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Abstract

The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger
and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are
applied to get the Green’s functions of the semi-discretized equations in unbounded domains with single-source. An
algorithm is given to compute these Green’s functions accurately through some recurrence relations. Furthermore, the
finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical sim-
ulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations.
It is shown that the reflection at the corners is correctly eliminated.
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1. Introduction

The Schrödinger and heat equations in infinite domains are standard models with many interesting applications
in computational physics and engineering. The Schrödinger equation is one of the fundamental equations arising
in quantum mechanics [1], but has also many other important applications including electromagnetic/acoustic wave
propagation [2] through the so-called parabolic equation, plasma physics [3], seismic migration [4] or optical fibers
with the Fresnel equation [5]. The heat equation defined on an unbounded spatial domain arises as a model for fluid
dynamics [6] and also for financial applications [7]. The numerical solution and analysis of these linear PDEs on
unbounded domains has so far received a great attention [8]. To get a reliable computational method, a standard
approach is to truncate the infinite domain around the region of interest and to implement an artificial boundary
condition on the fictitious boundary (see e.g. [9, 10] for Schrödinger-like equations). Alternative strategies include
the Perfectly Matched Layer (PML) (and also Complex Absorbing Scaling (CAS)) [9, 10].

There are rather extensive studies on artificial boundary conditions for the one-dimensional case. For instance and
without being exhaustive, Fevens and Jiang [11] constructed some local artificial boundary conditions. In [12, 13], the
authors derive a stable quadrature rule for approximating the transparent operator at the boundary and localizations
through Padé approximations of the exact operator. Wu and Zhang [14] constructed some high-order local absorbing
boundary conditions, and avoided high-order derivatives by using auxiliary variables on the fictitious boundary. For
the theoretical analysis, Arnold et al. [15] proposed an efficient way to treat the Schrödinger equation, and proved
the stability of the resulting initial boundary-value scheme. For the heat equation, Greengard and Lin [16] proposed
an algorithm based on the evolution of the continuous spectrum for the heat equation on unbounded domains. Wu
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and Sun [17] proved the unconditional stability for the heat equation when a well-designed finite-difference scheme
is used.

For the two-dimensional case, Baskakov and Popov [18] obtained the exact transparent boundary conditions for
the Schrödinger equation in a half-plane. Han and Huang [19, 20] constructed an exact artificial boundary condition
to reduce the original heat equation to an initial boundary-value problem on a finite computational domain. They also
derived the exact artificial boundary condition for the two-dimensional Schrödinger equation by expressing the solu-
tion with Hankel’s functions, implemented with a cut-off. In [21], Arnold et al. proposed some discretized transparent
boundary conditions for the time-dependent Schrödinger equation on a circular computational domain, and illus-
trated the accuracy, stability, and efficiency of the proposed method. Zhang et al. [22] designed high-order artificial
boundary conditions for the two-dimensional Schrödinger equation on a circular boundary by rationally approximat-
ing the kernel functions. For more general cases, Antoine et al. [23] constructed and studied a Crank-Nicolson-type
discretization for some increasing order approximations of the non-reflecting boundary condition. They also pro-
posed some absorbing boundary conditions for general nonlinear and two-dimensional Schrödinger equations with
an exterior potential (see [24, 25, 26]). Their approach relies on pseudo-differential operators to construct truncated
boundary conditions, which can be proved to be stable. Most of these boundary conditions are proposed on a circular
or smooth boundary and need a truncation rule in the final implementation. We refer to [9] for an extensive survey
for the Schrödinger equation, and to [10] for a recent overview for absorbing boundary conditions and PMLs for the
Schrödinger, Klein-Gordon and Dirac equations.

Considering a rectangular/square computational domain is natural in practice, but deriving an associated accurate
artificial boundary condition is non trivial most particularly because of the presence of the singular corner points.
Until now, there are only a few results for building accurate boundary conditions for the Schrödinger, wave and heat
equations on a rectangular computational domain. Some contributions can be found e.g. in the references [8, 27]. To
deal with the Schrödinger and heat equations on unbounded domains, we propose first to introduce a second-order
spatial discretization of the associated operator on a uniform rectangular grid. Inspired by our previous work in lattice
dynamics [28], an efficient algorithm is designed to accurately compute the Green’s function of the semi-discretized
Schrödinger equation with a single-source. Based on this computation, we are able to design some accurate boundary
conditions that eliminate the corner reflection when a rectangular boundary is considered.

The paper is organized as follows. In Section 2, the Green’s functions of the semi-discretized equations on un-
bounded domains with a single-source are derived and an accurate algorithm is designed for computing the Green’s
functions. They are next used to build the accurate artificial boundary conditions for both the time-dependent
Schrödinger and heat equations. In Section 3, the fully discretized schemes are presented for the Schrödinger and
heat equations with the accurate artificial boundary conditions set on a rectangular domain. Numerical examples are
reported in Section 4 to demonstrate the accuracy of our method. We end this paper (Section 5) with some concluding
remarks and perspectives.

2. Building accurate artificial boundary conditions for the semi-discretized Schrödinger and heat equations

We first start in subsection 2.1 by the basic ideas to design accurate artificial boundary conditions for the linear
Schrödinger equation. The heat equation is treated shortly in subsection 2.2.

2.1. The case of the linear Schrödinger equation

To design some exact artificial boundary conditions, let us rewrite the Schrödinger equation as: find u := u(x, t)
such that

i
∂

∂t
u = −

( ∂2

∂x2 +
∂2

∂y2

)
u, (x, t) in R2×]0,T ], (1)

u(x, t = 0) = 0, x ∈ Ωext = R2\Ωint, (2)
u(x, ·)→ 0, for ||x|| → +∞. (3)

The initial data u0(x) is supposed to be compactly supported into the interior square domain Ωint =]0, a[2 (the extension
to a rectangular domain is straightforward up to some additional notations), Ωext being the associated exterior domain.
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The maximal time of computation is T . The complex number i is defined by i :=
√
−1. Let us remark that adding a

purely time-dependent potential can be directly considered by eliminating the potential effect through a gauge change
[12].

Let us introduce ∆x as the uniform mesh size in the x- and y-directions to discretize Ωint with (L + 1) segments
in each direction, i.e. (L + 1)∆x = a. After scaling the time by (∆x)2, the spatial semi-discretization of (1) with a
five-points stencil finite difference scheme gives

iu̇m,n = −(um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n), in Z2×]0,T ], (4)
um,n|t=0 = 0, in (m, n) ∈ Z2\{(p, q)/1 ≤ p ≤ L, 1 ≤ q ≤ L}, (5)
um,n → 0, when |m|, |n| → +∞, (6)

where um,n(t) approximates u(m∆x, n∆x, t), and u̇m,n is the time derivative of um,n. The computation of (4)-(6) should
be confined within a finite computational domain {(m, n)/1 ≤ m ≤ L, 1 ≤ n ≤ L} where the value of um,n is needed for
m = 0, L + 1, and n = 0, L + 1, to complete system (4) through a boundary relation.

Here we derive the Green’s function fm,n(t) of the semi-discretized linear Schrödinger equation with single-source.
Let us consider the following system

i ḟm,n = −( fm+1,n + fm−1,n + fm,n+1 + fm,n−1 − 4 fm,n), in Z2×]0,T ], (7)
fm,n|t=0 = 0, in Z2\{(0, 0)}, (8)
fm,n → 0, when |m|, |n| → +∞, (9)

where f0,0(t) = δ(t) is the Dirac distribution, and let us compute the related discrete Green’s function. By defining the
Laplace transform as

f̃m,n(s) =

∫ ∞

0
fm,n(t)e−stdt,

we obtain, for (m, n) , (0, 0),
A f̃m,n = f̃m+1,n + f̃m−1,n + f̃m,n+1 + f̃m,n−1, (10)

setting A = 4 − si. By using the discrete Fourier transform

F̃(x, y) =

∞∑
m=−∞

∞∑
n=−∞

eimxeiny f̃m,n

together with (10) gives

F̃(x, y) =
A − 4 f̃0,1

A − 2 cos(x) − 2 cos(y)
. (11)

By inverse discrete Fourier transform, one gets

f̃m,n(s) =
g̃m,n(s)
g̃0,0(s)

=

1
4π2

∫ 2π

0

∫ 2π

0

e−imx−iny

A − 2 cos(x) − 2 cos(y)
dxdy

1
4π2

∫ 2π

0

∫ 2π

0

1
A − 2 cos(x) − 2 cos(y)

dxdy

, (12)

where one has [29]

g̃m,n(s) =
1

4π2

∫ 2π

0

∫ 2π

0

e−imx−iny

A − 2 cos(x) − 2 cos(y)
dxdy

=
1

(4 − si)m+n+1

(m + n)!
m!n! 4F3


1
2

(m + n + 1),
1
2

(m + n + 1),
1
2

(m + n) + 1,
1
2

(m + n) + 1;
1

(1 −
si
4

)2

m + 1, n + 1,m + n + 1

 .
(13)
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By inverse Laplace transform, we obtain

gm,n(t) =
(m + n)!

m!n!
4i
√
π(it)m+ne−4it

2m+n+2Γ

(
m + n + 1

2

)
Γ

(m + n
2

+ 1
) 2F3

 m + n + 1
2

,
m + n

2
+ 1;−4t2

m + 1, n + 1,m + n + 1

 . (14)

The function Γ is the Gamma special function and the generalized hypergeometric function 2F3 is

2F3

(
a1, a2; z
b1, b2, b3

)
=

∞∑
k=0

(a1)k(a2)k

k!(b1)k(b2)k(b3)k
zk, (15)

with (a)k = a(a + 1)...(a + k − 1) for k ≥ 1 and (a)0 = 1. We display in Fig. 1 the (L + 2) × (L + 2) square lattice
(0 ≤ m, n ≤ L + 1) arising in (4) for L = 4.
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Figure 1: Discrete computational lattice (for L = 4): the red bullets represent the outer layer points, the black bullets correspond to the interior
layer points, the yellow bullets are the interior points and the green bullets represent the corner points.

The numerical boundary points are indexed anticlockwise, with the interior layer as I` for ` = 1, · · · , 4L−4. More
explicitly, we set: I` = (1, `) for 1 ≤ ` ≤ L, I`+L−1 = (`, L) for 1 ≤ ` ≤ L, l`+2L−2 = (L, L + 1 − `) for 1 ≤ ` ≤ L
and I`+3L−3 = (L + 1 − `, 1) for 1 ≤ ` ≤ L. The outer layer points are denoted by Jk for k = 1, · · · , 4L, with the same
orientation. To this end, let uI` (t), for ` = 1, · · · 4L − 4, be given. We first decompose them into (4L − 4) independent
single-sources κIk (t), namely,

uIk (t) =

4L−4∑
`=1

fIk−I` (t) ∗ κI` (t), 1 ≤ k ≤ 4L − 4. (16)

Now for (m, n) such that (m, n) ∈ Z2\{(p, q)/1 ≤ p ≤ L, 1 ≤ q ≤ L}, we define the Laplace transform of um,n(t) as

ũm,n(s) =

4L−4∑
`=1

g̃(m,n)−I` (s)
g̃0,0(s)

κ̃I` (s). (17)

A direct computation shows that, for |m| > 0 or |n| > 0,

isg̃m,n = −(g̃m−1,n + g̃m+1,n + g̃m,n−1 + g̃m,n+1 − 4g̃m,n). (18)

Plugging this expression into (17) yields

(4 − si)ũm,n(s) − ũm+1,n(s) − ũm−1,n(s) − ũm,n+1(s) − ũm,n−1(s)

=

4L−4∑
`=1

(4 − is)g̃(m,n)−I` − (g̃(m−1,n)−I` + g̃(m+1,n)−I` + g̃(m,n−1)−I` + g̃(m,n+1)−I` )
g̃0,0(s)

κ̃I` (s) = 0.
(19)
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It is also easy to check that um,n(0) = 0, which leads to

iu̇m,n = −(um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n). (20)

Therefore, (um,n(t))m,n is exactly the solution of the semi-discretized system (4) outside the domain {(p, q)/1 ≤ p ≤
L, 1 ≤ q ≤ L}. Once the sources κIk (t) are obtained, an exact boundary condition reads as follows

uJk (t) =

4L−4∑
`=1

fJk−I` (t) ∗ κI` (t), 1 ≤ k ≤ 4L. (21)

Defining λ̃Ik (s) =
κ̃Ik (s)
g̃0,0(s)

, for 1 ≤ k ≤ 4L − 4, the boundary conditions can be transformed into

uIk (t) =

4L−4∑
`=1

gIk−I` (t) ∗ λI` (t), 1 ≤ k ≤ 4L − 4, (22)

and

uJk (t) =

4L−4∑
`=1

gJk−I` (t) ∗ λI` (t), 1 ≤ k ≤ 4L. (23)

Combining the boundary conditions (22) and (23) and the interior equation (4), we obtain the reduced semi-discretized
problem. The values gm,n(t) are needed in the boundary conditions (22) and (23). For large m and n, it is not easy to
compute gm,n(t) precisely through hypergeometric functions for large t. Consequently, we need to develop an efficient
algorithm for computing gm,n(t) accurately. To this end, one easily shows that

g̃m−1,n − g̃m+1,n =
1

2π2

∫ 2π

0

∫ 2π

0

sin(mx) sin(x) cos(ny)
A − 2 cos(x) − 2 cos(y)

dxdy, (24)

leading to

i
d
ds

(g̃m−1,n − g̃m+1,n) =
d

dA
(g̃m−1,n − g̃m+1,n) = −

1
2π2

∫ 2π

0

∫ 2π

0

sin(mx) sin(x) cos(ny)
(A − 2 cos(x) − 2 cos(y))2 dxdy

=
1

4π2

∫ 2π

0

∫ 2π

0
sin(mx) cos(ny)d

( 1
A − 2 cos(x) − 2 cos(y)

)
dy

= −m
1

4π2

∫ 2π

0

∫ 2π

0

cos(mx) cos(ny)
A − 2 cos(x) − 2 cos(y)

dxdy = −mg̃m,n.

(25)

We obtain
gm+1,n = gm−1,n +

imgm,n

t
. (26)

We also have
i(sg̃0,0 − i) = −(g̃−1,0 + g̃1,0 + g̃0,−1 + g̃0,1 − 4g̃0,0), (27)

and
gm,n = gn,m, g−m,n = gm,n, gm,−n = gm,n. (28)

Now collecting (18), (26), (27) and (28), we can construct a system of ordinary differential equations to compute
gm,n(t) in the domain {(m, n)|0 ≤ m ≤ L, 0 ≤ n ≤ L}. The equations in the interior domain can be written as

iġm,n = −(gm+1,n + gm−1,n + gm,n+1 + gm,n−1 − 4gm,n), (29)
gm,n|t=0 = 0, for {(m, n)|1 ≤ m ≤ L − 1, 1 ≤ n ≤ L − 1}. (30)
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The lower boundary condition is

iġ0,n = −(g0,n+1 + g0,n−1 + 2g1,n − 4g0,n), (31)
g0,n|t=0 = 0, 1 ≤ n ≤ L − 1. (32)

Similarly, the left boundary condition reads

iġm,0 = −(gm+1,0 + gm−1,0 + 2gm,1 − 4gm,0), (33)
gm,0|t=0 = 0, 1 ≤ m ≤ L − 1. (34)

By (26) and (28), one has the upper boundary condition

iġL,n = −(
iLgL,n

t
+ gL,n+1 + gL,n−1 + 2gL−1,n − 4gL,n), (35)

gL,n|t=0 = 0, 1 ≤ n ≤ L − 1. (36)

In the same way, the right boundary condition writes

iġm,L = −(
iLgm,L

t
+ gm+1,L + gm−1,L + 2gm,L−1 − 4gm,L), (37)

gm,L|t=0 = 0, 1 ≤ m ≤ L − 1. (38)

By (18), we get the lower-left corner condition

iġ0,0 = −(4g0,1 − 4g0,0), g0,0|t=0 = i. (39)

Following a similar derivation, the other corner conditions can be obtained as

iġL,0 = −(
iLgL,0

t
+ 2gL,1 + 2gL−1,0 − 4gL,0), gL,0|t=0 = 0, (40)

iġ0,L = −(
iLg0,L

t
+ 2g1,L + 2g0,L−1 − 4g0,L), g0,L|t=0 = 0, (41)

iġL,L = −(
2iLgL,L

t
+ 2gL,L−1 + 2gL−1,L − 4gL,L), gL,L|t=0 = 0. (42)

In practice, to compute an accurate numerical approximation of gm,n(t), we use the Runge-Kutta 4 (RK4) scheme.
If u0 is known, we then compute u1 by RK4 on a large enough domain, and use the zero boundary condition. If u0 is
compactly supported and the domain is large enough, the boundary points of u1 are still 0 and we can use RK4 and
closed relations to compute u1 and so on. Let us also remark that other schemes than RK4 could be used, but of order
larger than 2. Nevertheless, stability problems may arise and therefore the ODE solver must be carefully chosen. To
illustrate the results, we compare the numerical and exact solutions for g0,0(t) in Fig. 2. As the time step ∆t decreases,
the approximation quality of gm,n(t) increases. The computed convergence rates of the numerical approximation of
g60,60(12) and g60,60(36) are reported in Fig. 3. As expected, it is around 4. The algorithm is then able to efficiently
and accurately compute gm,n(t) even for large values of the indices m and n.

We also remark that the proposed approach extends to the N-dimensional Schrödinger equation, for which the
single-source kernel function for the Schrödinger equation reads

g̃m1,m2,...mN (s) =
1

(2π)N

∫ 2π

0

∫ 2π

0
· · ·

∫ 2π

0

exp

−i
N∑
`=1

m`x`


4 − is − 2

N∑
`=1

cos(x`)

dx1 · · · dxN . (43)

The recurrence relation is then

gm1,m2,...mN (t) = gm1,m2,...m`−1,...mN (t) +
im`gm1,m2,...mN (t)

t
. (44)

Therefore, one can also build an associated system of ordinary differential equations to calculate numerically gm1,m2,...mN (t).
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Figure 2: Numerical and reference solutions for g0,0(t) and the semi-discretized Schrödinger equation.

−5.5 −5 −4.5 −4 −3.5 −3
−97

−92

−87

log(∆t)

 

 

4-th order theoretical s lope

log(|gref60 ,60(t = 12) − g∆ t
60 ,60(t = 12)|)

−5.5 −5 −4.5 −4 −3.5 −3
−19

−14

−9

log(∆t)

 

 

4-th order theoretical s lope

log(|gref60 ,60(t = 36) − g∆ t
60 ,60(t = 36)|)

Figure 3: Theoretical and numerical slopes of the convergence rates for the approximation of g60,60(12) (left) and g60,60(36) (right).

2.2. Extension to the heat equation

We extend now the above method to the heat equation

∂

∂t
u =

( ∂2

∂x2 +
∂2

∂y2

)
u, (x, t) in R2×]0,T ], (45)

u(x, t = 0) = 0, x ∈ Ωext = R2\Ωint, (46)
u(x, ·)→ 0, for ||x|| → +∞. (47)

We remark that the heat equation can be a transformed Black-Scholes equation. Hence, some applications in finance
can also be considered from the present developments.

For (L + 1)∆x = a, the semi-discretization of (45) gives

u̇m,n = (um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n), in Z2×]0,T ], (48)
um,n|t=0 = 0, in (m, n) ∈ Z2\{(p, q)|1 ≤ p ≤ L, 1 ≤ q ≤ L}, (49)
um,n → 0 for |m|, |n| → +∞. (50)

If the computation of (48), (49) and (50) is confined within the finite domain {(m, n)|0 ≤ m ≤ L + 1, 0 ≤ n ≤ L + 1},
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the boundary conditions read

uIk (t) =

4L−4∑
`=1

gIk−I` (t) ∗ λI` (t), 1 ≤ k ≤ 4L − 4,

uJk (t) =

4L−4∑
`=1

gJk−I` (t) ∗ λI` (t), 1 ≤ k ≤ 4L,

(51)

with

gm,n(t) =
(m + n)!

m!n!
4
√
π(t)m+ne−4t

2m+n+2Γ

(
m + n + 1

2

)
Γ

(m + n
2

+ 1
) 2F3

 m + n + 1
2

,
m + n

2
+ 1; 4t2

m + 1, n + 1,m + n + 1

 . (52)

According to (25), one has
gm+1,n = gm−1,n −

mgm,n

t
. (53)

By the same procedure as in Section 2.1, a system of ODEs can be constructed to compute gm,n(t) in the domain
{(m, n)|0 ≤ m ≤ L, 0 ≤ n ≤ L}. The interior equations are

ġm,n = gm+1,n + gm−1,n + gm,n+1 + gm,n−1 − 4gm,n, in {(m, n)|1 ≤ m ≤ L − 1, 1 ≤ n ≤ L − 1}, (54)
gm,n|t=0 = 0, in {(m, n)|1 ≤ m ≤ L − 1, 1 ≤ n ≤ L − 1}. (55)

Finally, the corner and boundary conditions can be obtained by extension. The values of gm,n(t) are computed accu-
rately by RK4. For t ∈ [0, 10], we report in Fig. 4 (left) the approximate solution of g0,0(t) and the corresponding
exact solutions which are close. In Fig. 4 (right), we display the convergence rate of the approximation of g60,60(60).
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Figure 4: Left: numerical and reference solutions of g0,0(t) for the semi-discretized heat equation. Right: Theoretical and numerical slopes of the
convergence rates for the approximation of g60,60(60).

3. Numerical discretization

In this section, we design the corresponding discretization of the reduced ordinary differential problem with the
accurate artificial boundary condition. For conciseness, we only give the discretized finite difference scheme for the
Schrödinger equation. The discretization for the reduced heat equation can easily be transposed. Following subsection
2.1, we adopt the Crank-Nicolson scheme [30] for the time integration in (4)

uk+1
m,n −

i∆t
2

(uk+1
m+1,n + uk+1

m−1,n + uk+1
m,n+1 + uk+1

m,n−1 − 4uk+1
m,n ) =

uk
m,n +

i∆t
2

(uk
m+1,n + uk

m−1,n + uk
m,n+1 + uk

m,n−1 − 4uk
m,n).

(56)
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After the computation of gm,n(t), the convolutions in (22) are performed through the trapezoidal rule as follows

uk+1
Ip

=

4L−4∑
`=1

(
∆t
2

g0
Ip−I`λ

k+1
I` + ∆t

k∑
α=1

gk+1−α
Ip−I` λ

α
I` +

∆t
2

gk+1
Ip−I`λ

0
I` ), (57)

for p = 1, ..., 4L − 4 and where gαm,n denotes the fourth-order Runge-Kutta approximation of gm,n(α∆t) for the time
step ∆t. Rewriting the above equation into the matrix form leads to


uk+1

I1

uk+1
I2
...

uk+1
I4L−4

 = ∆t



g0
I1−I1
2

g0
I1−I2
2 · · ·

g0
I1−I4L−4

2
g0

I2−I1
2

g0
I2−I2
2 · · ·

g0
I2−I4L−4

2
...

...
...

...
g0

I4L−4−I1
2

g0
I4L−4−I2

2 · · ·
g0

I4L−4−I4L−4
2




λk+1

I1

λk+1
I2
...

λk+1
I4L−4

+


∆t
2

∑4L−4
`=1 gk+1

I1−I`
λ0

I`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

I1−I`
λαI`

∆t
2

∑4L−4
`=1 gk+1

I2−I`
λ0

I`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

I2−I`
λαI`

...
∆t
2

∑4L−4
`=1 gk+1

I4L−4−I`
λ0

I`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

I4L−4−I`
λαI`

 .
(58)

Similarly one gets


uk+1

J1

uk+1
J2
...

uk+1
J4L

 = ∆t



g0
J1−I1
2

g0
J1−I2
2 · · ·

g0
J1−I4L−4

2
g0

J2−I1
2

g0
J2−I2
2 · · ·

g0
J2−I4L−4

2
...

...
...

...
g0

J4L−I1
2

g0
J4L−I2

2 · · ·
g0

J4L−I4L−4
2




λk+1

I1

λk+1
I2
...

λk+1
I4L−4

+


∆t
2

∑4L−4
`=1 gk+1

J1−I`
λ0

I`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

J1−I`
λαI`

∆t
2

∑4L−4
`=1 gk+1

J2−I`
λ0

L`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

J2−I`
λαI`

...
∆t
2

∑4L−4
`=1 gk+1

J4L−I`
λ0

I`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

J4L−I`
λαI`

 . (59)

In addition, since gm,n(0) = 0 for |m| + |n| > 0, one deduces
uk+1

J1

uk+1
J2
...

uk+1
J4L

 =


∆t
2

∑4L−4
`=1 gk+1

J1−I`
λ0

I`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

J1−I`
λαI`

∆t
2

∑4L−4
`=1 gk+1

J2−I`
λ0

L`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

J2−I`
λαI`

...
∆t
2

∑4L−4
`=1 gk+1

J4L−I`
λ0

I`
+ ∆t

∑4L−4
`=1

∑k
α=1 gk+1−α

J4L−I`
λαI`

 . (60)

We denote the vector [uk
I1
, uk

I2
..uk

I4L−4
]T by uk

I , [λk
I1
, λk

I2
...λk

I4L−4
]T by λk

I and [uk
J1
, uk

J2
..uk

J4L
]T by uk

J . Therefore, we can
recast systems (58) and (60) through a matrix A1, and two vectors Rk+1

1 , and Rk+1
2 as

uk+1
I = A1λ

k+1
I + Rk+1

1 ,

uk+1
J = Rk+1

2 .
(61)

Now one can use (61) with (56). All the points (m, n), for 1 ≤ m, n ≤ L, are indexed following

Nk = (
k −mod(k, L)

L
+ 1,mod(k, L)),

for 1 ≤ k ≤ L2. If Ik = (m, n), we define I−1(m, n) = k (and similarly for Jk = (m, n) and Nk = (m, n)). The vector
[uk

N1
, uk

N2
..uk

NL2
]T is denoted by uk

N . If we have all the data until the k-th time step, λαI` for (1 ≤ ` ≤ 4L−4 and 0 ≤ α ≤ k)
and uk

m,n for 0 ≤ m, n ≤ L, then we can compute uk+1
J = Rk+1

2 . We can also rewrite (56) as Buk+1
N = Fk+1, where B is a

L2 × L2 matrix defined for computing the values uk+1
m,n for 1 ≤ m, n ≤ L and Fk+1 is the right-hand side. More precisely,

for (m, n), with 2 ≤ m, n ≤ L − 1, and from (56) we have

BN−1(m,n),N−1(m,n) = 1 + 2i∆t, BN−1(m,n),N−1(m−1,n) = −
i∆t
2
,

BN−1(m,n),N−1(m+1,n) = −
i∆t
2
, BN−1(m,n),N−1(m,n+1) = −

i∆t
2
,

BN−1(m,n),N−1(m,n−1) = −
i∆t
2
,

Fk+1
N−1(m,n) = uk

m,n +
i∆t
2

(uk
m+1,n + uk

m−1,n + uk
m,n+1 + uk

m,n−1 − 4uk
m,n).

(62)
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For (m, n) = (1, 1), we also can write

(1 + 2i∆t)uk+1
1,1 −

i∆t
2

(uk+1
2,1 + uk+1

1,2 ) = uk
1,1 +

i∆t
2

uk+1
1,0 +

i∆t
2

uk+1
0,1 +

i∆t
2

(uk
2,1 + uk

0,1 + uk
1,2 + uk

1,0 − 4uk
1,1), (63)

and by (61) we have

BN−1(1,1),N−1(1,1) = 1 + 2i∆t, BN−1(1,1),N−1(1,2) = −
i∆t
2
, BN−1(1,1),N−1(2,1) = −

i∆t
2
,

Fk+1
N−1(1,1) = uk

1,1 +
i∆t
2

uk+1
1,0 +

i∆t
2

uk+1
0,1 +

i∆t
2

(uk
2,1 + uk

0,1 + uk
1,2 + uk

1,0 − 4uk
1,1)

=
i∆t
2

(Rk+1
2 )J−1(1,0) +

i∆t
2

(Rk+1
2 )J−1(0,1) + uk

1,1 +
i∆t
2

(uk
2,1 + uk

0,1 + uk
1,2 + uk

1,0 − 4uk
1,1).

(64)

We can deal with the points (m, n) = (1, L), (L, 1) and (L, L) similarly to the point (1, 1). For (m, n) = (1, `), for
2 ≤ ` ≤ L − 1, one gets

(1 + 2i∆t)uk+1
1,` −

i∆t
2

(uk+1
1,`−1 + uk+1

1,`+1 + uk+1
2,` ) = uk

1,` +
i∆t
2

uk+1
0,` +

i∆t
2

(uk
1,`+1 + uk

1,`−1 + uk
2,` + uk

0,` − 4uk
1,`), (65)

which means
BN−1(1,`),N−1(1,`) = 1 + 2i∆t, BN−1(1,`),N−1(1,`−1) = −

i∆t
2
,

BN−1(1,`),N−1(1,`+1) = −
i∆t
2
, BN−1(1,`),N−1(2,`) = −

i∆t
2
,

Fk+1
N−1(1,`) =

i∆t
2

(Rk+1
2 )J−1(0,`) + uk

1,` +
i∆t
2

(uk
1,`+1 + uk

1,`−1 + uk
2,` + uk

0,` − 4uk
1,`).

(66)

The points (m, n) = (`, 1), (L, `) and (`, L), for 2 ≤ ` ≤ L − 1, can be treated as (1, `). The other coefficients of B are
equal to 0. Now we get uk+1

N and all uk+1
m,n can be computed for 1 ≤ m, n ≤ L. To update λk+1

I , one uses the relation

λk+1
I = (A1)−1(uk+1

I − Rk+1
1 ), (67)

and the λk+1
I are next used to build Rk+2

2 .

4. Numerical results

4.1. The semi-discretized Schrödinger equation
Let us consider the semi-discretized Schrödinger equation (4) with the discrete initial data

um,n(0) = exp
(
−

(m − 23.5
6

)2
−

(n − 23.5
6

)2
− i

5(m − 23.5)
6

+ i
5(n − 23.5)

6

)
. (68)

This wave strikes the boundary allowing therefore to analyze the quality of the boundary condition to avoid some
spurious reflection that would come back into the computational domain. We fix the spatial grid to L = 46. The
numerical reference solution uref is calculated for a very small time step and on a large domain so that there is no
interacting wave with the boundary. We report at time t the absolute `2- and `∞-errors between the numerical solution
u∆t(t) := (u∆t

m,n)1≤m,n≤L for a time step ∆t and the reference solution uref(t), and defined by

E2
∆t(t) :=

√√√ L∑
m=1

L∑
n=1

|uref
m,n(t) − u∆t

m,n(t)|2, E∞∆t(t) := max
1≤m,n≤L

|uref
m,n(t) − u∆t

m,n(t)|. (69)

The evolution of the numerical solution with the proposed boundary condition is reported in Fig. 5 for the times t = 0,
12, 14 and 36. We do not observe any reflection at the corners. The errors |uref

m,n(14) − u∆t
m,n(14)| (with ∆t = 2 × 10−2)

on the grid are displayed in Fig. 6 (left) and with a maximum of the order of 7 × 10−5. For completeness, we report
uref

1,46(t)−u∆t
1,46(t) (with ∆t = 2×10−2) on Fig. 6 (right). In Tables 1 and 2, we provide respectively the errors E2

∆t(t) and
E∞∆t(t), for t = 2, 12, 14, 36, and for various time steps ∆t. We clearly observe that the scheme is at least second-order
in time which is coherent with the expected second-order accuracy of the Crank-Nicolson scheme (the numerical rate
of convergence are obtained as the least-square approximations of the pointwise rates).
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Figure 5: Amplitude of the numerical solution |u∆t | (with ∆t = 2 × 10−2) of the Schrödinger equation on the 46 × 46 square computational domain
at different times t (upper-left for t = 0; upper-right for t = 12; lower-left for t = 14; lower-right for t = 36).

0 9 18 27 36
−8

−4

0

4

8
x 10

−5

t

 

 

ℜ(u r ef
1 ,46(t) − u∆ t

1 ,46(t))

ℑ(u r ef
1 ,46(t) − u∆ t

1 ,46(t))

Figure 6: Left: absolute error |uref
m,n(14) − u∆t

m,n(14)| (with ∆t = 2 × 10−2) for the Schrödinger equation on the 46 × 46 square computational domain.
Right: error on the real and imaginary parts at the upper left corner.

4.2. The semi-discretized heat equation
We consider now the case of the semi-discretized heat equation (48) with the initial data uniformly set equal to 10

on a 8 × 8 sub square lattice, and zero otherwise. We choose a 10 × 10 computational domain, which is small enough
to test the accuracy of the boundary condition. We report on Fig. 7 and for ∆t = 2 × 10−2 the numerical solution
in the truncated domain. We can see that there is no corner reflection. The errors |uref

m,n(40) − u∆t
m,n(40)| on the grid
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E2
∆t(t) t = 2 t = 12 t = 14 t = 36

∆t = 8 × 10−2 2.98 × 10−2 1.31 × 10−1 8.37 × 10−2 9.00 × 10−3

∆t = 5 × 10−2 1.16 × 10−2 5.11 × 10−2 3.25 × 10−2 3.58 × 10−3

∆t = 4 × 10−2 7.44 × 10−3 3.26 × 10−2 2.07 × 10−2 2.30 × 10−3

∆t = 2 × 10−2 1.84 × 10−3 8.05 × 10−3 5.11 × 10−3 5.79 × 10−4

∆t = 1 × 10−2 4.38 × 10−4 1.92 × 10−3 1.22 × 10−3 1.45 × 10−4

∆t = 5 × 10−3 8.76 × 10−5 3.84 × 10−4 2.44 × 10−4 3.63 × 10−5

rate 2.09 2.09 2.09 2.00

Table 1: Error E2
∆t(t) at different times for various time steps ∆t (Schrödinger equation).

E∞
∆t(t) t = 2 t = 12 t = 14 t = 36

∆t = 8 × 10−2 3.86 × 10−3 1.94 × 10−2 2.08 × 10−2 3.47 × 10−4

∆t = 5 × 10−2 1.51 × 10−3 7.56 × 10−3 8.10 × 10−3 1.38 × 10−4

∆t = 4 × 10−2 9.66 × 10−4 4.83 × 10−3 5.17 × 10−3 8.88 × 10−5

∆t = 2 × 10−2 2.39 × 10−4 1.19 × 10−3 1.28 × 10−3 2.24 × 10−5

∆t = 1 × 10−2 5.69 × 10−5 2.84 × 10−4 3.05 × 10−4 5.61 × 10−6

∆t = 5 × 10−3 1.14 × 10−5 5.71 × 10−5 6.22 × 10−5 1.40 × 10−6

rate 2.09 2.09 2.08 1.99

Table 2: E∞
∆t(t) at different times for various time steps ∆t (Schrödinger equation).

are displayed in Fig 8. The reference solution is calculated over a much larger domain and again with a very small
time step. The errors in `2- and `∞-norms with respect to ∆t are reported in Tables 3 and 4, respectively. Again, a
second-order convergence is observed.

E2
∆t(t) t = 2 t = 4 t = 10 t = 40

∆t = 8 × 10−2 2.61 × 10−2 3.15 × 10−2 3.38 × 10−2 1.61 × 10−2

∆t = 5 × 10−2 1.01 × 10−2 1.23 × 10−2 1.31 × 10−2 6.25 × 10−3

∆t = 4 × 10−2 6.49 × 10−3 7.84 × 10−3 8.40 × 10−3 3.99 × 10−3

∆t = 2 × 10−2 1.62 × 10−3 1.96 × 10−3 2.10 × 10−3 7.97 × 10−4

∆t = 1 × 10−2 4.05 × 10−4 4.89 × 10−4 5.24 × 10−4 2.49 × 10−4

∆t = 5 × 10−3 1.01 × 10−4 1.22 × 10−4 1.31 × 10−4 6.23 × 10−5

rate 2.00 2.00 2.00 2.00

Table 3: E2
∆t(t) at different times for various time steps ∆t (heat equation).

E∞
∆t(t) t = 2 t = 4 t = 10 t = 40

∆t = 8 × 10−2 3.99 × 10−3 4.53 × 10−3 3.68 × 10−3 1.75 × 10−3

∆t = 5 × 10−2 1.55 × 10−3 1.76 × 10−3 1.43 × 10−3 6.81 × 10−4

∆t = 4 × 10−2 9.93 × 10−4 1.13 × 10−3 9.15 × 10−4 4.35 × 10−4

∆t = 2 × 10−2 2.48 × 10−4 2.81 × 10−4 2.28 × 10−4 1.09 × 10−4

∆t = 1 × 10−2 6.24 × 10−5 7.03 × 10−5 5.71 × 10−5 2.72 × 10−5

∆t = 5 × 10−3 1.59 × 10−5 1.76 × 10−5 1.43 × 10−5 6.79 × 10−6

rate 1.99 2.00 2.00 2.00

Table 4: E∞
∆t(t) at different times for various time steps ∆t (heat equation).
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Figure 7: Amplitude of the numerical solution |u∆t | (with ∆t = 2 × 10−2) of the heat equation on the 10 × 10 square computational domain at
different times t (upper-left for t = 0; upper-right for t = 1; lower-left for t = 10; lower-right for t = 40).

Figure 8: Absolute error |uref
m,n(4) − u∆t

m,n(4)| (with ∆t = 2 × 10−2) for the heat equation on the 10 × 10 square computational domain.

5. Conclusion

In this paper, we investigated the accurate numerical solution of the semi-discretized linear Schrödinger equation
by introducing an artificial boundary condition on a rectangular domain to bound the computational domain. The
accurate evaluation of the boundary condition is realized by means of some recurrence relations involving the discrete
Green’s functions. As a result, the corner reflection is fully eliminated. We provide some numerical results that
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illustrate the second-order accuracy of the proposed scheme with some details about the implementation. Closely
related artificial boundary conditions are applied to the heat equation and some numerical simulations show that they
are still reflection-free.

Concerning the perspectives, some questions regarding the theoretical and numerical aspects of these boundary
conditions remain to be answered. For example, the rigorous proof of the numerical stability and estimates of the
convergence rate must still be obtained. Finally, fast algorithms for the boundary conditions also need to be explored
in details to accelerate the evaluation of the transparent operator. These questions will be addressed in a forthcoming
paper.
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