Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs

Abstract : The issue of symmetry and symmetry breaking is fundamental in all areas of science. Symmetry is often assimilated to order and beauty while symmetry breaking is the source of many interesting phenomena such as phase transitions, instabilities, segregation, self-organization, etc. In this contribution we review a series of sharp results of symmetry of nonnegative solutions of nonlinear elliptic differential equation associated with minimization problems on Euclidean spaces or manifolds. Nonnegative solutions of those equations are unique, a property that can also be interpreted as a rigidity result. The method relies on linear and nonlinear flows which reveal deep and robust properties of a large class of variational problems. Local results on linear instability leading to symmetry breaking and the bifurcation of non-symmetric branches of solutions are reinterpreted in a larger, global, variational picture in which our flows characterize directions of descent.
Document type :
Directions of work or proceedings
Liste complète des métadonnées

Cited literature [33 references]  Display  Hide  Download
Contributor : Jean Dolbeault <>
Submitted on : Wednesday, November 29, 2017 - 2:41:19 PM
Last modification on : Friday, November 30, 2018 - 9:47:20 AM


Files produced by the author(s)


  • HAL Id : hal-01651793, version 1
  • ARXIV : 1711.11291



Jean Dolbeault, Maria J. Esteban, Michael Loss, Maria Esteban. Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs. International Congress of Mathematicians, 2018, Rio de Janeiro, Brazil. 3, pp.2279-2304, 2017, Proc. Int. Cong. of Math., Rio de Janeiro. ⟨hal-01651793⟩



Record views


Files downloads