (4)

where

( ) ( ) ( )2 2 2 1 2 12

2 21

= , = , = .K K K

K K K

A B D C B C B B D D
A K B K C K

B C A B D
+ +   

   
   

etc 	(5)

and where the state dimension is now pn k+ . Finally, for a stable real 
rational transfer function ( )T s , the H∞-norm in (1) is defined as 

	 ( )( )= max T jT
ω

σ ω∞
∈

	 (6)

where ( )Mσ  is the maximum singular value of a complex matrix M .

With these notations, we can now give the first explanation. The 1984, 
1989 and 1995 solutions of the H∞  problem (1) are all obtained 
within the space full  of full-order controllers 

	 ( ) ( )= { : = }full KK K AA has form (3) with size size 	

Observe that in full  all entries in K K K KA B C D, , ,  are free variables. 
Altogether, there are 2:= ( )p p y u y uN n n n n n n+ + +  degrees of free-
dom and we have 
	 N

full ≅  	

In particular, full  is the largest controller space that we could use in 
(1)1. Finding a solution within full  is therefore easier. In particular, 
with full  as the controller space, (1) is convex, as shown in [7]. 
When smaller and more practical controller spaces  are chosen, 
Problem (1) is much harder to solve. Our 2006 solution addresses 
these difficult cases.

Solutions of the H∞-control problem in the 1980s and 1990s refer 
to the full-order case, which is essentially convex.

The rationale

 After closing the loop in the feedback scheme (1) we may con-
sider the closed-loop system as a linear operator ( ),w zT P K→  map-
ping input w  to output z . If K  stabilizes P  internally, that is, if 

( ),w zT P K→  in (5) is stable, then ( ),w zT P K→  maps 2w L∈  into 
2z L∈ . The H∞-norm (6) is then nothing else but the 2L - 2L -operator 

norm, that is, 

	 22

= 0 = 02 2

= =sup sup
w w

Tw zT
w w∞

	

In other words, for a closed-loop channel w z→  the norm squared 
( ) 22 = ,w zT P Kγ → ∞

 is the factor by which the energy of the input 
signal is amplified in the output. Input w  with energy 

2
2w  will pro-

duce output z  with energy 
2
2z  no greater than 

22
2wγ ⋅ , as long as 

controller K  is used. The optimization program (1) strives to find the 
controller *K ∈ for which this amplification factor γ  is smallest.

In a closed loop with controller K , the input w with energy 
2
2w  creates output z  with energy 

22 2
2 2wz γ≤ , where 

( )= ,w zT P Kγ → ∞
. The same relation holds for power signals 

w z→ , i.e., power is amplified by no more than 2γ .

1	 Using even larger state dimensions does not lead to anything new.
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This can obviously be very useful. All that we have to do is to find 
communication channels w z→ , where the smallness of answer z  to 
question w tells us something meaningful about the system.

We now give the typical context of loopshaping, where this idea is 
used. The standard control scheme (see Figure 2) features the open-
loop system G, the controller K , the measured output y, the con-
trol signal u, and the tracking error e . Red signals are inputs, =sn  
sensor noise, =d  disturbance or process noise, and =r  reference 
signal for y, sometimes called a command. The blue signals are spe-
cifically chosen outputs, = ee W e , = uu W u , = yy W y .

r

d

We

ẽ ũ ỹ
Wu Wy

ns

e u yK G

Figure 2 – Standard control scheme

This is a special case of Figure 1, where ( )= , , sw r d n  is the input, 
= ( , , )z e u y    is the output, and where plant G regroups G and the 

filters , ,e u yW W W . The filters may be dynamic, which adds new states 
to the plant P.

What are useful transfer functions from red to blue? For instance, the 
transfer from reference r  to tracking error e

	 ( ) ( ) 1=r eT K I GK −
→ + 	

is a typical performance channel, because it describes how fast the 
system follows the reference r . Since one typically wants to track 
only in the low frequency range, eW  is a low-pass filter. Now, the 
smallness of the norm 

	 ( ) ( ) 1=r e eT K W I GK −
→ ∞ ∞

+
 	

means that the low frequency component e  of the tracking error e 
becomes small as a result of optimization, so y  follows the reference 
input r  in low frequency.

Next consider a typical robustness channel. For instance, the influ-
ence of sensor noise sn  on the control signal u. Noise is typically of 
high frequency, but that should not lead to high frequency compo-
nents in u, as this bears the risk, for example, of actuator fatigue. 
Therefore, uW  is typically a high-pass filter and u are high frequency 
components of u. We find 

	 ( ) ( ) 1=
sn u uT K W I KG K−
→ − +


	

and ( )
sn uT K→ ∞

 puts a cost on high frequency components in u. 
If program (1) is successful, it will furnish an optimal *K ∈ that 
makes this cost as small as possible, thereby building robustness to 
sensor noise into the system.

To conclude, we can see that, depending on the specific application, 
there will be several performance and robustness channels. In  its 

basic form, (1) requires fixing a single connection w z→ , but in 
Section 5 we will show how to solve a multi-objective problem with 
several H∞-channels.

Setting up the performance channel w z→  in (1) could be inter-
preted as putting a cost on undesirable behavior of the closed-
loop system.

Controller structures

The reason why the H∞ theory of the 1980s failed to take hold in 
practice is quickly explained. Controllers computed via algebraic 
Riccati equations are full order, or  unstructured. However, for various 
reasons, practitioners prefer simple controllers like PIDs, or control 
architectures combining PIDs with filters, and such controllers are 
structured.
 

The discrepancy between H∞ theory and control engineering 
practice is highlighted, for example, by PID control. Until 2010 
PID controllers had to be tuned instead of optimized, because 
software for H∞-PID control was not available.

During the 1990s and early 2000s a new approach to controller 
design based on linear matrix inequalities (LMIs) was developed. 
Unfortunately, LMIs have essentially the same shortcomings as 
AREs: H∞ controllers computed via LMIs are still unstructured. The 
situation only started to improve when, in the late 1990s, the authors 
pioneered the investigation of feedback controller synthesis via bilin-
ear matrix inequalities (BMIs). While the LMI euphoria was still in full 
progress, we recognized that what was needed were algorithms that 
would allow structured controllers to be synthesized. Here is the for-
mal definition of structure (see [2]).

Definition 1
A controller K  of the form (3) is called structured if the state-space 
matrices , , ,K K K KA B C D  depend smoothly on a design parameter 
vector κ  varying in some parameter space n , or in a constrained 
subset of n .

In other words, a controller structure ( )K ⋅ , or ( )K κ , consists of 
four smooth mappings ( ) : n k k

KA ×⋅ →  , ( ) : yk nn
KB ×⋅ →  , 

( ) : un kn
KC ×→⋅   , and ( ) : u yn nn

KD ×⋅ →  .

It is convenient to indicate the presence of structure in K  by the 
notation ( )K κ , where κ  denotes the free parameters. In the 
MATLAB functions hinfstruct or systune one refers to κ  
as the vector of tunable parameters.

Three basic examples with structure

The structure concept is best explained by examples. The transfer 
function of a realizable PID controller is of the form 

	 ( ) = =
1

i d i d
p K

f

k k s r rK s k d
s T s s s τ

+ + + +
+ +

,	 (7)
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where = /K p d fd k k T+ , = 1/ fTτ , =i ir k , 2=d d fr k T− . Realizable 
PIDs may therefore be represented in state-space form 

	 ( )p

0 0
: 0

1 1

i

id d

K

r
K r

d
κ τ

 
 −
 
 

	 (8)

where 4= ( , , , )i d Kr r dκ τ ∈  is tunable. As we can see,

	 ( ) ( ) ( )0 0
( ) = , = , = [11], =

0
i

K K K K K
d

r
A B C D d

r
κ κ κ κ

τ
  
  −   

	

If we use the PID structure (8) within the H∞ framework (1), we com-
pute an H∞ PID controller, that is, a PID controller that minimizes the 
closed-loop H∞-norm among all internally stabilizing PID controllers: 

	 ( ) ( )*, ,w z pid w z pidT P K T P K→ → ∞∞
≤ 	

The controller space for this structure is 

	 ( ) ( ){ }4= = , , ,pid pid i d KK r r dκ κ τ ∈ : as in (8), 	

The fact that PID is a structure in the sense of Def. 1 means that 
PIDs may now be optimized instead of tuned.

A second classical controller structure, related to the fundamental 
work of Kalman in the 1960s, is the observer-based controller, which 
in state-space has the form: 

	 ( ) 2 2: 0
c f f

obs
c

A B K K C K
K Kκ

+ + − 
 
  

	 (9)

Here, the vector of tunable parameters κ  regroups the elements of 
the Kalman gain matrix fK  and the state-feedback control matrix 

cK . That is, ( ) ( )( )= v , vf cec K ec Kκ . Since the plant P  has pn  
states, yn  outputs and un  inputs, κ  is of dimension ( )p y un n n+ , i.e., 

( )= <p y un n n n N+ , which indicates that the controller is struc-
tured, even though = pk n . In fact, formally the structure of observer-
based controllers is defined as 

	 ( ) ( ) ( )( ){ }( )= : (9) , = v , v p y un n n
obs obs f cK as in ec K ec Kκ κ +∈ 

Now, if we use (9) within the framework of (1), we are computing an 
observer-based H∞-controller. However, do not observer-based con-
trollers obsK  belong to the realm of 2H -control? This is H∞ control!

Are we mixing things? Yes we are, but for good reasons! If we are 
attached to the observer-structure, and at the same time appreciate 
the robustness of H∞-control, then we should by all means mix things. 
The result will be a controller ( )*

obsK κ , where *
cK  gives us two gain 

matrices *
cK  and *

fK , neither of which is by itself optimal in any sense2. 
In particular, there are no algebraic Riccati equations for *

fK  or *
cK . 

Nonetheless, taken together, they are optimal in the sense that 

	 ( )( ) ( )( )*, ,w z obs w z obsT P K T P K κκ→ → ∞∞
≤ 	

2	 The principle of separation of observation and control is no longer valid.

for any other observer-based controller ( )
obsK κ  that stabilizes P 

internally. In particular, observer-based controllers based on AREs 
would appear on the right hand side, and hence are sub-optimal.

A third basic controller structure are reduced order controllers. More 
precisely, the order of K  is fixed as < pk n . This is the simplest exam-
ple of a structure, namely 

	 ( ){ }= : =k KK K k kA × as in (3) with size 	

Here, the vector of tunable elements is ( ) ( ) ( ) ( )( )= v , v , v , vK K K Kec ec ec ecA B C Dκ  
( ) ( ) ( ) ( )( )= v , v , v , vK K K Kec ec ec ecA B C Dκ  of dimension 2= ( )y u y un k k n n n n+ + + .  

This is a structure in the spirit of our definition, because it uses 
fewer degrees of freedom than the full order controller, which has 

2= ( )p p y u y uN n n n n n n+ + +  free places.

Why is it reasonable to call k  a structure as soon as < pk n ? The 
reason is that computing reduced fixed-order optimal H∞-controllers 
is substantially more complicated than computing the full-order H∞ 
controller. In lieu of two coupled Riccati equations, *

kK ∈  requires 
four coupled Riccati equations, [8], and the numerical procedures 
proposed in the 1990s are clearly demanding. In the realm of matrix 
inequalities the H∞-problem for reduced-order controllers has also 
been well-studied. One obtains an LMI in tandem with a rank con-
straint, a non-convex problem that is equivalent to a BMI.

Controllers with structure arise naturally. That is why the authors 
pioneered the investigation of structured H∞-synthesis in the 
1990s.

The solution of the H∞-control problem

 A problem that was left open for 30 years may be expected to be dif-
ficult. The difficulty in the H∞-control problems is due to the fact that it 
is non-convex, and that the objective in (1) is non-smooth. Moreover, 
there is a third difficulty, which is related to stability in closed-loop.

Non-smooth optimization

Assuming that ( )K κ  is structured with parameter nκ ∈ , we write 
the closed-loop transfer channel w z→  in (4) as

	 ( )( )
( )( ) ( )( )
( )( ) ( )( ):,w z

A BK K
T P K

C DK K

κ κ
κ

κ κ→

 
 
  

	

Then, the H∞-objective function in (1) becomes 

( ) ( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( )1

:= ,

= max

w zf T P K

C K j I A K B K D K
ω

κ κ

σ κ ω κ κ κ

→ ∞

−

∈
− +



	(10)

a non-smooth, non-convex function, which in addition is not defined 
everywhere. Its domain ( ){ }= : <n

fD fκ κ∈ ∞  contains the 
internally stabilizing set 

	
( ){ }

( )( ){ }
= :

= :

n
s

n

D K P

A K

κ κ

κ κ

∈

∈





stabilizes internally

stable
	 (11)



Issue 13 - September 2017 - The H∞ Control Problem is Solved
	 AL13-01	 5

The first major step toward the solution of the H∞ control problem 
in the seminal paper [2] was to characterize and compute the Clarke 
subdifferential of the function f . This allowed necessary optimal-
ity conditions to be formulated, and thereby enabled locally optimal 
solutions of (1) to be characterized. These conditions are of primal-
dual type, which means that they are expressed in terms of primal 
variables κ  and dual variables ,X Y . The latter correspond to the 
Lyapunov variables used in the ARE and LMI solutions.

The classical solution of the H∞-problem within full  using AREs 
or LMIs for two Lyapunov matrix variables ,X Y  has the following 
particularity. The Lyapunov matrices ,X Y  can be interpreted as 
the dual variables of our own more general approach, while the 
primal variable, ( )= , , ,K K K KK A B C D , can be eliminated. Only in 
this very specific case is the problem convex in ( , )X Y .

The second major challenge was to find algorithmic tools to compute 
solutions of the structured H∞-problem (1). The objective being non-
convex and non-smooth, we had to develop new optimization methods 
and to prove their convergence. This was started in [2], and continued 
in [10, 11, 12, 14, 15, 16]. We invented non-convex bundle methods. 
The bundle technique originated in the 1980s and is the most success-
ful approach to deal with convex non-smooth problems in Lagrangian 
relaxation or stochastic control. We succeeded in extending this to 
non-convex functions, which represents a major breakthrough. 

Stabilization

As we stressed before, the objective ( )f κ  in (1), respectively (10), 
is only defined on the set 

	 ( )( ){ }= :n
sD A Kκ κ∈ is stable 	

from (11). Our optimization method therefore not only has to iterate 
within this set, we first have to find a feasible parameter sDκ ∈ . Sur-
prisingly, this is already the first difficulty.

Note that we have to answer the following yes-or-no question:

	 Does there exist κ  such that ( )( )A K κ  is stable ?	 (12)

Or in our previous notation: Given a controller space   

	 Does there exist K ∈  such that ( )A K  is stable ?	 (13)

We want an algorithm that computes such a K ∈  if the answer to 
(13) is "yes", and provides a certificate of non-existence if the answer 
is "no". Also, we would like these answers reasonably fast, for exam-
ple, in polynomial time.

How is this related to Kalman's classical theory of stabilizability, 
detectability, controllability and observability? Stabilizability of ( ),A B  
means that we can stabilize by state feedback. And detectability of 
( ),A C  means that we can add an observer. Therefore, if ( ),A B  is sta-
bilizable and ( ),A C  is detectable, then the answer to Question (12) is 
"yes" for the class obs  of observer-based controllers. Since stabiliz-
ability of ( ),A B  and detectability of ( ),A C  are conditions that can be 
checked by linear algebra (in polynomial time), we can say that (12) 
is conveniently decided for the class of observer-based controllers 

obs  and for any larger class obs⊃  .

However, and this is the bad part of the message, for practically impor-
tant controller structures ( )K κ  the decision (12) is NP-complete. 
Blondel and Tsitsiklis [17] prove NP-completeness for the classes 

k  of reduced-order controllers, < pk n , including the class stat  of 
static controllers, and for the class dec  of decentralized controllers. It 
is also known that the decision is hard for PID control. For short, the 

start

exit

recycle planes current iterate

stopping

working 
model

yes

yes

outer loop inner loop command if statement

yes

yes

yes

no

no

no

no

no

cutting planes 
aggregation

tangent 
program

τ τ+ =

τ τ+ =

2τ τ+ =

ρ ≥ Γ

1
2

τ τ+ =

ρ γ≥

ρ γ≥ 

ρ γ≥ 

Figure 3 – Flowchart of the proximity control algorithm
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most important classes in practice lead already to a difficult problem 
when it comes to mere stabilization.

Deciding whether a stabilizing controller ( )K κ  with a given struc-
ture exists is in general NP-complete.

What does this mean in practice? Complexity theory usually produces 
pessimistic results. The situation is by no means hopeless. Practical 
systems are designed to be stabilizable, so as a rule there is a good 
chance of finding a stabilizing structured controller K ∈ if there is 
one. What we expect to be hard, is a certificate of non-existence when no 
such controller exists, because this requires an exhaustive search. Com-
plexity also tells us that we cannot expect a linear algebra procedure as in 
Kalman's classical theory, at least not one with polynomial complexity. 
We also know that for most classes  Problem (12) is decidable, but in 
exponential time. This follows, for instance, as soon as the problem can 
be transformed into a polynomial decision problem, to which the Tarski-
Seidenberg procedure can, at least in principle, be applied.

Local versus global optimization

The fact that program (1) is non-convex for practical controller struc-
tures  creates a dilemma. Should we go for a globally optimal solu-
tion, or should we be modest and be content with locally optimal solu-
tions? In our approach, we have opted for the local approach, since it 
is more realistic. This does not mean that we advise against the use 
of global optimization techniques. Such techniques might prove suc-
cessful for small to medium size problems.

There is, however, one specific global approach on which we wish 
to comment, because it has contributed substantially to the field of 
mathematical poppycock. We are speaking about the so-called sums-
of-squares (SOS) approach, which is still rumored to be suited for 
control problems like (1). We now argue that this is a red herring.

For most controller structures  it is possible to transform program 
(1) into a bilinear matrix inequality (BMI) using the bounded real 
lemma. Typically, the BMI is of the form

	 ( ){ }: 0min c x B xΤ  	 (14)

where x now stands for the triple ( ), ,X Yκ  featuring controller gains 
κ  and Lyapunov variables ,X Y  as unknowns with possibly additional 
slack variables γ , etc. The SOS approach interprets (14) as a system 
of polynomial inequalities and uses the sums-of-squares approxima-
tion of positive polynomials to creates a hierarchy of LMI problems 

	 ( ){ }: 0imin c x L xΤ  	 (15)

with the property that the solution of (15) converges to the solution 
of (14). It may even happen that convergence is finite, meaning that 
there exists ( )=i i B  such that the solution of ( ){ }: 0i Bmin c x LΤ   
solves { }T : 0min c x B  globally. The way in which this hierarchy 
is constructed has been much inspired on the idea of a cutting plane 
proof for a linear integer feasibility problem Ax b≤ , nx∈ .

Let us for simplicity assume that convergence is indeed finite. Then we 
might be able, it seems, to write down an explicit linear matrix equality

	 ( ) ( ){ }: 0i Bmin c x L xΤ  	 (16)

which when solved gives a globally optimal solution of (1). (Strictly 
speaking, we might not be able to write down (16) directly, but rather 
only to reach it eventually by climbing up in the hierarchy until we get 
to ( )i B . This would, of course, spoil the whole idea. However, let us 
assume, as is often claimed in the SOS community, that we can write 
down (16) explicitly!

Doesn't this sound nice? After all, we have been told since the early 
1990s that LMIs can be solved efficiently in quasi-polynomial time. 
Therefore, all that we have to do is to solve (16) quickly and obtain the 
global minimum of (14), and respectively of (1).

Of course, this is all rubbish. We know that solving Problem (1) glob-
ally is NP-complete. The SOS algorithm is even provably exponential. 
The size of ( ) 0i BL   grows therefore exponentially in the data size
( )B . In fact, these problems explode extremely fast. We will need 
exponential space even to write down ( ) 0i BL  . For sizable plants 
we might not even be able to store the problem on the computer, 
let alone solve it. The fact that LMIs are solved in polynomial time is 
pointless, because we are speaking about a problem of polynomial 
(exponential) size.

However, could not something similar be said about every global 
method? Are we too severe when we call SOS a red herring? Indeed, 
the problem being NP-complete, every global method is bound to be 
exponential. The point is that SOS is a particularly ungainly global 
method, because it commits two errors, which other global methods 
may avoid.

The first error is that it transforms (1) to a BMI. This adds a large 
number of additional variables ,X Y , which can be avoided, for exam-
ple, by our non-smooth approach. We have demonstrated abundantly 
since the late 1990s that the presence of Lyapunov variables leads to 
serious ill-conditioning. To wit:

The power oscillation damping control problem, which we solved 
in [18] using non-smooth optimization, has a system with 90 
states, 3 performance connections, 1 input, 1 output, and a con-
troller of reduced order 8. Therefore dim ( ) = 81κ . Transformed 
to a BMI, it requires additional 90 91

23 = 12285⋅⋅  Lyapunov vari-
ables. For the SOS approach this is just the bottom line = 1i , 
where the LMI hierarchy starts. The LMI ( ) 0i BL   will be of size 
exponential(12366).

The second error in the SOS approach is that it only seeks global 
minima. That is, it will not find local minima of (1) on its way toward 
the global. This is infelicitous, because local minima are very helpful. 
They may allow bounds to be improved in branch-and-bound meth-
ods, and they give good practical solutions as a rule. The fact that 
SOS does not use this information (e.g., to infer where it is in the 
hierarchy 0iL  ) is by itself already suspicious.

The H2 / H∞-problem is also solved

It became already apparent in the 1-DOF scheme (2) that the 2L - 2L , 
respectively power-to-power, operator norm is not the only possible 
measure of smallness in a channel w z→ . Consider, for instance, 
the transfer 

sn uT → 

 from sensor noise sn  to the high frequency part 
= uu W u  of the control law u. If we model sn  as white noise, then 
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it makes sense to gauge sn u→   by the operator norm from white 
noise at the input toward power at the output. This is the 2H -norm. 
For a stable transfer operator ( )G s  the 2H -norm is given as 

	 ( ) ( )( )
1/2

2
0

1= T
2

HG r G G dj jπ ωω ω
∞ 

 
 ∫ 	

which makes it an Euclidean norm in the space of stable transfer 
matrices. Unlike the H∞-norm, the 2H -norm is not an operator norm 
in the traditional sense. It becomes one as soon as stochastic signals 
are considered.
 

w z
operator norm 

w zT →

energy energy H∞

power power H∞

white noise power 2H

Sobolev ,

Sobolev
W ∞ ∞ L∞ worst case

response norm

L∞ L∞ peak gain 

past excitation system ring Hankel

In the 1-DOF scheme (2) we might decide to use two different norms. 
We might assess the tracking error r e→   in the H∞-norm, and the 
influence of sensor noise on the control sn u→   by the 2H -norm. 
Then, we obtain a mixed 2/H H∞ -control problem 

	

( )

( )

( )

22

,

,

=

s

r e

n u

T P K

T P K

K P
K K

γ

κ

→ ∞

→ ≤





minimize

subject to

stabilizes internally

has a fixed structure

	 (17)

where 2γ  is some threshold limiting the power of u  in response to 
white noise in the input sn . We may introduce the following more 
abstract setting. Consider a plant in state-space form 

	

2

2 2 22

2

0
: =

0 0
0

u

u

y y

A B B B xx
C D D wz

P
C D wz
C D D uy

∞

∞ ∞ ∞ ∞∞

∞

    
    
    
    
    
     



	 (18)

where xnx∈  is the state, unu∈  the control, yny∈  the output, 
and where w z∞ ∞→  is the H∞, 2 2w z→  the 2H  performance channel. 
Then the mixed 2 /H H∞-synthesis problem is the optimization program 

	

( )
( )

2 2 2
,

,

w z

w z

T P K

T P K

K P
K

γ
∞ ∞

→

→ ∞∞
≤

∈

minimize

subject to

stabilizes internally
	 (19)

where  is a structured controller space as before, and γ∞ is a suit-
able threshold, now for the H∞-norm in the constraint. Notice that 
the 2 /H H∞- and 2/H H∞ -problems are equivalent under suitable 
choices of 2γ  and γ∞.

The mixed ( )K κ -synthesis problem with structured controllers 
( )K κ  is a natural extension of H∞-control. This problem also 

has a long history. It was posed for the first time by Haddad and 
Bernstein [19] and by Doyle, Zhou, Bodenheimer [20] in 1989. 
We solved this problem in 2008 in [21].

Naturally, one may immediately think about other multi-objective exten-
sions of (1). For instance, combining the H∞-norm with time-domain 
constraints like in IFT( Iterative Feedback Tuning), or /H H∞ ∞-control. 
For the first theme, we refer the reader to our solution presented in [22, 
23], while /H H∞ ∞-control will be addressed in the next section.

The H∞ / H∞-control problem and other variants

The /H H∞ ∞-problem can be seen as a special case of (1). Sup-
pose that we have two plants 1P  and 2P  with performance chan-
nels i iw z→ , = 1,2i . Assume that the outputs iy  and inputs iu  
into iP  have the same dimension, i.e., ( ) ( )1 2=dim y dim y  and 

( ) ( )1 2=dim u dim u . Then, we can connect the same controller 
( )=i iu K yκ  to both plants simultaneously. That is, we may solve a 

program of the form 

	

( )
( )

( )

1 1

2 2

1

2 2

1 2

,

,

=

w z

w z

T P K

T P K

K P P
K K

γ

κ

→ ∞

→ ∞
≤

minimize

subject to

stabilizes and

is structured

	 (20)

It turns out that we may transform (20) favorably into a program of 
the form 

( )( ) ( )( ){ }
( )

1 1 2 21 2

1 2

, , ,w z w zmax T P K T P K

K P P

κ β κ

κ

→ →∞ ∞
minimize

subject to stabilizes and
	(21)

which is sometimes called a multidisk problem [10]. For suitable 
choices of 2γ  and β  these two programs are equivalent. However, 
since the maximum of two H∞-norms is again an H∞-norm of an aug-
mented plant, we can solve (21) directly via (1) with a new specific 
structure, which consists in repeating ( )K κ , as illustrated in Figure 4.

P1

K(κ)

K(κ)

w1

w2

w

P2

y1u1

y2u2

β
βz2

z1

z

Figure  4 – Illustration of the multidisk problem
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and the only connection between the two diagonal parts is the fact 
that the diagonal block of K  is repeated. The objective of (21) is then 
the channel ( ) ( )1 2 1 2= , = ,w w w z z zβ→  of the augmented plant. 
We may now have to update β  in order to solve the problem of Fig-
ure 4 for a specific 2γ .

Multi-model H∞-synthesis

Controlling several plants via the same structured controller is one of 
the most fundamental properties of hinfstruct and systune. 
The theoretical basis and implementation of this option has been 
given in the paper Apkarian and Noll [10] in 2006. The problem setting 
is as follows. Given N  plants 1, , NP P

	 ( )
1 2

1 11 12

2 21 22

: , = 1, ,
i i i

i i i i

i i i

A B B
P s C D D i N

C D D

 
 
 
  

 	 (22)

with identical dimensions of control inputs, that is, 
( ) ( )1 = = Ndim dim uu   and also identical dimensions of the mea-

sured outputs, i.e., ( ) ( )1 = = Ndim dim yy  , we connect the same 
controller ( )K s  to these N  plants simultaneously. This controller 
may, in addition, be structured 

	 ( ) ( ) ( )= , , = 1, ,i iu s K s y s i Nκ  	

where κ  represents the tunable elements in K . The multi-objective or 
multidisk H∞-control problem can now take on several forms, all famil-
iar in multi-objective optimization. For instance, we could consider: 

	 ( )( )
( )

, , = 1, ,

= 1, , .

n

l i i

i

P K i N

K P i N

κ

κ γ

κ
∞

∈

≤ 







find

such that

stabilizes internally,

	 (23)

A related form of the multi-objective approach is

	
( )( )
( )( )

( )

1,

, , = 2, ,

= 1, , .

l

l i i

i

P K

P K i N

K P i N

κ

κ γ

κ

∞

∞
≤ 







minimize

such that

stabilizes internally,

	 (24)

and the following third form is known as the multidisk approach used 
in Apkarian and Noll [10]:

	 ( )( )
=1, ,

,
n i i

i N
P Kmin max

κ
α κ

∞∈



 	 (25)

where the > 0iα  are appropriate weights. We shall in the sequel discuss 
several examples to understand this approach in practical situations.

Reliable and fault-tolerant control

Reliable or fault-tolerant control is an application of multi-model 
H∞-control. The first occurrence of this approach in the literature 
where an optimization program of the form (22) is applied is Simões 
et  al. [26]. In that reference, control of an F-16 aircraft in nominal 
mode along with 6 failure modes is discussed. These are the failure of 
left or right stabilizer, failure of left or right aileron, 75% impairment of 
the stabilizers, and unspecific failure in one of the redundant control-
lers. Since in each of the 7 modes one needs to ensure satisfactory 

performance of the system, 3 performance channels are proposed, 
leading to a total of 21 scenarios, i.e., = 21N  in (22).

Simultaneous stabilization is NP-complete even in the case of 3 
systems and a full order (unstructured) controller. Not surpris-
ingly, simultaneous H∞-control will therefore fail every now and 
then. The functions hinfstruct and systune just offer 
good practical chances of solving such problems.

System reduction via non-smooth programming

An idea already put forward in our paper [2] is H∞-system reduction. 
Consider a stable system 

	 =
A B

G C D
 
 
  

	

with size ( ) =A n n× . Suppose that n is large and that we want to 
compute a reduced stable system 

	
= red red

red
red red

A B
G C D

 
 
   	

of smaller state dimension size ( ) =redA k n  that represents G  as 
accurately as possible. The model matching error is ( )= rede G G w− , 
and after adding a suitable filter eW  (see Figure 5) we might want to 
have w z→  small in a suitable norm.

w

G

e z

Gred

We

Figure 5 – Illustration of the model reduction problem

The Hankel norm reduction method minimizes ( )e red H
W G G−  in 

the Hankel norm H⋅ , the advantage being that the solution can be 
obtained by linear algebra. A more natural norm would be the H∞

-norm, but the classical balanced reduction method gives only upper 
bounds of ( )e redW G G

∞
− .

However, we can solve the H∞-norm reduction problem directly as a 
special case of (1). In the case =z e  without filter we can pass to the 
standard form by considering the plant

	
1 2

1 11 12

2 21

0
: =

0 0 0

A B A B B
P C D I C D D

I C D

   
   −   
      

	 (26)

then redG  is the controller, which is of fixed reduced-order.

Note that structured H∞-filtering is a further application of our non-
smooth optimization techniques. A program structure similar to sys-
tem reduction is obtained in that case.
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Optimizing plant and controller simultaneously

 In many practical situations it may be advantageous to choose not only 
the controller, but also certain parameters of the open-loop system in 
such a way that the entire controlled system behaves optimally in closed 
loop. Current practice does not work this way! What is usually done is 
that the open-loop system is designed first, and then a feedback control-
ler is computed3. However, why not optimize both simultaneously, i.e., 
plant and controller together? Well, there is now a method that allows 
this to be done. We illustrate it by means of a simple example.

Consider the second-order spring model with stiffness k , friction f , 
and mass m 

	

1 2

2 1 2
1

1

1

=
1 1=

: ,
=
=

x x
k fx x x w u

P m m m m
y x
z x



 − − + +









	

where w  is a disturbance, u is the control, 1x  is the position, and 2x  is 
the velocity. We measure the position, 1=y x , and the position is also 
the coordinate that we wish to control, hence 1=z x . We need a SISO 
controller ( ) ( ) ( )=u s K s y s  to control the system.

Now, suppose that we also wish to optimize the stiffness k  and 
friction f  so that the closed loop system is optimal in the channel 
w z→ . Suppose that we have bounds k k k≤ ≤  and f f f≤ ≤  
between which we can choose the parameters. And at the same time 
we want to optimize ( )=K K κ , which can as usual be structured, 

nκ ∈ . Mathematically, this problem can be written as 

	

( ) ( )( )
( )

( ) 2

, ,

,

, ,

w z

n

T P k f K

K

k k k f f f

k f

κ

κ

κ

→ ∞

+

≤ ≤ ≤ ≤

∈

minimize

subject to closed - loop stabilizing
	 (27)

Naturally, the non-smooth algorithms in [2] or [14] are versatile 
and can include such simple bounds easily. They just need expres-
sions for subgradients of the objective with respect to all unknowns 
( ), ,k f κ . The question is how this non-standard option is put to 
work using our non-smooth optimization techniques. The idea is to 
shuffle all unknown parameters into an augmented structured control-
ler  ( ), ,K k f κ , and to connect it to an artificial plant P . The new 
formulation for (27) is then 

	

  ( )( )
 ( ) 

( ) 2

, , ,

, ,

,

, ,

w z

n

T P K k f

K k f P

k k k f f f

k f

κ

κ

κ

→
∞

+

≤ ≤ ≤ ≤

∈

minimize

subject to closed - loop stabilizing for 	 (28)

Note that the routines hinfstruct and systune automatize this 
operation so that it remains hidden from the user.

Nonstandard use of H∞ / H∞-synthesis

3	 For instance, in optimal sensor or actuator location the usual line is to optimize P 
alone, for instance, by maximizing the degree of controllability of P. Instead, one 
should include K from scratch.

The standard way to use multiple H∞ criteria is certainly in H∞-loop-
shaping, and the documentation of hinfstruct makes this a 
strong point. However, there are some less obvious ideas in which 
one can use a program of the form (20). Two heuristics for parametric 
robust control, which we proposed in [24] and [25], can indeed be 
solved via hinfstruct and systune.

Control of nonlinear systems with structured H∞-synthesis

In this section, we discuss a somewhat unexpected application of 
structured H∞-synthesis in the control of nonlinear systems. The 
class of systems that we have in mind are of the form 

	
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

1 11 12

2 21 22

=
( ) : =

=

x A y x B y w B y u
P y z C y x D y w D y u

y C y x D y w D y u

+ +
+ +
+ +



	 (29)

where the system matrices depend smoothly on the measured out-
put  y. It appears therefore natural to devise a controller of the form 

	 ( ) ( ) ( )
( ) ( )

=
:

=
K K K K

K K K

x A y x B y y
K y

u C y x D y y
+
+



	 (30)

which uses the same measurement y  available in real time. A natural 
idea, going back to [29], is to consider y  as a time-varying external 
parameter p and pre-compute ( )K p  for ( )P p  for a large set p∈Π 
of possible parameter values. In flight control, for instance, Π is the  
flight envelope, ( ) 2= ,p h V ∈ , indexed by altitude h  and ground 
speed V , or sometimes by Mach number and dynamic pressure.

We now propose the following control strategy. In a first step, we 
pre-compute the optimal H∞ controller ( )*K p  for every p∈Π using 
Program (1): 

	
( )( )

( )
,w zT P p K

K P p
K

→ ∞

∈

minimize

subject to stabilizes internally

 

	 (31)

 The solution ( )*K p  of (31) has the structure . In the terminology 
of [29], this is the best way to control the system ( )P p  frozen at 
( ) ( )=p t y t  instantaneously. In other words, at instant t , we apply 

the control law ( )( )*K y t  based on the real-time measurement ( )y t .

If we could do real-time structured H∞-synthesis, then control-
ler ( )( )*K y t  would be computed and applied instantaneously at 
time t using (31) and the measurement ( )y t  available at instant t. 
As long as this is impossible, we may pre-compute ( )*K p  for 
a large set of possible parameter values p∈Π , and as soon as 
( )y t  becomes available at time t , look ( )( )*K y t  up in the table 
( ){ }* :K p p∈Π , and apply it instantaneously.

There are two limitations to this ideal approach. Firstly, the ideal table 
( ){ }* :K p p∈Π  may be too large. And secondly, the behavior of 
( )*K p  as a function of p may be quite irregular. In fact, it was the 

latter effect that had stopped this idea in the past4. With structured 

4	 When ARE solvers were used to compute H∞-controllers, the idea of embedding 
such a solver into the system obviously came to mind. This failed not due to lack 
of CPU, but due to the highly irregular behavior of ( )*

fullp K p .
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control laws ( )K κ  the situation is substantially improved, because 
one uses fewer degrees of freedom in κ .

What we have tested in [30] is a compromise between optimality of 
( )*K p  in the sense of Program (31), the necessity to avoid irregular 

behavior of the curves ( )*p K p , and the storage requirement of 
such a law. We use the following definition. A controller parameteriza-
tion ( )p K p  of the given structure   is admissible for the con-
trol of ( )P y  if the following holds: ( )K p  stabilizes ( )P p  internally 
for every p∈Π, and 

	 ( ) ( )( ) ( ) ( ) ( )( )*, 1 ,w z w zT P p K p T P p K pα→ →∞ ∞
≤ + 	 (32)

for every p∈Π, where α  is some fixed threshold, say = 0.1%α . We 
now seek a parameterization ( )K p  that is close to the ideal H∞-param-
eterization ( )*K p  in the sense that (32) is respected, but otherwise is 
easy to store (to embed) and shows as regular a behavior as possi-
ble. Note that (32) allows ( )K p  to lag behind ( )*K p  in performance 
by no more than %α . Also, observe that this approach is heuristic in 
so far as internal stability at every p∈Π does not guarantee stability 
of the parameter-varying system as a whole.

Parametric robust H∞-control

The design of feedback controllers that are robust in the presence 
of system uncertainty is a recurrent problem in control engineering, 
from which designers rarely escape due to the inevitable mismatch 
between a physical system and its mathematical model. It is gener-
ally agreed that one should account for the uncertainty already at the 
modeling stage. In the following, we briefly comment on two such 
forms of uncertainty: real uncertain parameters p∆  in the model equa-
tions, and complex dynamic uncertainty d∆ .

Within the H∞-framework, this mixed parametric control problem can 
be cast as a semi-infinite minmax optimization problem of the form 

	 ( ),maxmin
n w zT

κ
κ→ ∞∆∈∆∈

∆


	 (33)

where optimization is over a structured control law ( )K κ , as before, 
but where now in contrast with (25) an infinity of plants, ( )P ∆ , 
indexed over a set := ( , )p d∆ ∆ ∆ ∈∆ of mixed uncertain scenarios, 
has to be controlled  simultaneously. This problem is therefore con-
siderably more complex than the nominal H∞-problem (1). Paramet-
ric mixed control has been on the control engineering agenda since 
the late 1970s and 1980s, but no satisfactory solution had been 
presented until recently. In two recent contributions [9, 38] we have 
developed a satisfactory mathematically sound solution to this prob-
lem, which in parts is already seized by The MathWorks in its 2015b 
version of the Robust Control Toolbox 
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