Logarithmic degenerations of Landau-Ginzburg models for toric orbifolds and global tt^* geometry

Abstract : We discuss the behavior of Landau-Ginzburg models for toric orbifolds near the large volume limit. This enables us to express mirror symmetry as an isomorphism of Frobenius manifolds which aquire logarithmic poles along a boundary divisor. If the toric orbifold admits a crepant resolution we construct a global moduli space on the B-side and show that the associated tt^*-geometry exists globally.
Type de document :
Pré-publication, Document de travail
40 pages. 2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01653150
Contributeur : Etienne Mann <>
Soumis le : vendredi 1 décembre 2017 - 10:02:44
Dernière modification le : lundi 5 février 2018 - 15:00:03

Lien texte intégral

Identifiants

  • HAL Id : hal-01653150, version 1
  • ARXIV : 1605.08937

Citation

Etienne Mann, Thomas Reichelt. Logarithmic degenerations of Landau-Ginzburg models for toric orbifolds and global tt^* geometry. 40 pages. 2017. 〈hal-01653150〉

Partager

Métriques

Consultations de la notice

313