M. Berridge, Elementary and global aspects of calcium signalling., The Journal of Physiology, vol.499, issue.2, pp.291-306, 1997.
DOI : 10.1113/jphysiol.1997.sp021927

P. Braveny, Heart, calcium and time, Experimental and Clinical Cardiology, vol.7, pp.111-78, 2002.

A. Martonosi and S. Pikula, The network of calcium regulation in muscle, Acta Biochim Pol, vol.50, pp.1-30, 2003.

S. Henikoff, E. Greene, S. Pietrokovski, P. Bork, T. Attwood et al., Gene Families: The Taxonomy of Protein Paralogs and Chimeras, Science, vol.278, issue.5338, pp.609-623, 1997.
DOI : 10.1126/science.278.5338.609

R. Kretsinger and C. Nockolds, Carp muscle calcium-binding protein. II. Structure determination and general description, J Biol Chem, vol.248, pp.3313-3339, 1973.

S. Drake, M. Zimmer, C. Kundrot, and J. Falke, Molecular Tuning of an EF-Hand-like Calcium Binding Loop, The Journal of General Physiology, vol.256, issue.2, pp.173-84, 1997.
DOI : 10.1021/ja00331a046

W. Yang, H. Lee, H. Hellinga, and J. Yang, Structural analysis, identification, and design of calcium-binding sites in proteins, Proteins: Structure, Function, and Genetics, vol.196, issue.3, pp.344-56, 2002.
DOI : 10.1016/0022-2836(87)90039-8

C. Bunick, M. Nelson, S. Mangahas, M. Hunter, J. Sheehan et al., Designing Sequence to Control Protein Function in an EF-Hand Protein, Journal of the American Chemical Society, vol.126, issue.19, pp.5990-5998, 2004.
DOI : 10.1021/ja0397456

M. Nelson, E. Thulin, P. Fagan, S. Forsen, and W. Chazin, The EF-hand domain: A globally cooperative structural unit, Protein Science, vol.24, issue.2, pp.198-205, 2002.
DOI : 10.1007/978-1-4613-1571-1_1

A. Parekh, J. Putney, and . Jr, Store-Operated Calcium Channels, Physiological Reviews, vol.85, issue.2, pp.757-810, 2005.
DOI : 10.1152/physrev.00057.2003

J. Tfelt-hansen and E. Brown, THE CALCIUM-SENSING RECEPTOR IN NORMAL PHYSIOLOGY AND PATHOPHYSIOLOGY: A Review, Critical Reviews in Clinical Laboratory Sciences, vol.111, issue.2, pp.35-70, 2005.
DOI : 10.1172/JCI9038

M. Van-der-heyden, T. Wijnhoven, and T. Opthof, Molecular aspects of adrenergic modulation of cardiac L-type Ca channels, Cardiovascular Research, vol.65, issue.1, pp.28-39, 2005.
DOI : 10.1016/j.cardiores.2004.09.028

T. Iwamoto, Forefront of Na+/Ca2+ Exchanger Studies: Molecular Pharmacology of Na+/Ca2+ Exchange Inhibitors, Journal of Pharmacological Sciences, vol.96, issue.1, pp.27-32, 2004.
DOI : 10.1254/jphs.FMJ04002X6

I. Komuro and M. Ohtsuka, Forefront of Na+/Ca2+ Exchanger Studies: Role of Na+/Ca2+ Exchanger ??? Lessons From Knockout Mice, Journal of Pharmacological Sciences, vol.96, issue.1, pp.23-29, 2004.
DOI : 10.1254/jphs.FMJ04002X5

A. Uehara, T. Iwamoto, Y. Nakamura, and I. Imanaga, Forefront of Na+/Ca2+ Exchanger Studies: Physiology and Molecular Biology of Monovalent Cation Sensitivities in Na+/Ca2+ Exchangers, Journal of Pharmacological Sciences, vol.96, issue.1, pp.19-22, 2004.
DOI : 10.1254/jphs.FMJ04002X4

M. Hinata and J. Kimura, Forefront of Na+/Ca2+ Exchanger Studies: Stoichiometry of Cardiac Na+/Ca2+ Exchanger; 3:1 or 4:1?, Journal of Pharmacological Sciences, vol.96, issue.1, pp.15-23, 2004.
DOI : 10.1254/jphs.FMJ04002X3

S. Matsuoka, Forefront of Na+/Ca2+ Exchanger Studies: Regulation Kinetics of Na+/Ca2+ Exchangers, Journal of Pharmacological Sciences, vol.96, issue.1, pp.12-16, 2004.
DOI : 10.1254/jphs.FMJ04002X2

N. Sperelakis, Cell physiology sourcebook: A molecular approach, 2001.

J. Tamargo, R. Caballero, R. Gomez, C. Valenzuela, and E. Delpon, Pharmacology of cardiac potassium channels, Cardiovascular Research, vol.62, issue.1, pp.9-33, 2004.
DOI : 10.1016/j.cardiores.2003.12.026

R. Herzog, C. Liu, S. Waxman, and T. Cummins, Calmodulin binds to the C terminus of sodium channels Nav1.4 and Nav1. 6 and differentially modulates their functional properties, J Neurosci, vol.23, pp.8261-70, 2003.

H. Tan, S. Kupershmidt, R. Zhang, S. Stepanovic, D. Roden et al., A calcium sensor in the sodium channel modulates cardiac excitability, Nature, vol.415, issue.6870, pp.442-449, 2002.
DOI : 10.1038/415442a

M. Mori, T. Konno, T. Morii, K. Nagayama, and K. Imoto, Regulatory interaction of sodium channel IQ-motif with calmodulin C-terminal lobe, Biochemical and Biophysical Research Communications, vol.307, issue.2, pp.290-296, 2003.
DOI : 10.1016/S0006-291X(03)01183-5

J. Kim, S. Ghosh, H. Liu, M. Tateyama, R. Kass et al., Sensitivity of Sodium Channels, Journal of Biological Chemistry, vol.79, issue.43, pp.45004-45016, 2004.
DOI : 10.1021/bi00699a002

V. Shah, T. Wingo, K. Weiss, C. Williams, J. Balser et al., Calcium-dependent regulation of the voltage-gated sodium channel hH1: Intrinsic and extrinsic sensors use a common molecular switch, Proceedings of the National Academy of Sciences, vol.409, issue.6823, 2006.
DOI : 10.1038/35059090

I. Deschenes, N. Neyroud, D. Disilvestre, E. Marban, D. Yue et al., Isoform-Specific Modulation of Voltage-Gated Na+ Channels by Calmodulin, Circulation Research, vol.90, issue.4, pp.49-57, 2002.
DOI : 10.1161/01.RES.0000012502.92751.E6

H. Abriel and R. Kass, Regulation of the Voltage-Gated Cardiac Sodium Channel Nav1.5 by Interacting Proteins, Trends in Cardiovascular Medicine, vol.15, issue.1, pp.35-40, 2005.
DOI : 10.1016/j.tcm.2005.01.001

T. Wingo, V. Shah, M. Anderson, T. Lybrand, W. Chazin et al., An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability, Nature Structural & Molecular Biology, vol.11, issue.3, pp.219-244, 2004.
DOI : 10.1038/nsmb737

J. Kim, S. Ghosh, D. Nunziato, and G. Pitt, Identification of the Components Controlling Inactivation of Voltage-Gated Ca2+ Channels, Neuron, vol.41, issue.5, pp.745-54, 2004.
DOI : 10.1016/S0896-6273(04)00081-9

J. Babitch, Channel hands, Nature, vol.346, issue.6282, pp.321-323, 1990.
DOI : 10.1038/346321b0

M. De-leon, Y. Wang, L. Jones, E. Perez-reyes, X. Wei et al., Essential Ca2+-Binding Motif for Ca2+-Sensitive Inactivation of L-Type Ca2+ Channels, Science, vol.270, issue.5241, pp.1502-1508, 1995.
DOI : 10.1126/science.270.5241.1502

B. Peterson, J. Lee, J. Mulle, Y. Wang, M. De-leon et al., Critical Determinants of Ca2+-Dependent Inactivation within an EF-Hand Motif of L-Type Ca2+ Channels, Biophysical Journal, vol.78, issue.4, pp.1906-1926, 2000.
DOI : 10.1016/S0006-3495(00)76739-7

J. Zhou, R. Olcese, N. Qin, F. Noceti, L. Birnbaumer et al., Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+-binding function of a motif with similarity to Ca2+-binding domains, Proceedings of the National Academy of Sciences, vol.9, issue.2, pp.2301-2306, 1997.
DOI : 10.1016/0896-6273(92)90159-B

M. Erickson, H. Liang, M. Mori, and D. Yue, FRET Two-Hybrid Mapping Reveals Function and Location of L-Type Ca2+ Channel CaM Preassociation, Neuron, vol.39, issue.1, pp.97-107, 2003.
DOI : 10.1016/S0896-6273(03)00395-7

G. Pitt, R. Zuhlke, A. Hudmon, H. Schulman, H. Reuter et al., Channels, Journal of Biological Chemistry, vol.19, issue.1, pp.30794-802, 2001.
DOI : 10.1038/35004052

L. Xiong, Q. Kleerekoper, R. He, J. Putkey, and S. Hamilton, 1.2 Channel, Journal of Biological Chemistry, vol.269, issue.8, pp.7070-7079, 2005.
DOI : 10.1074/jbc.270.12.6741

URL : https://hal.archives-ouvertes.fr/hal-01078233

J. Mouton, A. Feltz, and Y. Maulet, -induced Inactivation, Journal of Biological Chemistry, vol.20, issue.25, pp.22359-67, 2001.
DOI : 10.1074/jbc.270.29.17306

F. Van-petegem, F. Chatelain, D. Minor, and . Jr, Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain???Ca2+/calmodulin complex, Nature Structural & Molecular Biology, vol.6, issue.12, pp.1108-1123, 2005.
DOI : 10.1021/bi00859a010

J. Fallon, D. Halling, S. Hamilton, and F. Quiocho, Structure of Calmodulin Bound to the Hydrophobic IQ Domain of the Cardiac Cav1.2 Calcium Channel, Structure, vol.13, issue.12, pp.1881-1887, 2005.
DOI : 10.1016/j.str.2005.09.021

I. Dzhura, Y. Wu, R. Colbran, J. Balser, and M. Anderson, Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels, Nature Cell Biology, vol.52, issue.3, pp.173-180, 2000.
DOI : 10.1016/S0006-3495(87)83298-8

I. Dzhura, Y. Wu, R. Zhang, R. Colbran, S. Hamilton et al., Channel Calmodulin-Binding Domains are ???Auto-Agonist??? Ligands in Rabbit Ventricular Myocytes, The Journal of Physiology, vol.275, issue.3, pp.731-739, 2003.
DOI : 10.1074/jbc.M002986200

A. Hudmon, H. Schulman, J. Kim, J. Maltez, R. Tsien et al., signals for facilitation, The Journal of Cell Biology, vol.428, issue.3, pp.537-584, 2005.
DOI : 10.1113/jphysiol.1990.sp018233

C. Demaria, T. Soong, B. Alseikhan, R. Alvania, and D. Yue, Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels, Nature, vol.411, issue.6836, pp.484-493, 2001.
DOI : 10.1038/35078091

D. Halling, P. Aracena-parks, and S. Hamilton, Regulation of Voltage-Gated Ca2+ Channels by Calmodulin, Science Signaling, vol.25, issue.19, p.15, 2005.
DOI : 10.1523/JNEUROSCI.0847-05.2005

D. Chaudhuri, S. Chang, C. Demaria, R. Alvania, T. Soong et al., Alternative Splicing as a Molecular Switch for Ca2+/Calmodulin-Dependent Facilitation of P/Q-Type Ca2+ Channels, Journal of Neuroscience, vol.24, issue.28, pp.6334-6376, 2004.
DOI : 10.1523/JNEUROSCI.1712-04.2004

D. Bers, Macromolecular complexes regulating cardiac ryanodine receptor function, Journal of Molecular and Cellular Cardiology, vol.37, issue.2, pp.417-446, 2004.
DOI : 10.1016/j.yjmcc.2004.05.026

C. Franzini-armstrong, F. Protasi, and R. V. , Shape, Size, and Distribution of Ca2+ Release Units and Couplons in Skeletal and Cardiac Muscles, Biophysical Journal, vol.77, issue.3, pp.1528-1567, 1999.
DOI : 10.1016/S0006-3495(99)77000-1

H. Takeshima, S. Nishimura, T. Matsumoto, H. Ishida, K. Kangawa et al., Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor, Nature, vol.339, issue.6224, pp.439-484, 1989.
DOI : 10.1038/339439a0

F. Zorzato, J. Fujii, K. Otsu, M. Phillips, N. Green et al., Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum, J Biol Chem, vol.265, pp.2244-56, 1990.

M. Samso and T. Wagenknecht, -Calmodulin Bind to Neighboring Locations on the Ryanodine Receptor, Journal of Biological Chemistry, vol.279, issue.2, pp.1349-53, 2002.
DOI : 10.1074/jbc.273.22.13403

M. Sharma, P. Penczek, R. Grassucci, H. Xin, S. Fleischer et al., Cryoelectron Microscopy and Image Analysis of the Cardiac Ryanodine Receptor, Journal of Biological Chemistry, vol.264, issue.29, pp.18429-18463, 1998.
DOI : 10.1016/B978-012265040-6/50002-3

T. Wagenknecht and M. Samso, Three-dimensional reconstruction of ryanodine receptors, Frontiers in Bioscience, vol.7, issue.4, pp.1464-74, 2002.
DOI : 10.2741/A853

M. Samso, T. Wagenknecht, and P. Allen, Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM, Nature Structural & Molecular Biology, vol.1, issue.6, pp.539-583, 2005.
DOI : 10.1107/S090744490000679X

S. Marx, J. Gaburjakova, M. Gaburjakova, C. Henrikson, K. Ondrias et al., Coupled Gating Between Cardiac Calcium Release Channels (Ryanodine Receptors), Circulation Research, vol.88, issue.11, pp.1151-1159, 2001.
DOI : 10.1161/hh1101.091268

URL : http://circres.ahajournals.org/content/circresaha/88/11/1151.full.pdf

G. Meissner, Molecular regulation of cardiac ryanodine receptor ion channel, Cell Calcium, vol.35, issue.6, pp.621-629, 2004.
DOI : 10.1016/j.ceca.2004.01.015

W. Cheng, X. Altafaj, M. Ronjat, and R. Coronado, Interaction between the dihydropyridine receptor Ca2+ channel ??-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling, Proceedings of the National Academy of Sciences, vol.14, issue.3, pp.19225-19255, 2005.
DOI : 10.1085/jgp.102.3.449

URL : https://hal.archives-ouvertes.fr/inserm-00381733

I. Bezprozvanny, J. Watras, and B. Ehrlich, Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum, Nature, vol.351, issue.6329, pp.751-755, 1991.
DOI : 10.1038/351751a0

T. Hamada, Y. Sakube, J. Ahnn, H. Kim-do, and H. Kagawa, Molecular Dissection, Tissue Localization and Ca2+ Binding of the Ryanodine Receptor of Caenorhabditis elegans, Journal of Molecular Biology, vol.324, issue.1, pp.123-158, 2002.
DOI : 10.1016/S0022-2836(02)01032-X

D. Witcher, R. Kovacs, H. Schulman, D. Cefali, and L. Jones, Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity, J Biol Chem, vol.266, pp.11144-52, 1991.

X. Wehrens, S. Lehnart, S. Reiken, and A. Marks, Ca2+/Calmodulin-Dependent Protein Kinase II Phosphorylation Regulates the Cardiac Ryanodine Receptor, Circulation Research, vol.94, issue.6, pp.61-70, 2004.
DOI : 10.1161/01.RES.0000125626.33738.E2

D. Terentyev, S. Viatchenko-karpinski, H. Valdivia, A. Escobar, and S. Gyorke, Luminal Ca2+ Controls Termination and Refractory Behavior of Ca2+-Induced Ca2+ Release in Cardiac Myocytes, Circulation Research, vol.91, issue.5, pp.414-434, 2002.
DOI : 10.1161/01.RES.0000032490.04207.BD

G. Bultynck, I. Sienaert, J. Parys, G. Callewaert, D. Smedt et al., Pharmacology of inositol trisphosphate receptors, Pfl??gers Archiv - European Journal of Physiology, vol.445, issue.6, pp.629-671, 2003.
DOI : 10.1007/s00424-002-0971-1

C. Stansfeld, J. Roper, J. Ludwig, R. Weseloh, S. Marsh et al., Elevation of intracellular calcium by muscarinic receptor activation induces a block of voltage-activated rat ether-a-go-go channels in a stably transfected cell line., Proceedings of the National Academy of Sciences, vol.93, issue.18, pp.9910-9914, 1996.
DOI : 10.1073/pnas.93.18.9910

R. Schonherr, K. Lober, and S. Heinemann, Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin, The EMBO Journal, vol.19, issue.13, pp.3263-71, 2000.
DOI : 10.1093/emboj/19.13.3263

U. Ziechner, R. Schonherr, A. Born, O. Gavrilova-ruch, R. Glaser et al., Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N- and C-termini, FEBS Journal, vol.100, issue.5, pp.1074-86, 2006.
DOI : 10.1016/0005-2736(80)90205-9

H. Wen and I. Levitan, Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels, J Neurosci, vol.22, pp.7991-8001, 2002.

N. Gamper and M. Shapiro, Channels, The Journal of General Physiology, vol.285, issue.1, pp.17-31, 2003.
DOI : 10.1038/20200

E. Yus-najera, I. Santana-castro, and A. Villarroel, The Identification and Characterization of a Noncontinuous Calmodulin-binding Site in Noninactivating Voltage-dependent KCNQ Potassium Channels, Journal of Biological Chemistry, vol.31, issue.32, pp.28545-53, 2002.
DOI : 10.1126/science.280.5360.69

S. Ghosh, D. Nunziato, and G. Pitt, KCNQ1 Assembly and Function Is Blocked by Long-QT Syndrome Mutations That Disrupt Interaction With Calmodulin, Circulation Research, vol.98, issue.8, 2006.
DOI : 10.1161/01.RES.0000218863.44140.f2

URL : http://circres.ahajournals.org/content/circresaha/98/8/1048.full.pdf

W. An, M. Bowlby, M. Betty, J. Cao, H. Ling et al., Modulation of A-type potassium channels by a family of calcium sensors, Nature, vol.269, issue.6769, pp.553-559, 2000.
DOI : 10.1016/0014-5793(90)81214-9

B. Callsen, D. Isbrandt, K. Sauter, L. Hartmann, O. Pongs et al., Contribution of N- and C-terminal channel domains to Kv channel interacting proteins in a mammalian cell line, The Journal of Physiology, vol.6, issue.2, pp.397-412, 2005.
DOI : 10.1016/S0896-6273(04)00045-5

S. Patel, D. Campbell, and H. Strauss, Elucidating KChiP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChiP2 isoform, The Journal of Physiology, vol.113, issue.1, pp.5-11, 2002.
DOI : 10.1085/jgp.113.5.661

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2002.031856/pdf

G. Sergeant, S. Ohya, J. Reihill, B. Perrino, G. Amberg et al., Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase II, AJP: Cell Physiology, vol.288, issue.2, pp.304-317, 2005.
DOI : 10.1152/ajpcell.00293.2004

J. Roeper, C. Lorra, and O. Pongs, Frequency-dependent inactivation of mammalian A-type K+ channel KV1. 4 regulated by Ca2+/calmodulin-dependent protein kinase, J Neurosci, vol.17, pp.3379-91, 1997.

F. Jow, Z. Zhang, D. Kopsco, K. Carroll, and K. Wang, Functional coupling of intracellular calcium and inactivation of voltage-gated Kv1.1/Kv??1.1 A-type K+ channels, Proceedings of the National Academy of Sciences, vol.304, issue.5668, pp.15535-15575, 2004.
DOI : 10.1126/science.1094113

M. Stocker and . Ca, Ca2+-activated K+ channels: molecular determinants and function of the SK family, Nature Reviews Neuroscience, vol.19, issue.10, pp.758-70, 2004.
DOI : 10.1038/84758

J. Brayden and M. Nelson, Regulation of arterial tone by activation of calcium-dependent potassium channels, Science, vol.256, issue.5056, pp.532-537, 1992.
DOI : 10.1126/science.1373909

E. Moczydlowski, BK Channel News, The Journal of General Physiology, vol.95, issue.5, pp.471-474, 2004.
DOI : 10.1085/jgp.118.5.607

URL : http://jgp.rupress.org/content/jgp/123/5/471.full.pdf

R. Robitaille, M. Garcia, G. Kaczorowski, and M. Charlton, Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release, Neuron, vol.11, issue.4, pp.645-55, 1993.
DOI : 10.1016/0896-6273(93)90076-4

J. Ahluwalia, A. Tinker, L. Clapp, M. Duchen, A. Abramov et al., The large-conductance Ca2+-activated K+ channel is essential for innate immunity, Nature, vol.427, issue.6977, pp.853-861, 2004.
DOI : 10.1038/nature02356

W. Xu, Y. Liu, S. Wang, T. Mcdonald, V. Eyk et al., Cytoprotective Role of Ca2+- Activated K+ Channels in the Cardiac Inner Mitochondrial Membrane, Science, vol.267, issue.36, pp.1029-1062, 2002.
DOI : 10.1016/S0006-291X(88)81212-9

P. Meera, M. Wallner, M. Song, and L. Toro, Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus, Proceedings of the National Academy of Sciences, vol.269, issue.32, pp.14066-71, 1997.
DOI : 10.1073/pnas.93.12.6031

Y. Jiang, A. Pico, M. Cadene, B. Chait, and R. Mackinnon, Structure of the RCK Domain from the E. coli K+ Channel and Demonstration of Its Presence in the Human BK Channel, Neuron, vol.29, issue.3, pp.593-601, 2001.
DOI : 10.1016/S0896-6273(01)00236-7

T. Roosild, K. Le, and S. Choe, Cytoplasmic gatekeepers of K+-channel flux: a structural perspective, Trends in Biochemical Sciences, vol.29, issue.1, pp.39-45, 2004.
DOI : 10.1016/j.tibs.2003.11.008

M. Schreiber and L. Salkoff, A novel calcium-sensing domain in the BK channel, Biophysical Journal, vol.73, issue.3, pp.1355-63, 1997.
DOI : 10.1016/S0006-3495(97)78168-2

A. Wei, T. Jegla, and L. Salkoff, Eight Potassium Channel Families Revealed by the C. elegans Genome Project, Neuropharmacology, vol.35, issue.7, pp.805-834, 1996.
DOI : 10.1016/0028-3908(96)00126-8

D. Cox, -binding Sites, Multiple Sites, Multiple Ions, The Journal of General Physiology, vol.269, issue.3, pp.253-258, 2005.
DOI : 10.1085/jgp.118.5.607

URL : http://jgp.rupress.org/content/jgp/125/3/253.full.pdf

A. Wei, C. Solaro, C. Lingle, and L. Salkoff, Calcium sensitivity of BK-type KCa channels determined by a separable domain, Neuron, vol.13, issue.3, pp.671-81, 1994.
DOI : 10.1016/0896-6273(94)90034-5

L. Bao, A. Rapin, E. Holmstrand, and D. Cox, Sensitivity, The Journal of General Physiology, vol.293, issue.2, pp.173-89, 2002.
DOI : 10.1085/jgp.118.5.607

X. Xia, X. Zeng, and C. Lingle, Multiple regulatory sites in large-conductance calcium-activated potassium channels, Nature, vol.117, issue.1, pp.880-884, 2002.
DOI : 10.1085/jgp.117.6.583

L. Bao, C. Kaldany, E. Holmstrand, and D. Cox, Bowl???, The Journal of General Physiology, vol.262, issue.5, pp.475-89, 2004.
DOI : 10.1085/jgp.118.5.607

R. Piskorowski and R. Aldrich, Calcium activation of BKCa potassium channels lacking the calcium bowl and RCK domains, Nature, vol.120, issue.6915, pp.499-502, 2002.
DOI : 10.1085/jgp.20028605

Y. Ikemoto, K. Ono, A. Yoshida, and N. Akaike, Delayed activation of large-conductance Ca2+-activated K channels in hippocampal neurons of the rat, Biophysical Journal, vol.56, issue.1, pp.207-219, 1989.
DOI : 10.1016/S0006-3495(89)82665-7

M. Kihira, K. Matsuzawa, H. Tokuno, and T. Tomita, Effects of calmodulin antagonists on calcium-activated potassium channels in pregnant rat myometrium, British Journal of Pharmacology, vol.770, issue.Suppl., pp.353-362, 1990.
DOI : 10.1016/0005-2736(84)90065-8

K. Yap, J. Kim, K. Truong, M. Sherman, T. Yuan et al., Calmodulin target database, Journal of Structural and Functional Genomics, vol.1, issue.1, pp.8-14, 2000.
DOI : 10.1023/A:1011320027914

C. Vergara, R. Latorre, N. Marrion, and J. Adelman, Calcium-activated potassium channels, Current Opinion in Neurobiology, vol.8, issue.3, pp.321-330, 1998.
DOI : 10.1016/S0959-4388(98)80056-1

C. Bond, J. Maylie, and J. Adelman, SK channels in excitability, pacemaking and synaptic integration, Current Opinion in Neurobiology, vol.15, issue.3, pp.305-316, 2005.
DOI : 10.1016/j.conb.2005.05.001

P. Dunn, D. Benton, C. Rosa, J. Ganellin, C. Jenkinson et al., Discrimination between subtypes of apamin-sensitive Ca2+- activated K+ channels by gallamine and a novel bis-quaternary quinolinium cyclophane, UCL 1530, British Journal of Pharmacology, vol.426, issue.1, pp.35-42, 1996.
DOI : 10.1007/BF00374778

D. Galanakis, C. Davis, D. R. Herrero, B. Ganellin, C. Dunn et al., Synthesis and Structure-Activity Relationships of Dequalinium Analogs as K+ Channel Blockers. Investigations on the Role of the Charged Heterocycle, Journal of Medicinal Chemistry, vol.38, issue.4, pp.595-606, 1995.
DOI : 10.1021/jm00004a005

D. Galanakis, C. Ganellin, P. Dunn, and D. Jenkinson, On the Concept of a Bivalent Pharmacophore for SKCa Channel Blockers: Synthesis, Pharmacological Testing, and Radioligand Binding Studies on Mono-, Bis-, and Tris-quinolinium Compounds, Archiv der Pharmazie, vol.15, issue.12, pp.524-532, 1996.
DOI : 10.1113/jphysiol.1985.sp015556

P. Sah and . Ca, Ca2+-activated K+ currents in neurones: types, physiological roles and modulation, Trends in Neurosciences, vol.19, issue.4, pp.150-154, 1996.
DOI : 10.1016/S0166-2236(96)80026-9

A. Selyanko, J. Sim, and D. Brown, Small (SK Ca ) Ca 2+ -activated K + channels in cultured rat hippocampal pyramidal neurones, Pfl???gers Archiv European Journal of Physiology, vol.437, issue.1, pp.161-164, 1998.
DOI : 10.1007/s004240050762

C. Villalobos, V. Shakkottai, K. Chandy, S. Michelhaugh, and R. Andrade, SKCa Channels Mediate the Medium But Not the Slow Calcium-Activated Afterhyperpolarization in Cortical Neurons, Journal of Neuroscience, vol.24, issue.14, pp.3537-3579, 2004.
DOI : 10.1523/JNEUROSCI.0380-04.2004

G. Wang, D. Robinson, and L. Chalupa, Calcium-activated potassium conductances in retinal ganglion cells of the ferret, J Neurophysiol, vol.79, pp.151-159, 1998.

Y. Xu, D. Tuteja, Z. Zhang, D. Xu, Y. Zhang et al., Channel in Human and Mouse Hearts, Journal of Biological Chemistry, vol.85, issue.49, pp.49085-94, 2003.
DOI : 10.1073/pnas.82.9.3040

S. Bhattacharya, C. Bunick, and W. Chazin, Target selectivity in EF-hand calcium binding proteins, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1742, issue.1-3, pp.69-79, 2004.
DOI : 10.1016/j.bbamcr.2004.09.002

J. Keen, R. Khawaled, D. Farrens, T. Neelands, A. Rivard et al., Domains responsible for constitutive and Ca(2+)-dependent interactions between calmodulin and small conductance Ca(2+)-activated potassium channels, J Neurosci, vol.19, pp.8830-8838, 1999.

J. Maylie, C. Bond, P. Herson, W. Lee, and J. Adelman, channels and calmodulin, The Journal of Physiology, vol.395, issue.2, pp.255-61, 2004.
DOI : 10.1038/26758

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2003.049072/pdf

B. Fakler, A. Rivard, G. Wayman, T. Johnson-pais, J. Keen et al., Mechanism of calcium gating in small-conductance calcium-activated potassium channels, Nature, vol.395, pp.503-510, 1998.

M. Schumacher, M. Crum, and M. Miller, Crystal Structures of Apocalmodulin and an Apocalmodulin/SK Potassium Channel Gating Domain Complex, Structure, vol.12, issue.5, pp.849-60, 2004.
DOI : 10.1016/j.str.2004.03.017

M. Schumacher, A. Rivard, H. Bachinger, and J. Adelman, Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin, Nature, vol.410, issue.6832, pp.1120-1124, 2001.
DOI : 10.1038/35074145

T. Kristian and B. Siesjo, Calcium in Ischemic Cell Death, Stroke, vol.29, issue.3, pp.705-723, 1998.
DOI : 10.1161/01.STR.29.3.705

M. Kitakaze, M. Weisfeldt, and E. Marban, Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts., Journal of Clinical Investigation, vol.82, issue.3, pp.920-927, 1988.
DOI : 10.1172/JCI113699

J. Lee and D. Allen, Changes in intracellular free calcium concentration during long exposures to simulated ischemia in isolated mammalian ventricular muscle, Circulation Research, vol.71, issue.1, pp.58-69, 1992.
DOI : 10.1161/01.RES.71.1.58

A. Varga, L. Yuan, A. Anderson, L. Schrader, G. Wu et al., Calcium-Calmodulin-Dependent Kinase II Modulates Kv4.2 Channel Expression and Upregulates Neuronal A-Type Potassium Currents, Journal of Neuroscience, vol.24, issue.14, pp.3643-54, 2004.
DOI : 10.1523/JNEUROSCI.0154-04.2004

J. Putkey, Q. Kleerekoper, T. Gaertner, and M. Waxham, A New Role for IQ Motif Proteins in Regulating Calmodulin Function, Journal of Biological Chemistry, vol.269, issue.50, pp.49667-70, 2003.
DOI : 10.1038/nsb1101-990