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Abstract—This paper addresses maximum likelihood estima-
tion of images corrupted by a Rician noise, with the aim to pro-
pose an efficient optimization method. The application example is

the restoration of magnetic resonance images. Starting from the
fact that the criterion to minimize is non-convex but unimodal,
the main contribution of this work is to propose an optimization
scheme based on the majorization-minimization framework after
introducing a variable change allowing to get a strictly convex
criterion. The resulting descent algorithm is compared to the
classical MM descent algorithm and its performances are assessed
using synthetic and real MR images. Finally, by combining these
two MM algorithms, two optimization strategies are proposed to
improve the numerical efficiency of the image restoration for any
signal-to-noise ratio.

Index Terms—Magnetic resonance imaging, Rician noise, max-
imum likelihood estimation, iterative optimization, majorization-
minimization.

I. INTRODUCTION

Noise in Magnetic Resonance Imaging (MRI) is a major

concern which may affect image interpretation and exploita-

tion. In order to obtain images with high signal-to-noise-

ratio (SNR), long measurement duration is usually required.

In practical use, it is necessary to reduce the acquisition

time by associating some numerical noise reduction routines

to the imaging system. Various kinds of denoising methods

have been investigated (See for instance [1] which gives a

thorough overview of existing methods) from which model-

based statistical estimation is becoming increasingly prevalent.

In the case where the MR data are acquired in the complex

domain (K-space), the noise in both real and imaginary parts

is independent and identically distributed and it is usually

supposed to be Gaussian [2]. However, in most applications,

the signal magnitude is processed since the phase is sensitive

to many factors such as the magnetic field heterogeneity, the

temperature of the sample or the motion of the analyzed object

[3]. Accordingly, the computation of magnitude raw images

yields Rician distributed data which makes the denoising

techniques based on the hypothesis of additive Gaussian noise

suboptimal.

In the literature, several Rician denoising methods have been

mentioned, including the so-called conventional approach,

exploiting the properties of the second-order moment of the

Rician distribution [4], the linear minimum mean square error

(LMMSE) estimator [5] and the signal reconstruction method

based on maximum likelihood (ML) estimation [6]. When

the noisy data can be modeled accurately, the ML estimator

is commonly applied since it tends to be consistent and

asymptotically efficient under general conditions [7].

The negative log-likelihood (NLL) function for statistical

estimation from Rician distribution is non-convex but uni-

modal. Although the conventional optimization methods can

converge to the global minimum, their convergence efficiency

depends severely on the initialization and the value to be

estimated. In [8], Getreuer et al. proposed a maximum a

posteriori (MAP) estimation with total variation prior and

considered a somewhat complex convex approximation to

overcome the non-convexity. Dong et al. [9] established an-

other convex Rician model by adding a quadratic penalty

term into the previous model under some certain conditions to

ensure the existence and the uniqueness of the solution. [10]

and [11] applied an Expectation-Maximization (EM) algorithm

for Rician denoising estimation based on a convex tangent

majorant function. Varadarajan [12] generalized this approach

into the Majorization-Minimization (MM) framework for non-

central chi (NCC) family and demonstrated the computational

efficiency compared with generic numerical optimization tech-

niques. However, as presented in the following section, this

algorithm results in a poor convergence speed for low values

of signal-to-noise ratio (SNR) which is partly due to the non-

convexity of the NLL function.
978-1-5386-1842-4/17/$31.00 c©2017 IEEE



In this paper, we propose a novel MM optimization algo-

rithm of the NLL function based on a transformed convex

criterion that substantially accelerates the convergence speed

at low SNR. By combining the conventional and our proposed

MM approaches, we obtain two algorithms which improve the

computational efficiency whatever the SNR level. The rest of

the paper is organized as follows. Section II introduces the ML

estimation in Rician noise. Section III overviews the principle

of the existing non-convex model based MM algorithm. In

Section IV, we introduce the novel MM algorithm and demon-

strate the validation of our proposed majorant function. Section

V compares the two algorithms and considers some combina-

tion strategies. Section VI illustrates the experimental results

and Section VII presents some conclusions and perspectives

of this work.

II. ML ESTIMATION FROM RICIAN DISTRIBUTION

Complex MRI signal is corrupted by an additive zero-

mean Gaussian noise. Thus, its magnitude follows a Rician

distribution:

p (Mi | A) =
Mi

σ2
e−

M
2
i
+A

2

2σ2 I0

(
AMi

σ2

)
u (Mi) (1)

where I0 is the modified zeroth order Bessel function of

the first kind, Mi represents the ith measurement with the

corresponding true signal amplitude A 1, σ2 is the variance of

the Gaussian noise and u denotes the step function.

Under the assumption of independence of N measurements

Mi, the estimation of the pixel intensity A can be obtained by

maximizing the likelihood function or equivalently minimizing

the NLL function, given as:

L(A) =− log

N∏

i=1

p(Mi|A) =
N∑

i=1

A2 +M2
i

2σ2

−
N∑

i=1

log I0

(
AMi

σ2

)
−

N∑

i=1

log

(
Mi

σ2

)
.

(2)

In the case where a single image is acquired (N = 1)

hereafter for each amplitude A, there is only one measurement

denoted M . In the sequel, the general case will be considered,

and a discussion on the impact of the number of image

accumulations will be given in section VI-A.

As mentioned in [13], the objective function (2) has one or

two stationary points where A = 0 is always a trivial solution.

III. MM DESCENT ON THE INITIAL CRITERION

The objective function cannot be minimized explicitly,

therefore, an iterative optimization algorithm based on the MM

framework can be applied [14]. The principle of MM is to

iteratively construct and minimize a surrogate cost function

HL(·, Ak) known as tangent majorant instead of directly

1The corresponding pixel index is omitted to simplify the notations.

minimizing the initial objective function L(·). Each iteration

k of the algorithm consists of:

Majorization: HL(A,Ak) > L(A), ∀A > 0 (3)

Minimization: Ak+1 = argmin
A

HL(A,Ak) (4)

The main feature of this descent method is that HL(·, Ak)
admits a closed-form solution which is easier to compute than

that of L(·).
The MM algorithm proposed in [12] takes into account that

fi(A) = − log I0
(
ciA

)

with ci = Mi

σ2 , is a concave function. It is majorized at any

point Ak by an affine function:

fi(A) = − log I0
(
ciA

)
6 gi(Ak)(A−Ak) + fi(Ak), (5)

where gi(Ak) is the gradient of fi(·) at Ak:

gi(Ak) = −ci r1(ciAk), (6)

with r1 = I1
I0

and I1 the modified first order Bessel function

of the first kind.

Accordingly, the tangent majorant function HL(·, Ak) of L
is given as:

HL(A,Ak) =
N

2

A2

σ2
+

N∑

i=1

gi(Ak)(A −Ak) + fi(Ak), (7)

and its gradient ∇HL(·, Ak) is expressed as :

∇HL(A,Ak) =
NA

σ2
−

N∑

i=1

ci r1(ciAk). (8)

The value of Ak+1 canceling this gradient is directly derived

as:

Ak+1 =
σ2

N

N∑

i=1

ci r1(ciAk). (9)

It can be seen that this update scheme corresponds to a

classical gradient descent strategy:

Ak+1 = Ak −
σ2

N
∇L(Ak), (10)

with a fixed stepsize αk =
σ2

N
.

In the rest of this paper, this algorithm is referred to as MM-

χ as the Rician distribution is a special case of the non-central

χ distribution.

IV. MM DESCENT ON A TRANSFORMED CRITERION

According to Proposition 3 in [15], by introducing a change

of variable y = A2, the transformed objective function

becomes convex and unimodal with respect to the variable

y. Therefore, we propose to construct a quadratic majorant

function for the convex criterion and we will apply the descent

scheme MM for the optimization with respect to y and deduce

the value of A.



As illustrated by Figure 1, such scheme consists on con-

structing a non quadratic majorant in the initial space defined

with respect to A which turns out to be more efficient than

the quadratic surrogation around the concave zone.
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Fig. 1. Illustration of the initial non-convex criterion and the transformed
convex criterion and the tangent majorant functions in the initial space for (a)
Ak = 1.5, (b) Ak = 7 and (b, d) after transformation y = A2.

Indeed, after the transformation y = A2, the objective

function is rewritten as:

L̃(y) =
Ny

2σ2
−

N∑

i=1

log I0(ci
√
y), (11)

Its gradient and Hessian are given by:

∇L̃(y) =
N

2σ2
−

N∑

i=1

ci
2
√
y
r1(ci

√
y), (12)

∇2L̃(y) =

N∑

i=1

c2i
4y

(
r21(ci

√
y) +

2

ci
√
y
r1(ci

√
y)− 1

)
. (13)

Finally, as noted in section (2.2) of [16],

r21(x) +
2

x
r1(x) − 1 > 0 ∀x > 0, (14)

and hence the positivity of the Hessian ∇2L̃(y) can be

deduced.

A. Construction of the majorant function

The proposed quadratic tangent majorant is given by:

H̃L(y, yk) =
1

2
Bk(y−yk)

2+∇L̃(yk)(y−yk)+ L̃(yk), (15)

with a curvature defined by:

Bk =
2
(
∇L̃(yk)yk − L̃(yk)

)

y2k
. (16)

a) Discussion.: This curvature results from the specifi-

cation to get a majorant function that passes through the same

point as L̃ at y = 0.

This construction makes it possible to obtain a tangent

quadratic majorant with the smallest curvature and thus allow-

ing larger steps. The property of majorization can be deduced

from the fact that the third derivative of the F̃ is negative

and therefore its curvature is decreasing. Demonstrations are

omitted here due to the lack of space and we only show the

proof of convexity of the majorant function HL(·, yk).
Lemma 1: The function h(x) = xr1(x) − 2 log I0(x) is

negative for all x > 0.

Proof 1: Taking the derivative of this function

h′(x) = x− xr1(x)
2 − 2r1(x)

and according to (14), one can deduce that h(x) is a decreasing

function. Therefore xr1(x)− 2 log I0(x) < h(0) = 0, ∀x > 0,

which completes the proof.

Theorem 1: The curvature Bk of the tangent majorant

function H̃(·, yk) defined by Equation (16) is positive for any

yk non-negative.

Proof 2: Note that Bk(y) can be formulated as the first

derivative of b(y) = 2 L̃(y)
y

, which can be expressed as

b(y) =
N

σ2
− 2

N∑

i=1

log I0(ci
√
y)

y
,

with ci =
Mi

σ2 .

Its derivative is expressed by:

b′(y) = −
N∑

i=1

ci
√
y r1(ci

√
y)− 2 log I0(ci

√
y)

y2
.

Lemma 1 allows to deduce the positivity of the curvature Bk

by setting x = ci
√
y.

B. Majorant function minimization

The value of yk+1 canceling the gradient of H̃L(·, yk) is

expressed as:

yk+1 = yk −Bk
−1∇L̃(yk). (17)

This algorithm is denoted as MM-χ2 since it corresponds to

applying the transformation y = A2. It can be noted that this

update scheme is similar to a quasi-Newton algorithm where

the pseudo-Hessian matrix is deduced from the Majorization

principle.

V. PERFORMANCE ANALYSIS

This section is dedicated to an empirical analysis of the

performances of the two MM optimization schemes in terms of

convergence speed and the proposal of a new descent strategy

combining the two algorithms.



A. Comparison of the two MM algorithms

In order to assess the performances for different noise levels,

we first consider a simulation with the measured signal module

to noise ratio (M/σ) varying from 0 to 8. The number of

measurements is set to N = 1. A discussion on this choice will

be conducted in section VI-A. The optimization is performed

using the two MM algorithms. The measurement is taken as

the initial value and the stopping condition is based on a

gradient norm value less than 10−5.

Figure 2 shows the required number of iterations for the

convergence of the two MM algorithms with different SNR

values. We can observe that the necessary number of iterations

for the convergence of MM-χ2 is much smaller when M
σ

is less

than a value in the order of 1.8, which demonstrates the interest

of the variable change especially in the context of a low SNR.

However, MM-χ algorithm requires fewer iterations when the

SNR increases. This can be explained by the proximity of the

Rician distribution to a Gaussian for high SNR.
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Fig. 2. The number of iterations of the MM descent algorithms for different
levels of the signal to noise ratio in the case of a single measurement.

B. Combination of the two MM algorithms

In order to obtain a more efficient algorithm for any value

of the SNR, we firstly adopt a linear combination of these two

descent algorithms either in the initial space A or in y. The

optimization strategy will be referred to hereafter as a mixed

descent whose main steps are summarized in Algorithm 1.

An optimized approach consists in selecting at each iteration

the MM solution which induces the largest descent of the

criterion (Algorithm 2). As illustrated by Figure 2, the pro-

posed optimized descent and mixed descent make it possible to

take advantage of the two algorithms by significantly reducing

the number of iterations whatever the value of SNR. It is

worth noting that the optimized descent turns out to take

automatically the fewest number of iterations while the mixed

descent results, for α = 0.5, in an intermediate convergence

speed.

C. Performance analysis

A second experiment is performed to discuss the impact of

the number of measurements on the convergence rate of the

Algorithm 1 Iterative mixed descent

Initialize A0 = M
Choose Descent in A or y

Set α between (0, 1)
for k = 1, 2, 3, ... until convergence do

Set yk = A2
k

Compute gk and Ak+1 according to Eq (6) and (9)

Compute Bk and yk+1 according to Eq (16) and (17)

switch Descent do

case A
Set DA = Ak+1 −Ak

Set Dy =
√
yk+1 −

√
yk

Ak+1 = Ak + αDA + (1 − α)Dy

case y
Set D̃A = A2

k+1 −A2
k

Set D̃y = yk+1 − yk
yk+1 = yk + αD̃A + (1− α)D̃y

Ak+1 =
√
yk+1

end for

Algorithm 2 Iterative optimized descent

Initialize A0 = M
for k = 1, 2, 3, ... until convergence do

Set yk = A2
k

Compute gk and Ak+1 according to eq.(6) and (9)

Set LA = L(Ak+1) as defined in eq.(2)

Compute Bk and yk+1 according to eq.(16) and (17)

Set Ly = L(
√
yk+1)

if Ly < LA then Ak+1 =
√
yk+1

end if

end for

algorithms. A Monte-Carlo simulation with 105 realizations

is performed with the true signal to noise ratio A/σ varies

from 0 to 8 in the case of measurements number N = 1 or

N = 10. Figure 3 illustrates the average number of iterations

using the different variants of the MM algorithms. It can be

seen that for both single and multiple measurements cases,

the three proposed algorithms outperform the classical MM

algorithm when the SNR is lower than a certain level and

the Optimized descent improves significantly the convergence

efficiency. Also, a rise in the number of iterations for A is

noted for MM-χ when the number of measurements increases.

VI. APPLICATION TO MRI

This section is dedicated to the application to MRI data and

a discussion on the relevance of the proposed algorithm.

A. Multiple or single measurements

Considering the dataset used for ML estimation in practical

applications, two different raw images can be obtained accord-

ing to the acquisition set-up. A common one is to collect N
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Fig. 3. Number of iterations of the MM descent algorithms for different
original signal amplitude and (a) N = 1 measurement or (b) N = 10

measurements.

independent complex-valued images then convert them into

N magnitude images. An alternative processing consists in

accumulating the N complex-valued k-space images into a

single observation by computing their average then processing

the magnitude image [17]. The question is therefore whether

the ML estimation should be performed by taking multiple

measurements with single accumulation or a single measure-

ment with multiple accumulations.

We compare these two approaches by an experiment with

real MRI data of a cylinder phantom filled with oil. We

collected ten repeated measurements of independent complex-

valued observations, from which we can compute a number of

magnitude measurements or alternatively taking the averaged

magnitude image.

Figure 4 presents the mean absolute deviation and normal-

ized mean square error of ML estimation given a number of

independent measurements (from 1 to 10) compared with a

given single image obtained by averaging the same number of

accumulations. It can be observed that the second approach has

a better performance in terms of deviation for some different

number of accumulations. This demonstrates the superiority

of ML estimation using the averaged image.

B. Application to a synthetic data sets

The proposed approach was evaluated using the freely avail-

able brain database [18]. A set of realistic MRI data volumes

with T1 pulse sequence and 1mm slice thickness produced by

the MRI simulator are taken. The noise variance is computed

using a method of local noise variance distribution [5].
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Fig. 4. The mean absolute deviation and normalized mean square error of
ML estimation using a single measurement and multiple measurements.
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In Figure 5, three different methods of ML estimation are

applied to the noisy data: (b) represents the ML pixel-wise

estimation where N = 1. As the ML estimation is originally

designed to take multiple images and according to the results

of section VI-A, a single averaged image is selected. We

also perform two additional tests: (c) and (d) corresponds to

ML estimation using 3 × 3 and 5 × 5 local neighborhoods

where the number of measurements is 9 and 25 respectively.

As mentioned by Santiago [5], taking into account the local

statistics for the estimation yields a better noise reduction but

causes edge-blurring. Since this paper discusses the efficiency

of different MM optimization strategies, we focus on the



computational performance and not on the relevance of the

ML estimation.

The MM-χ algorithm and the proposed three algorithms

are evaluated with the same dataset and using the same

stopping criterion in order to ensure getting identical solutions

after convergence. To compare their convergence speed, their

computation time (T), as well as the number of iterations

(Iter) are reported in Tables I and II. It can be seen that

the three proposed approaches substantially outperform MM-χ
algorithm in terms of computational efficiency. Moreover, as

the number of measurements increases, while MM-χ requires

significantly more iterations, the Mixed descent remains a rel-

atively moderate convergence speed while Optimized descent

requires always the fewest iterations. In the case of pixel-

wise estimation where N = 1, we obtain the same result

as in the previous simulation experiment, and for multiple

measurements, the Mixed descent turns to be the most efficient

in terms of the computation time. It is worth noting that even

though for each iteration, the Mixed descent and Optimized

descent are somehow more time-consuming as two criteria

evaluations are involved, the combination strategy still results

in less overall computation time due to fewer iterations.

TABLE I
THE NECESSARY NUMBER OF ITERATIONS FOR THE FOUR MM

ALGORITHMS FOR ML ESTIMATION FOR A SINGLE IMAGE USING

PIXEL-WISE, 3× 3 AND 5× 5 LOCAL NEIGHBORHOODS.

Algorithm Pixel-wise 3× 3 5× 5

MM-χ 58 482 459
MM-χ2 47 47 46

Optimised descent 9 11 11
Mixed descent 14 14 14

TABLE II
THE COMPUTATION TIME (IN SECONDS) OF THE FOUR MM ALGORITHMS

FOR ML ESTIMATION FOR SINGLE IMAGE USING PIXEL-WISE, 3× 3 AND

5× 5 LOCAL NEIGHBORHOODS.

Algorithm Pixel-wise 3× 3 5× 5

MM-χ 5.8 308.1 839.7
MM-χ2 3.1 19.2 51.2

Optimized descent 1.6 13.9 41.1
Mixed descent 1.7 11.4 31.9

VII. CONCLUSION

In this paper, we have investigated the problem of signal

estimation for MRI with Rician noise. The main proposal

is a novel MM framework based on a convex criterion

which improves significantly the convergence efficiency in the

context of a low SNR. The validation of its corresponding

quadratic tangent majorant function has been demonstrated

mathematically and empirically. Furthermore, we introduced

two algorithms combining the two MM strategies in order to

obtain the optimal performance.

From the simulation part and the real images analysis

results, we can conclude that both algorithms have shown

substantial improvement over MM-χ in terms of computa-

tional efficiency. A further theoretical analysis including the

convergence rates of the algorithms is being investigated. The

extension to penalized ML estimation is being explored in

order to enhance the denoising performances.
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