M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, 1992.

A. Alfonsi, Affine diffusions and related processes: simulation, theory and applications, vol.6, 2015.

L. Andersen, Simple and efficient simulation of the Heston stochastic volatility model, J. Comput. Financ, vol.11, issue.3, pp.1-42, 2008.

A. Bensoussan and J. L. Lions, Applications of aariational inequalities in Stochastic Control, Studies in Mathematics and its Applications, vol.12, 1982.

P. Daskalopoulos and P. Feehan, Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance, 2011.

P. Daskalopoulos and P. Feehan, C 1,1 regularity for degenerate elliptic obstacle problems in mathematical finance, J. Differential Equations, vol.26, issue.6, pp.5043-5074, 2016.

E. Ekstrom and J. Tysk, The Black-Scholes equation in stochastic volatility models, J. Math. Anal. Appl, vol.368, issue.2, pp.498-507, 2010.

P. Feehan and C. A. Pop, Stochastic representation of solutions to degenerate elliptic and parabolic boundary value and obstacle problems with Dirichlet boundary conditions, Trans. Amer. Math. Soc, vol.367, issue.2, pp.981-1031, 2015.

P. Feehan and C. A. Pop, Higher-order regularity for solutions to degenerate elliptic variational equations in mathematical finance, Adv. Differential Equations, vol.20, pp.361-432, 2015.

A. Friedman, Variational principles and free-boundary problems, Courier Corporation, 2010.

S. L. Heston, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, vol.6, pp.327-343, 1993.

N. Ikeda, S. Watanabe-;-kpdansha, and L. , Stochastic differential equations and diffusion processes, vol.24, 1989.

P. Jaillet, D. Lamberton, and B. Lapeyre, Variational inequalities and the pricing of American options, Acta Appl. Math, vol.21, issue.3, pp.263-289, 1990.
URL : https://hal.archives-ouvertes.fr/hal-01667008

M. Keller-ressel, Moment explosions and long-term behaviour of affine stochastic volatility models, Math. Finance, vol.21, issue.1, pp.73-98, 2011.

D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to finance, Chapman&Hall/CRC Financial Mathematics Series. Chapman&Hall/CRC, 2008.

J. L. Lions, Quelques methodes de résolution des problémes aux limites non-linéaires. Dunod, Gauthier-Villars, 1969.

G. Terenzi, American options in stochastic volatility models, 2018.