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Parameter and state estimation of switched affine systems

Jamal Daafouz, Romain Postoyan, Pierre Riedinger

Abstract— We investigate the on-line parameter and state
estimation of switched affine systems. We first adapt standard
techniques available for affine (time-varying) systems to the
considered class of systems, which leads to new linear matrix
inequality-based conditions for the design of the estimator gains.
We then explain how to derive decoupled estimators in the sense
that the state and the parameter estimates are generated by
cascaded switched differential equations, which is numerically
more efficient and thus easier to implement in practice. A
first solution is presented, which generates state estimates with
jumps at the switching instants. To overcome this potential
issue, two “bumpless” strategies are proposed. The first one
relies on a persistency of excitation (PE) condition, while the
the second one applies to a given class of switching rules and
avoids the PE condition. Both estimation strategies ensure the
global exponential convergence to zero of the estimation errors.
The results are illustrated on a model describing the behavior
of a DC-DC power converter.

I. INTRODUCTION

On-line parameter and state estimation is a challenging
problem from a theoretical point of view and most available
results with analytical convergence guarantees apply to
specific classes of systems, see e.g., [12], [3], [11], [7], [9], at
the exception of the recent work in [6]. The aforementioned
references concentrate on smooth dynamics. In this paper,
we are interested in switched affine systems, which consist
of a set of affine dynamics called modes, together with
a law for switching between these modes. These models
are often used to describe real-world systems that are
subject to known or unknown abrupt parameter changes,
e.g. embedded systems in automotive industry, aerospace,
and energy management. Because of the switches between
the modes, results for smooth systems cannot be applied
in general to these systems and adapted solutions are needed.

To the best of our knowledge, very few contributions
are related to the joint parameter and state estimation of
switched affine systems. In [10], the authors assume that
the parameters belong to a given polytope. The problem is
then formulated as a switching rule design for an auxiliary
switched system whose matrices, at the equilibrium, corre-
spond to the matrices of the switched system to be estimated.
An alternative approach is simply to consider the unknown
parameter as an extra state and to design a state observer for
the extended system. However, the model structure is ignored
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in this case and it may be difficult to design a state-observer
for the obtained system.

In this study, we focus on switched affine systems for
which the unknown parameters affect the affine term. We first
review and adapt standard techniques, which lead to linear
matrix inequality (LMI) based conditions under which a joint
parameter and state estimator is synthesized. Inspired by [8],
we then investigate the design of a decoupled estimator, i.e.
a scheme for which the state is estimated by first generating
a parameter-free state estimate, which is then corrected by a
term involving the parameter estimate. Decoupled solutions
are of practical interest as these ease the implementation
since it leads to a cascaded estimator, see also [13] for
related results on smooth affine time-varying systems. We
highlight the features of the decoupled estimation problem
in the context of switched systems. In particular, we show
that the most simple solution leads to state estimates, with
jumps at the switching instants. To avoid this phenomenon,
we propose a solution using a persistency of excitation (PE)
condition, which ensures the global exponential convergence
of the parameter and state estimation errors to the origin.
Because the PE condition may be difficult to verify, we also
provide an alternative design, which does not rely on any PE
property but restricts the class of switching rules. The latter
scheme also ensures the global exponential convergence of
the estimates. The results are applied to a DC-DC power
converter, for which we aim at estimating two parameters
corresponding to an unknown constant load and an unknown
constant input voltage.

The paper is organized as follows. In the next section, we
give the counterpart of the standard reduced-order observer
and estimation theory in the case of switched affine systems.
The main contribution of this paper is detailed in Section III
where the specificities of the switched decoupled parameter
and state estimation are highlighted. The proposed study is
illustrated on a DC-DC converter example in Section IV
before giving some concluding remarks in Section V.

Notations. The set composed by the N first positive integers
is denoted by I = {1, · · · , N}. The notation I stands for the
identity matrix for any dimension. We use XT to denote the
transpose of the matrix X , and we write X > 0 (X < 0) to
denote that X is positive (negative) definite. The symbol (•)
stands for the blocks of a matrix induced by symmetry. The
notation (x, y) is used for (xT , yT )T , for any x ∈ Rn, y ∈
Rm.



II. JOINT STATE AND PARAMETER ESTIMATION

We consider the switched affine system

ẋ = Aσx+Bσu+Gσθ (1)
y = Cσx

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp
is the output and θ ∈ Rr is an unknown constant parameter
(θ̇ = 0). The switching rule is defined by σ : Rn → I
and is assumed to be available in real time and Lebesgue
measurable.

The objective of this paper is to propose design solutions
to estimate on-line x and θ. In this section, we concentrate
on the synthesis of the so-called joint estimators. We first
consider the case where x is known, we then extend the
results to the case where it is not.

A. When the state is known

Knowing the state, an asymptotic estimate θ̂ of the un-
known parameter θ can be obtained using a switched full
order filter given by

˙̂x = Aσx+Bσu+Gσ θ̂ (2)
θ̂ = Kσ(x− x̂)

with x̂ ∈ Rn. Alternatively, a switched reduced-order filter
may also be used to asymptotically estimate θ by

ż = −Kσ(Aσx+Bσu+Gσ θ̂) (3)

θ̂ = Kσx+ z

with z ∈ Rr. In both cases, the dynamics of the parameter
estimation error eθ := θ − θ̂ is

ėθ = −KσGσeθ. (4)

The next proposition is dedicated to the design of Kσ such
that the equilibrium eθ = 0 of system (4) is globally
exponentially stable for any switching signal σ.

Theorem 1: The error dynamics (4) is globally exponen-
tially stable for any switching signal σ if there exist matrices
Ri ∈ Rr×n, i ∈ I, that satisfy the following LMIs

GTi R
T
i +RiGi > 0, (5)

by taking the gain matrices Ki = P−1Ri where P ∈ Rr×r
is any positive definite matrix. �

Proof: The proof is obtained using a quadratic Lya-
punov function V (e) = eTPe with P = PT > 0 to check
global exponential stability of (4) and the change of variables
Ki = P−1Ri, i ∈ I.

The sufficient condition of Theorem 1 does not depend
on the Lyapunov matrix P . A necessary condition for the
feasibility of (5) is the observability of the pairs (0, Gi),
i ∈ I, and in this case any quadratic function V (e) = eTPe
with P = PT > 0 is a Lyapunov function that ensures global
exponential stability of (4) with Ki = P−1Ri.

B. When the state is unknown

When both the state and the parameter vectors have to be
estimated, a generalization of the previous filters leads to

˙̂x = Aσx̂+Bσu+Gσ θ̂ + Lσ(y − ŷ)
˙̂
θ = Kσ(y − ŷ)
ŷ = Cσx̂,

(6)

where Lσ is the state estimation gain and Kσ is the parameter
estimation gain. Let ex := x− x̂. We have[

ėx
ėθ

]
=

[
Aσ − LσCσ Gσ
−KσCσ 0

] [
ex
eθ

]
, (7)

recall that eθ = θ − θ̂. The next proposition is dedicated to
the design of Lσ and Kσ such that the equilibrium (ex, eθ) =
(0, 0) is globally exponentially stable.

Theorem 2: There exist Li and Ki, i ∈ I, such that the
origin of system (7) is globally exponentially stable with any
arbitrary switching rule if there exist a symmetric positive
definite matrix X , matrices Y , Mi and Ni, i ∈ I, of
appropriate dimensions, satisfying the LMIs[
ATi X +XAi −MiCi − CTi MT

i (•)T
GTi X + Y Ai −NiCi GTi Y

T + Y Gi

]
< 0.

(8)
In this case, the gains Li and Ki are given by[

Li
Ki

]
=

[
X Y T

Y Z

]−1 [
Mi

Ni

]
(9)

with Z any symmetric positive definite matrix such that
Z > YX−1Y T . �

Proof: The LMIs (8) are obtained using a quadratic
Lyapunov function

V(ζ) = ζTPζ (10)

ζ =

[
ex
eθ

]
, P =

[
X Y T

Y Z

]
> 0

and the change of variables

Mi = XLi + Y TKi, Ni = ZKi + Y Li

which is equivalent to:[
Mi

Ni

]
=

[
X Y T

Y Z

] [
Li
Ki

]
The existence of the inverse in (9) is guaranteed by
Z > YX−1Y T which is nothing than taking any Z that
keeps P > 0.

III. DECOUPLED STATE AND PARAMETER ESTIMATION

A. Problem statement

The estimator obtained in Theorem 2 leads to a solution
where the state estimation and the parameter estimation are
coupled, in the sense that the dynamics of the state and
the parameter estimates in (6) depend on each others. An
alternative solution where the state estimation is decoupled
from the parameter estimation is of practical interest to ease

2



the implementation. In this section, we use a switched Lu-
enberger observer for the parameter free estimation problem
(Gi = 0, i ∈ I), that is

˙̃x = Aσx̃+Bσu+ L̃σ(y − ỹ) (11)
ỹ = Cσx̃. (12)

The variable x̃ is a state estimate of x when Gi = 0 for any
i ∈ I. Hence, x̃ is independent of the parameter estimate.
Define the error ex̃ := x − x̃. The gain L̃σ is determined
such that the origin of the system

ėx̃ = Ãσex̃, with Ãi = Ai − L̃iCi, i ∈ I (13)

is globally exponentially stable. It is well known (see [5])
that if there exists a matrix P̃ = P̃T > 0 and matrices R̃i
satisfying for all i ∈ I

ATi P̃ + P̃Ai − CTi R̃Ti − R̃Ti Ci < 0 (14)

then L̃σ with Li = P̃−1R̃i ensures that the origin of system
(13) is globally exponentially stable and

Ve(ex̃) = eTx̃ P̃ ex̃ (15)

is a quadratic Lyapunov function. In this case, there always
exists a symmetric matrix Q̃ > 0 such that, along the
solutions to system (13),

V̇e = −eTx̃ Q̃ex̃ ≤ 0 (16)

We assume that (14) holds throughout this section and that
the gains L̃i are given by P̃−1R̃i. Our objective is to obtain
a state estimate for the switched affine system with unknown
parameters using the estimate x̃ and a correction based on a
parameter estimate θ̂, whose dynamics are still given by

˙̂
θ = Kσ(y − ŷ), (17)

and where ŷ is expressed in terms of x̃ and θ̂.

B. A first solution

Let Tσ be the set whose elements are t0 = 0 and all
the switching times ti of σ, indexed in such a way that
0 = t0 < t1 < t2 < . . .. This means that between any two
consecutive switching times ti and ti+1, the mode σ = i is
active for all t ∈ [ti, ti+1). If the set of switching times is
infinite, then limi→+∞ ti = +∞.

Here, we establish LMI conditions under which a joint
parameter and state estimator of the form (6) satisfies:

x̂ = x̃+ Sσ θ̂, (18)

with Si, i ∈ I some constant matrices to be determined. As a
result, the state estimate x̂ can be obtained from a parameter-
free state estimate x̃ and a correcting term involving the
parameter estimate θ̂. Indeed, one can notice that replacing
x̂ = x̃+ Sσ θ̂ in the estimator (6) leads to:

˙̂
θ = Kσ(y − ŷ) = −Hσ θ̂ +Kσ(y − Cσx̃), (19)

with
Hi = KiCiSi, i ∈ I.

This means that the decoupling is effective as it is possible
to compute the state estimation x̂ by first computing the
parameter free estimate x̃ and then correcting this estimate
by the quantity Sσ θ̂ with θ̂ obtained using (19).

Theorem 3: Suppose that there exist a symmetric matrix
X > 0, matrices Y , Mi and Ni, i ∈ I, of appropriate
dimensions, such that, for any i ∈ I,[

ÃTi X +XÃi −MiCi − CTi M
T
i •

GTi X + Y Ãi −NiCi GTi Y
T + Y Gi

]
< 0.

(20)
and let Si = −Ã−1i Gi and V(ζ) = ζTPζ with P =[
X Y T

Y Z

]
and Z any symmetric positive definite matrix

such that Z > YX−1Y T . Then, the joint parameter and
state estimator (6) with the gains

Ki = (I+ STi Si)
−1

[
STi I

] [ X Y T

Y Z

]−1 [
Mi

Ni

]
,

Li = L̃i + SiKi

(21)
satisfies

x̂ = x̃+ Sσ θ̂,

Moreover, the estimation error ζ verifies (7) for any time
t ∈ [ti, ti+1) and the time-derivative of V along the corre-
sponding trajectories of ζ, verifies for any [ti, ti+1) such that
ζ(t) 6= 0

V̇(ζ) < 0.

�
Proof: First, to have for any t ∈ [ti, ti+1) the equality

x̂ = x̃+Siθ̂, i ∈ I, we necessarily need to have ˙̂x = ˙̃x+Si
˙̂
θ

for any t ∈ [ti, ti+1). After replacing ˙̂x, ˙̂
θ and ˙̃x by their

expressions (6) and (11), we derive that

(ÃiSi +Gi)θ̂ + (Li − L̃i − SiKi)(y − ỹ) = 0.

The only way to guarantee that this equality is satisfied for
any i ∈ I and any t ∈ [ti, ti+1) is to impose Li = L̃i +
SiKi and Si = −Ã−1i Gi, i ∈ I and t ∈ [ti, ti+1) (recall
that Ãi is invertible as L̃i makes Ãi Hurwitz). Now one
has to compute the gains Ki and ensure that the derivative
of V (ζ) = ζTPζ along the trajectories of (7) is strictly
negative for all t ∈ [ti, ti+1). Computing this derivative and
using Li = L̃i + SiKi and the change of variables

Mi = (XSi + Y T )Ki, and Ni = (Z + Y Si)Ki

one obtains (20) after some algebraic manipulations. To end
the proof, it remains to show that the gains Ki are given by
(21). Indeed, the previous change of variables is equivalent
to [

Mi

Ni

]
=

[
X Y T

Y Z

] [
Si
I

]
Ki

and the existence and the unicity of the inverses in (21) is

guaranteed by the fact that
[
Si
I

]
is of full column rank

and Z > YX−1Y T which is nothing than taking any Z that
keeps P > 0.

Theorem 3 provides conditions under which the joint
parameter and state estimator (6) leads to an estimation
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satisfying (18). The difference with Section II-B is that the
convergence of the estimation error is only ensured between
two switching instants. However, at jumps, x̂ typically jumps
according to (18), which is an issue in general, and when
jumps frequently occur in particular. Before explaining how
to overcome this issue, we investigate the relationships
between the conditions of Theorems 2 and 3. In particular,
whether there are cases where the decoupled solution of
Theorem 3 does not exist while the coupled solution of
Theorem 2 does. In other words, are the conditions of
Theorem 2 and Theorem 3 equivalent or not. The following
proposition answers this important question and shows that
the LMI conditions of these two theorems are equivalent;
the advantage of Theorem 3 being the fact that one is given
the possibility to design a decoupled state and parameter
estimator.

Proposition 1: There exists a solution to the LMI condi-
tions of Theorem 3 if and only if there exists a solution to
the LMI conditions of Theorem 2. �

Proof: To prove necessity, assume that the LMI condi-
tions of Theorem 3 are feasible and denote the corresponding
solution by X̃ , Ỹ , M̃i and Ñi, i ∈ I. These conditions read:[

Πi •
GTi X̃ + Ỹ Ai − (Ỹ L̃i + Ñi)Ci GTi Ỹ

T + Ỹ Gi

]
< 0

with

Πi = AiX̃ + X̃Ai − (X̃L̃i + M̃i)Ci − CTi (L̃Ti X̃ + M̃i)
T

which means that the LMI of Theorem 2 are necessarily
satisfied with

X = X̃, Y = Ỹ , Ni = Ỹ L̃i+Ñi, Mi = X̃L̃i+M̃i

For sufficiency, assume that the LMI of Theorem 2 are
feasible and denote the corresponding solution by X̄ , Ȳ , M̄i

and N̄i, i ∈ I. This is equivalent to:[
Ui •
Vi GTi Ȳ

T + Ȳ Gi

]
< 0

with

Ui = ATi X̄ + X̄Ai − M̄iCi − CTi M̄T
i + X̄L̃iCi−

X̄L̃iCi + CTi L̃
T
i X̄ − CTi L̃Ti X̄

and

Vi = GTi X̄ + Ȳ Ai − N̄iCi + Ȳ L̃iCi − Ȳ L̃iCi

which nothing than[
Wi •

GTi X̄ + Ȳ Ãi − (N̄i − Ȳ L̃i)Ci GTi Ȳ
T + Ȳ Gi

]
< 0

where

Wi = ÃTi X̄ + X̄Ãi − (M̄i − X̄L̃i)Ci − CTi (M̄i − X̄L̃i)T .

Hence, the LMI condition of Theorem 3 are satisfied with

X = X̄, Y = Ȳ , Ni = N̄i − Ȳ L̃i, Mi = M̄i − X̄L̃i.

C. Bumpless solution under a persistency of excitation con-
dition

The problem with the solution of Theorem 3 is that
the estimation (18) may jump at the switching times as
illustrated on simulations in Section IV. A way to overcome
this undesirable behaviour is to consider a continuous time-
varying matrix S, that is

x̂ = x̃+ S(t)θ̂ (22)

In this case, the dynamics of the parameter estimate is still
given by (19) but with

Hi = KiCiS(t), i ∈ I.

To impose that a joint parameter and state estimator of the
form (6) satisfies (22) one has to take into account the
derivative Ṡ(t) in the proof of Theorem 3, namely

˙̂x = ˙̃x+ S
˙̂
θ + Ṡθ̂

which is equivalent to

(ÃiSi +Gi − Ṡ)θ̂ + (Li − L̃i − SKi)(y − ỹ) = 0 (23)

To guarantee that (23) holds for any θ̂, any (y− ỹ) and any
i ∈ I one has to impose

Ṡ = ÃσS +Gσ (24)

Lσ = L̃σ + SKσ (25)

With this choice, the conditions of Theorem 3 will become
time dependent and this is not easy to handle from a practical
point of view. An alternative is to use a persistency of
excitation condition as stated in the next theorem.

Theorem 4: Consider the switched affine system (1) and
systems (11) and (17). Let S satisfying (24). There exist
parameter estimation gains Ki, i ∈ I, such that eθ := θ − θ̂
and ex := x− x̂ (with x̂ = x̃+ Sθ̂) converge exponentially
to 0 if there exist 0 < α ≤ α, T > 0 and symmetric positive
definite matrices Σi, i ∈ I of appropriate dimensions such
that

αI ≤
∫ t+T

t

STCTσ ΣσCσSdτ ≤ ᾱI (26)

In this case, the estimation gains are given by:

Ki = ΓSTCTσ Σi

with Γ any positive definite matrix.
Proof: Let

ex̃s := x− x̃− Sθ

In view of (1), (11) and (24),

ėx̃s = Ãσex̃s , (27)

which means that the dynamics of ex̃s
is exactly the same

as the dynamics of ex̃ given by (13) and hence ex̃s
→ 0.

Now, we rewrite the dynamics of the parameter estimation
error eθ = θ − θ̂

ėθ = − ˙̂
θ = −KσCσ(x− x̃− Sθ̂ + Sθ − Sθ)
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which is nothing but

ėθ = −KσCσSeθ −KσCσex̃s
(28)

The PE condition (26) ensures that the origin of

ż = −KσCσSz

is globally exponentially stable [1]. As ex̃s
→ 0, we have

eθ → 0 that is θ̂ converges towards θ. To end the proof,
notice that

x− x̂ = x− x̃− Sθ̂ + Sθ − Sθ = ex̃s
+ Seθ

Finally, as ex̃s
→ 0, eθ → 0 and S is bounded, we conclude

that x̂ converges toward x.
Compared to available results for linear time-varying sys-

tems such as those in [12], [3], here we consider switched
systems and we follow the idea in [8] to impose a decoupled
estimation. Theorem 4 states clearly the assumption under
which such a joint decoupled estimation for switched linear
systems can be obtained without bumps.

D. Bumpless solution with no persistency of excitation con-
dition

The estimator proposed in Section III-C applies to arbi-
trary switching rules as long as the persistency excitation
condition (26) holds. The latter may be difficult to verify.
In this subsection, we propose an alternative design, which
avoids checking (26) at the price of extra conditions on the
switching rule. In particular, we make the next assumption.

Assumption 1: There exists a class of switching rules
denoted S such that for any σ ∈ S there exist λ ∈ Λ :={
λ = (λ1, . . . , λN ) ∈ RN | ∀i ∈ I, λi ≥ 0,

N∑
i=1

λi = 1

}
,

c1, c2 > 0 such that any solution S to (24) verifies
||S∞ − S(t)|| ≤ c1e−c2t||S∞ − S(0)|| for any t ≥ 0, where
S∞ := −Ã−1λ Gλ with

Ãλ :=

I∑
i=1

λiÃi, Gλ :=

I∑
i=1

λiGi,

�
Assumption 1 means that there exists an equilibrium

matrix S∞ for system (1), which is globally exponentially
stable. This stability property depends on the switching rule
σ and is motivated in the context of control and also by
practical problems such as those related to stabilisation of
power converters. The set S is not empty. It contains at
least any stabilizing switching rule that corresponds to the
sufficient conditions provided in [4] which are satisfied in
our case. This can be checked by considering the convex
combinations Ãλ, Gλ and defining the following polytopic
affine system

ṡ = Ãλs+ Gλ (29)

with

s = vec(S), gλ := vec(Gλ), Ãλ = Ãλ⊗I, Gλ = gλ⊗I.

The fact that the matrices Ãi, i ∈ I, satisfy (14) means that
∀λ ∈ Λ

Ã(λ)T P̃ + P̃Ã(λ) < 0, with P̃ = P ⊗ I.

and allows to apply Theorem 2 in [4]. As a consequence,
the set S composed by the switching rules that stabilize the
equilibrium points s∞ = −Ã−1λ Gλ, λ ∈ Λ is not empty
and S∞ is the matrix counterpart of s∞. This steady state
value is not known in general and this is why the next
theorem explains how to construct the gains of the decoupled
estimator without requiring the knowledge of S∞.

Theorem 5: Consider the switched affine system (1) and
systems (11) and (17). Let S satisfying (24) and suppose the
following holds.

(i) Assumption 1 is satisfied.
(ii) For any σ ∈ S, the corresponding vector λ in Assump-

tion 1 is such that Gλ is full column rank.
There exist parameter estimation gains Ki, i ∈ I, such that
eθ := θ − θ̂ and ex := x − x̂ (with x̂ = x̃ + Sθ̂) converge
exponentially to 0. In this case, the estimation gains are given
by

Ki = (Π + ST P̃S)−1GTi P̃C
T
i (CiC

T
i )−1, (30)

with Π = ΠT > 0 any symmetric positive definite matrix. �
Proof: Due to space limitations, the proof can be found

in the arxiv version of this paper

IV. ILLUSTRATIVE EXAMPLE

The example represents the DC-DC power converter stud-
ied in [2]. The model is a switched affine model with a
vector of unknown parameters θ ∈ R2 corresponding to an
unknown constant load and an unknown input voltage and it
is characterized by

A1 =

[
0 0
0 −0.14

]
, A2 =

[
−3.99 −99.97
21.27 −0.14

]
B1 =

[
50
0

]
, B2 =

[
0
0

]
, C1 = C2 = I

G1 =

[
0 −50

−10.64 0

]
, G2 =

[
1.99 −50

−10.64 0

]

The Luenberger observer (11) is designed solving LMI
conditions (14) to guarantee that the error dynamics (13) is
globally exponentially stable under arbitrary switching rule.
The corresponding gains and Lyapunov matrix are:

L̃1 =

[
15.5 0

0 15.36

]
, L̃2 =

[
6 −99.97

21.27 10.86

]
P̃ =

[
0.0406 0

0 0.0397

]
Using Theorem 3, we obtain:

S1 =

[
0 −3.23

−0.69 0

]
, S2 =

[
0.2 −5
−0.97 0

]
and:

K1 = 103
[
−0.026 −2.135
−1.2914 0.0011

]
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K2 = 103
[

0.0412 −1.6425
−0.5747 −0.0641

]
The fact that the decoupled estimate x̂(t) = x̃+ Sσ θ̂ jumps
at the switching instants can be seen in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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15

20

Fig. 1. x̂ = x̃+ Siθ̂, a decoupled estimation with bumps

Now we apply the decoupled estimation of Theorem 5. We
consider S(0) = 0, Π = 10∗I and we use the switching rule
depicted in Figure 2. This switching rule has been generated
using the approach proposed in [2] and corresponds to λ1 =
0.533 and λ2 = 1−λ1. Looking at the evolution of S(t) one
can see that S(t) converges exactly to the equilibrium value

S∞ = −Ã−1
λ Gλ =

[
0.0850 −3.9799
−0.8121 0

]

Figure 2 shows the parameter estimation θ̂ for three
values of the unknown parameter vector: θ = [3, −3]T ,
θ = [2, −3]T and θ = [1, −2]T . Figure 3 shows the
estimated state (solid lines), the DC-DC converter state
(dotted lines), and the state of the Luenberger observer
(dashed lines).
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Fig. 2. θ̂ and the switching rule

V. CONCLUSION

In the general setting, the joint parameter and state esti-
mation problem is a difficult problem. This paper shows also
that the case of switched systems is challenging. Indeed,
when some decoupling properties are imposed, one has to
face specificities related to switching phenomena. We illus-
trate one of them which is the possibility of having bumps
in the state estimate. The paper discusses two solutions to
avoid this behavior. The first one is based on a persistency

Fig. 3. DC-DC converter states x in dotted lines, x̃ in dashed lines and
x̂ = x̃+ Sθ̂ in solid lines

of excitation condition and the second one focuses on a par-
ticular class of switching rules and avoids this PE condition.
The proposed bumpless and decoupled estimation strategies
guarantee exponential convergence to zero of the estimation
errors. Stability analysis of the error dynamics and on the
use of the joint parameter and state estimation in the context
of control of switched affine systems will be addressed in a
future work.
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