Early Recognition of Handwritten Gestures based on Multi-classifier Reject Option

Abstract : In this paper a multi-classifier method for early recognition of handwritten gesture is presented. Unlike the other works which study the early recognition problem related to the time, we propose to make the recognition according to the quantity of incremental drawing of handwritten gestures. We train a segment length based multi-classifier for the task of recognizing the handwritten touch gesture as early as possible. To deal with potential similar parts at the beginning of different gestures, we introduce a reject option to postpone the decision until ambiguity persists. We report results on two freely available datasets: MGSet and ILG. These results demonstrate the improvement we obtained by using the proposed reject option for the early recognition of handwritten gestures.
Type de document :
Communication dans un congrès
14th IAPR International Conference on Document Analysis and Recognition (ICDAR2017), Nov 2017, Kyoto, Japan. 〈10.1109/ICDAR.2017.43〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01653154
Contributeur : Harold Mouchère <>
Soumis le : mardi 5 décembre 2017 - 16:31:39
Dernière modification le : mercredi 4 juillet 2018 - 10:20:04

Fichier

3586a212.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Zhaoxin Chen, Harold Mouchère, Eric Anquetil, Christian Viard-Gaudin. Early Recognition of Handwritten Gestures based on Multi-classifier Reject Option. 14th IAPR International Conference on Document Analysis and Recognition (ICDAR2017), Nov 2017, Kyoto, Japan. 〈10.1109/ICDAR.2017.43〉. 〈hal-01653154〉

Partager

Métriques

Consultations de la notice

469

Téléchargements de fichiers

13