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Abstract— When a biped robot is walking in a crowd, being
able to adapt the duration of steps is a key element to avoid
collisions. Model Predictive Control (MPC) schemes for biped
walking usually assume a fixed step duration since adapting it
leads to a nonlinear problem, in general. Nonlinear solvers do
not guarantee the satisfaction of nonlinear constraints at every
iterate and this can be problematic for the real-time operation
of robots. We propose a method to make sure that all iterates
satisfy the nonlinear constraints by borrowing concepts from
robust control: we make the problem robust to nonlinearities
within some bounds. These bounds are linear with respect to
the variables of the problem and can be adapted online.

I. INTRODUCTION

When walking in a crowd, a biped robot should naturally
try to avoid collisions with people. One strategy to do this
is to adapt the position of steps in response to the motion
of the crowd. This can be formulated as a linear problem if
one considers the duration of steps to be fixed, as usually
done [1], [2], [3]. Nevertheless, the combination of maximal
step length and fixed step duration limits the maximal speed
the robot can achieve and, consequently, its ability to avoid
collisions [4]. We need, therefore, to adapt the duration of
the steps of the robot.

However, by doing this, the problem becomes either
nonlinear or combinatorial, depending on whether we choose
to vary the duration of the steps in a continuous or discrete
manner. On the continuous side, nonlinear MPC schemes
have been proposed using Sequential Quadratic Program-
ming (SQP) [5] or Interior Point (IP) methods [6]. On the
discrete side, these MPC schemes have been formulated as
Mixed Integer Quadratic Programs [7]. Alternatively, others
have shown that the problem of adapting the duration of the
steps can be made completely linear if we either: 1) limit the
number of steps in the future to one [8] or 2) consider the
relation between the Capture Point and the positions of the
future footsteps [9]. However, it is not clear whether these
two last approaches are suitable for making a robot walk in
a crowd: the first one proposes a preview horizon that might
be too short and the second does not account explicitly for
the motion of the Center of Mass (CoM).

Standard solvers for nonlinear problems (SQP and IP
methods) implement a form of Newton method in which con-
straints are iteratively linearized. However, the satisfaction of
these linearized constraints does not imply the satisfaction
of the original nonlinear constraints. There is no guarantee
that the nonlinear constraints are satisfied at every Newton
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iterate. This is a problem for real-time operation where we
may need to interrupt the solver before convergence and still
need a solution that can be applied safely to the robot. This
issue has been reported in [10] but for a different humanoid
locomotion problem.

We propose here a method to guarantee safe Newton
iterates. It is similar to what was done in [11], [12] for the
problem of adapting the vertical motion of the CoM of the
robot: we design constraints that are robust to changes in the
variable that introduces the nonlinearity. To do so, we make
sure the constraints are feasible over a given interval of this
variable. We can then make safe linear approximations of the
objective function inside of this interval and always generate
feasible iterates.

With this method it suffices to solve a single Quadratic
Program (which takes 0.29[ms] on average) to obtain a
feasible solution. Simulations show that, by adapting the step
duration in this way, we can reduce the collision rate of the
robot walking in a crowd from 75% to less than 6%.

We proceed as follows: in Section II we present the
specific nonlinearity that we face when we adapt the duration
of the steps and how we develop robustness with respect
to it. We then apply this technique for robustness to all
dynamic, kinematic and collision avoidance constraints of the
robot in Section III. We introduce in Section IV the Optimal
Control Problem (OCP) we need to solve. Finally, we present
some numerical results that showcase the capabilities of our
controller in Section V.

II. PROBLEM DEFINITION

The motion of the CoM of a biped walking robot is
commonly modeled as a triple integrator [13]
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⎡

⎣

1 τ τ2/2
0 1 τ
0 0 1

⎤

⎦x+

⎡

⎣

τ3/6
τ2/2
τ

⎤

⎦

...
c , (1)

where c is the position of the CoM, the jerk
...
c is the input

of the system, x = (c, ċ, c̈) and x+ = (c+, ċ+, c̈+) are two
consecutive states. Here, the jerk is considered to be constant
over intervals of time of length τ that we define to be 1/8th

of the duration of one step of the robot. The successor state
x+ is linear with respect to

...
c but nonlinear with respect to τ .

In particular, x+ is a cubic polynomial of τ . The value of τ
is commonly set to a constant in order to obtain a completely
linear formulation.

We base our approach for adapting the duration of the
steps on varying τ , what gives a nonlinear problem to solve.
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Fig. 1: Boundaries of x+(τ) defined as the convex hull of
its Bernstein coordinates (β0,β1,β2). The control points β0
and β2 are located at x+(τ) and x+(τ), respectively. The
control point β1 is located at the intersection of the lines
tangent to x+(τ) and x+(τ).

We propose to restrict τ to an interval [τ , τ ] and build bounds
on x+(τ) that depend on τ , τ but not on τ .

The complexity of the bounds that we define on x+(τ)
depend on the degree of the polynomial involved. In order
to simplify this issue, we reduce the degree of x+(τ) by
rewriting the last equation of (1) as

...
c =

c̈+ − c̈

τ
, (2)

and substituting it back in the triple integrator to obtain:

x+ =

⎡

⎣

1 τ τ2/3
0 1 τ/2
0 0 0

⎤

⎦x+

⎡

⎣

τ2/6
τ/2
1

⎤

⎦ c̈+. (3)

In this way, the successor state x+(τ) is a quadratic polyno-
mial of τ that preserves the C2 continuity of the motion of
the CoM.

We define the bounds on x+(τ) by changing its represen-
tation from the monomial basis {1, τ, τ2} to the Bernstein
basis [14]:

{b0(τ), b1(τ), b2(τ)}, (4)

(traditionally used in Bézier curves) where

b0(τ) = (1− τ ′)2, b1(τ) = 2τ ′(1− τ ′), b2(τ) = τ ′2, (5)

and

τ ′ =
τ − τ

τ − τ
, (6)

for a given choice of τ , τ . These polynomials have the
desirable property that for all τ ∈ [τ , τ ], bi(τ) ∈ [0, 1],
∑

bi(τ) = 1 and therefore

x+(τ) =
2

∑

i=0

βibi(τ) ∈ conv{βi}. (7)

So, the polynomial x+(τ) is always contained in the con-
vex hull of the points β0,β1,β2 whenever τ ∈ [τ , τ ], as
can be seen in Figure 1. These points can be interpreted
geometrically as control points of x+(τ). Details on the
transformation from monomial to Bernstein coordinates can
be found in the Appendix.

III. CONSTRAINTS ROBUST TO THE STEP DURATION

A. Constraint on the steps

We introduce a constraint on the sequence of steps made
by the robot (s1, . . . , sJ ) to prevent it from crossing legs
while walking:

sj+1 − sj ∈ Sj . (8)

The set Sj alternates between left and right according to sj .

B. Constraint on the CoP

When the robot is walking with its CoM at a constant
height over a horizontal flat ground, the position of the
Center of Pressure (CoP) can be written as:

p+(τ) =
[

1 0 −h/g
]

x+(τ), (9)

where h is the height of the CoM and g is the norm of the
gravity vector. Due to the unilaterality of the contact forces
with the ground, the CoP can only reside inside the support
polygon of the robot, which is a convex set P translated to
the jth footstep position sj :

p+(τ)− sj ∈ P. (10)

This involves a quadratic polynomial of τ that can be
expressed in Bernstein basis as outlined earlier:

p+(τ)− sj =
∑

λibi(τ) ∈ conv{λi}, (11)

where λi =
[

1 0 −h/g
]

βi − sj .
We can enforce this nonlinear constraint for all τ ∈ [τ , τ ]

by imposing instead that

∀i : λi ∈ P, (12)

since by definition of the Bernstein basis:

∀i : λi ∈ P =⇒ p+(τ)− sj ∈ P. (13)

As mentioned before, each λi is linear with respect to the
initial state x and the control input c̈+. By satisfying the
linear constraints on {λi} we satisfy the nonlinear constraints
on p+(τ)− sj .

C. Constraint on the CoM

Since the length of the legs is limited, we do not allow
the CoM to be far from the position of the footsteps. We
define a convex set Cj that represents the possible positions
of c+(τ) with respect to sj :

c+(τ)− sj ∈ Cj . (14)

The set Cj alternates between left and right accordingly.
Since c+(τ) =

[

1 0 0
]

x+(τ), this involves the
quadratic polynomial

c+(τ)− sj =
∑

πibi(τ) ∈ conv{πi}, (15)

where πi =
[

1 0 0
]

βi−sj . Then, by enforcing the linear
constraint

∀i : πi ∈ Cj , (16)

we make sure that the nonlinear constraint (14) is satisfied
for all τ ∈ [τ , τ ] since

∀i : πi ∈ Cj =⇒ c+(τ)− sj ∈ Cj . (17)



D. Constraint on collision avoidance

In order to avoid collisions, we want the CoM of the robot
to be at least a certain distance d from each person mk in
the environment:

∀k : ∥c+(τ)−mk(τ)∥2 ≥ d. (18)

If we define mk(τ) =
∑

µibi(τ) then this constraint
involves, again, the quadratic polynomial

c+(τ)−mk(τ) =
∑

σibi(τ) ∈ conv{σi}, (19)

where σi =
[

1 0 0
]

βi − µi.

We define σ as the centroid of the control points {σi} and
Bi as a ball centered at the origin with radius d+∥σ−σi∥2.
We enforce the linear constraint

∀i : σ /∈ Bi, (20)

which is a sufficient condition for the satisfaction of the
nonlinear constraint (18) for all τ ∈ [τ , τ ], that is

∀i : σ /∈ Bi =⇒ ∀k : ∥c+(τ)−mk(τ)∥2 ≥ d. (21)

E. Constraint on capturability

In order to impose 0-step capturability at the end of the
horizon, we conduct the last position of the Capture Point
ξN to the interior of the support polygon of the robot

ξN (τ)− sJ ∈ P. (22)

Given that ξ+(τ) =
[

1
√

h/g 0
]

x+(τ) we can write,
once again, the quadratic polynomial

ξN (τ)− sJ =
∑

ψibi(τ) ∈ conv{ψi}, (23)

where ψi =
[

1
√

h/g 0
]

βi − sJ , and check the linear
constraint

∀i : ψi ∈ P, (24)

which is sufficient to ensure the 0-step capturability of the
robot for all τ ∈ [τ , τ ]

∀i : ψi ∈ P =⇒ ξN (τ)− sJ ∈ P. (25)

F. Adapting the positions of the steps as a function of their

duration

Constraints (10), (14) and (22) are not always possible
to satisfy with a single choice of sj for all values of τ . In
particular, constraint (10) is the most restrictive as can be
easily seen in Figure 2: different trajectories of the CoP for
different τ do not fit all inside a single sequence of steps.

We propose to vary the positions of the steps of the robot
as a linear function of τ :

(s1(τ), . . . , sJ (τ)). (26)

To do so, we choose to relate the positions of the steps to
the positions of the CoP by defining sj(τ) as the centroid of
Pj(τ):

sj(τ) =
1

Nj

∑

Pj(τ) + s′j , (27)

where Pj(τ) is the set of all future positions of the CoP
belonging to the jth future step and Nj is the cardinality of
this set. The free parameter s′j adds flexibility in the choice
of the position of the footstep.

By doing this, constraint (8) is now a polynomial of τ
(and, therefore, of the step duration) and the polynomi-
als (11), (15), (23) change to

sj+1(τ)− sj(τ) =
∑

γibi(τ),

p+(τ)− sj(τ) =
∑

λ′ibi(τ),

c+(τ)− sj(τ) =
∑

π′

ibi(τ),

ξN (τ)− sJ(τ) =
∑

ψ′

ibi(τ). (28)

Consequently, their respective sufficient conditions for fea-
sibility become

∀i : γi ∈ Sj , λ′i ∈ P, π′

i ∈ Cj , ψ′

i ∈ P. (29)

IV. MODEL PREDICTIVE CONTROL FOR WALKING

Having defined robust constraints with respect to an in-
terval of τ , we can safely choose any value τ∗ ∈ [τ , τ ] that
minimizes a given cost function. The desired behaviour of
our robot, reflected in this cost function, is to: 1) keep each
person in the crowd at a comfortable distance, i.e. no less
than dref from the CoM, 2) move the CoM at a reference
velocity ċref , 3) keep the CoP at the center of the foot
for improved balance, 4) minimize the jerk of the CoM for
smoothness of its motion and regularization, 5) penalize step
durations different from a given reference value 8τref where
energy expenditure is optimal and 6) stop the robot at the
end of the horizon to ensure capturability. In summary, we
consider the following objectives:

o1 : ∥c+(τ)−mk(τ)∥2 ≥ dref > d ∀k,

o2 : ċ+(τ) = ċref ,

o3 : p+(τ)− sj(τ) = 0,

o4 :
...
c (τ) = 0,

o5 : τ = τref ,

o6 : pN (τ) = ξN (τ), (30)

altogether as f(c̈+, τ, s′j) ≤ q in the following OCP over a
horizon of length N :

minimize
c̈+,τ,s′j ,v

∥v∥2
2

subject to

f(c̈+, τ, s′j) + v ≤ q

(20), (29)

τ ∈ [τ , τ ].

(31)

The function f is nonlinear with respect to τ so we apply a
Newton method and consider successive linearizations. After
each iteration we can adapt, for the next iteration, the interval
[τ , τ ] based on the previous optimal τ∗:

τ = τ∗ −
∆τ

2
, τ = τ∗ +

∆τ

2
. (32)

We propose to keep ∆τ constant.
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Fig. 2: Future trajectories of the CoP for τ = τ (in yellow) and τ = τ (in blue). Figures show future steps that do not vary
with τ (on the left) and that vary with τ (on the right). The circle represents the body of the robot, the filled rectangle is
the current step, the unfilled rectangles are the previewed future steps.

TABLE I: Parameters of biped robot

Parameter Symbol Value Unit

CoM height (9) h 0.80 m
Feet dim. (10) P 0.25× 0.125 m × m
Leg stride (14) Cj 0.30× 0.30 m × m

Feet separation (8) Sj 0.21 m
Safety dist. (18) d 1 m
Radius of FoV R 6 m
Horizon length N 18 samples

Double supp. dur. τ - s
Single supp. dur. 7τ - s

Ref. step dur. (30) 8τref 0.8 s
Comfort dist. (30) dref 3 m

Ref. vel. (30) ċref (0.5, 0) (m.s−1,m.s−1)

TABLE II: Parameters of scenario A

Parameter Symbol Value Unit

Size of crowd M 16 persons

Vel. of the crowd
ṁx

k −1.5 m.s−1

ṁ
y
k N (0, 0.4) m.s−1

Length of interval
of step duration

∆τ 5 ms

V. SIMULATION RESULTS

We evaluate the performance of our controller by simulat-
ing a robot and a crowd walking in opposite directions. As
in [4], we assume that: people walk at constant velocities,
they do not try to avoid the robot and collisions among
people are disregarded. The parameters of the robot are
specified in Table I.

A. Typical behaviour

Figure 3 shows the results obtained from one illustrative
simulation. The parameters of the controller and the crowd
are specified in Table II. During the first 2[s] there are no

TABLE III: Parameters of scenario B

Parameter Symbol Value Unit

Size of crowd M 16 persons

Vel. of the crowd
ṁx

k {−1, −1.25, −1.5} m.s−1

ṁ
y
k N (0, 0.2) m.s−1

Length of interval
step duration

∆τ {0, 0.5, 1, 2, 4, 8} ms

obstacles present in the Field of View (FoV). The robot walks
freely and tries to reach its reference velocity ċref making
steps of nominal duration (0.8[s]).

Between 2[s] and 16[s] the robot encounters people walk-
ing in opposite direction and moves backwards to avoid them.
At first (between 2[s] and 3[s]) the robot only makes larger
steps while maintaining its nominal step duration. However,
its maximal speed under such conditions is only about
−0.75m.s−1 whereas people in the crowd walk at −1.5m.s−1.
Consequently, it is forced (between 3[s] and 11[s]) to also
make faster steps to be able to avoid collisions.

At 11[s] the robot resumes its forward walking motion
once it has overcome most people in its way. It has to
stop occasionally a couple of times to walk around the last
members of the crowd. From 16[s] until 20[s] the robot
continues walking uninterrupted at its objective velocity.

The adaptation of [τ , τ ] allows the robot to avoid infea-
sibilities due to difficult collision-avoidance situations. The
key here is objective o1: it makes the cost function take
into account potential collisions in the future so that the
optimal solution (c̈∗, τ∗, s∗j ) moves the system away from
infeasibilities.

B. Effect of the length of the interval of τ

We investigate the effect of ∆τ on the ability of the robot
to avoid collisions with the crowd. We make 900 simulations
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Fig. 3: Adapting the step duration while walking in a crowd. The top subfigure shows in solid blue the x component of
the steps (sxj − cx) made by the robot during the simulation. Values above and below the red line indicate forward and
backward motion, respectively. The vertical dashed lines mark the instants at which steps were made. The magenta dashed
lines indicate the maximal step the robot can make. The bottom subfigure shows the x component of the velocity of the
robot (ċx) during the simulation. The magenta dashed lines indicate the maximal speed the robot can reach at a nominal
step duration of 0.8[s]. The green dash-dotted line indicates the objective speed.

of the robot walking in randomly generated crowds according
to the parameters shown in Table III. For each specified
crowd speed ṁx

k we generate and store 50 different crowds
that only differ in the initial positions {mk} and speeds {ṁy

k}
of each person. Their initial positions vary uniformly over
an area of 10 × 8[m2] while their speeds {ṁy

k} follow a
normal distribution N (0, 0.2). During simulations, we test
the performance of the controller for each ∆τ against each
of the 50 crowds generated for ṁx

k . Simulations last 20[s]
or until a collision occurs.

A longer interval leads to a more constrained OCP that is
more likely to become infeasible, which is what is shown
in the left plot of Figure 4. For ∆τ ∈ {0.5, 1}[ms] this
issue occurs less than 2% of the time and for ∆τ = 2[ms]
this rises to 9%. When the OCP becomes infeasible we can
continue executing the last computed trajectory until the OCP
becomes feasible again. If this does not happen, the last
computed trajectory ensures that the robot will come to a
stop before any collision happens, as in [4].

The plot on the right of Figure 4 shows the proportion
of such outcomes. No collisions occur when the speed of
the crowd is less than 1.5[m.s−1] for any of the intervals
we proposed. When the crowd reaches this speed collisions
do occur: 1) with ∆τ ∈ {0.5, 1}[ms] because people move
faster than what the robot can adapt its step duration; 2)
with ∆τ = 8[ms], due to the high number of consecutive
infeasible OCPs that make the robot stop in the middle of

the walking crowd.
A choice of ∆τ = 1[ms] appears, therefore, to be the best

option. The improvement in collision avoidance we obtain
over a controller with fixed τ = 0.1[s], shown in Figure 4 as
∆τ = 0, is clear for the speeds of the crowd we considered.

C. Computational efficiency

The OCP (31) contains 41 decision variables. The number
of constraints is proportional to the number of obstacles in
the FoV (less or equal to M ). This number is multiplied by
three due of the robustness we introduce using the Bernstein
basis. In our simulations the total number of constraints
oscillates between 500 and 900. A single iteration of this
problem is solved on average in 0.29[ms] on a laptop with
a 3[GHz] Intel Core i7 CPU.

VI. CONCLUSIONS

We presented a method to adapt the duration of the
steps of the robot to improve its ability to avoid collisions
when walking in a crowd. It is based on varying τ in a
continuous manner while guaranteeing the satisfaction of
nonlinear constraints at every Newton iteration. To do so,
we identified bounds on the state of system for a given
interval of τ and we made sure that the bounds satisfied all
constraints. Solving a single carefully constructed Quadratic
Program was sufficient to obtain a feasible solution. We
reduced significantly the collision rate of the robot from 75%
to less than 6%.
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Fig. 4: Infeasible iterations and collision rate for different lengths of interval of τ .

In the future, we would like to apply this method to
locomotion problems with multiple contacts where timing
is a critical issue.

APPENDIX

Given a quadratic polynomial x(τ) for τ ∈ [τ , τ ] with co-
ordinates α = (α0,α1,α2) in the monomial basis {1, τ, τ2},
we first find the equivalent coordinates in the normalized
monomial basis {1, τ ′, τ ′2}, for τ ′ ∈ [0, 1], by defining
τ = τ + (τ − τ)τ ′ and solving for all τ ′

α0 + α1τ + α2τ
2 = α′

0 + α′

1τ
′ + α′

2τ
′2,

to obtain
⎡

⎣

α′

0

α′

1

α′

2

⎤

⎦ =

⎡

⎣

1 τ τ2

0 τ − τ 2(τ − τ)τ
0 0 (τ − τ)2

⎤

⎦

⎡

⎣

α0

α1

α2

⎤

⎦ .

Then we find its coordinates β = (β0,β1,β2) in the
Bernstein basis {(1 − τ ′)2, 2τ ′(1 − τ ′), τ ′2} by solving,
once again, for all τ ′

α′

0 + α′

1τ
′ + α′τ ′2 = β0(1− τ ′)2 + β12τ

′(1− τ ′) + β2τ
′2,

to obtain:
⎡

⎣

β0
β1
β2

⎤

⎦ =

⎡

⎣

1 0 0
1 1/2 0
1 1 1

⎤

⎦

⎡

⎣

α′

0

α′

1

α′

2

⎤

⎦ .
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