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Example
Mixture Models
EM Algorithm and variations
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What is Clustering ?

Cluster analysis

From Wikipedia, the free encyclopedia

For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of exploratory data
mining, and a common technique for statistical data analysis, used in many fields, including
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics.
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What is Clustering ?

Cluster analysis

From Wikipedia, the free encyclopedia

For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of exploratory data
mining, and a common technique for statistical data analysis, used in many fields, including
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics.

I The term Data Clustering rst appeared in 1954 (according to
JSTOR) in an article dealing with anthropological data,
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What is Clustering ?

Cluster analysis

From Wikipedia, the free encyclopedia

For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of exploratory data
mining, and a common technique for statistical data analysis, used in many fields, including
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics.

I The term Data Clustering rst appeared in 1954 (according to
JSTOR) in an article dealing with anthropological data,

I Many, many existing methods
(https://en.wikipedia.org/wiki/Category:
Data_clustering_algorithms )
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What is Clustering ?

Need to algorithms for Big-Data and Complex Data. In particular mixed
features and missing values

Family

Drink consumption

8h 12h 16h 20h 24h

And so on...
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Example

Joint works with Christophe Biernacki (head of the Inria Modal team),
Vincent Vandewalle, Komi Nagbe,...
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Example

Joint works with Christophe Biernacki (head of the Inria Modal team),
Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store:Cluster-
ing cash receipts of the Customers with a
loyalty card

I 28 variables related to products,
I 6 variables related to costumers,
I 8 variables related to stores,
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Example

Joint works with Christophe Biernacki (head of the Inria Modal team),
Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store:Cluster-
ing cash receipts of the Customers with a
loyalty card

I 28 variables related to products,
I 6 variables related to costumers,
I 8 variables related to stores,

I n= 2;899 030 receipts.
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Example

Joint works with Christophe Biernacki (head of the Inria Modal team),
Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store:Cluster-
ing cash receipts of the Customers with a
loyalty card

I 28 variables related to products,
I 6 variables related to costumers,
I 8 variables related to stores,

I n= 2;899 030 receipts.

Some meaningful variables with missing val-
ues.
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Example

Variables liées aux clients

fipe Nuelodalcats

WEMWENR

OO0 OO0 EOMOO0 3200557

]

JoNow ]
Punesc 10 0 oN
tger 25 [T ]

Num {Name_var Mype
TYPE MAGASIN factor
SECTEUR MAGASN  factor
LOCALISATION MAGASHfactor
MUSIQUE MAGASIN  factor
magasin feme factor
factor
factor 2
ISUPERFICIE MAGASIN - (integer

FEREINON FERNE
1 5ansl-0ansft-L5ansplus de tans ok

H

=
El
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Clustering using Mixture Models

Example

An example (Variables)

Variables liees aux Produits

" var Type |Nbre I i % ManqudDiscreti:
Tjmois_ticket factor 12o1|02|o3|o4|05|ua|07|oa|o9|10|11|12 0 0
2jjours_ticket factor dillundilmardi|mercredi|samedi|vendredi 0 0

[TYPE_LIGNE factor 0 0
5[MONTANT_REMISE factor | 0 OUl
6[S! factor 2[NONJOUI 0 0

factor 2|REMISE COMM|SANS REMISE COMM 0 oul
factor 2INON|OUI 0 0
factor 2INON|oUI 0 0
factor 2INON[OUI 0 0
factor 2INON[OUI 0 0
factor 2INON|oUI 0 0
factor 2NON|OUI  |"REGLEMENT_KK","REGLEMENT_CB","REGLEMENT_ES","REGLEMENT_CIl0 0
factor 2 NON|OUI 0 0
factor 1 NON o 0
factor 2NON|oUI 0 0
factor 2INON|oUI 0 0
factor 2INON|oUI 0 0
factor 2INON|oUI 0
factor 2NON|oUI 0
factor 5 AC [5] ALNEA LINGERIE JOUR|LIN|D 0
22|COLLECTION factor 2| ‘(} 0
23/COLORIS_BASE factor 13 ne|Magron|NoirfOrange| ose|Rouge|Vert|Vigl{0 0
24/COORDONNE factor 4 9.02 0
25|STYLE_PORTER factor 4 EDUCTION[SEXY 19.74 0
26(ASPECT_COLORIS factor 3 ‘BICOLOREHMPRIMHUNI 2.35 0
27|CARACT_MATIERE factor 5 ‘AUTRES|DENTELLE|MICROFIBRE|SATIN|TULLEBRODE 0 0
4[PRIX_UNITAIRE numeric| 4811 oo 0
S. lovle (Lille 1) Mixture Models with Missing data Classi catir 23 Juin 2017 7130
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Oassel | Cassel [Casse| Cassed [Clssed| Classed | Clsser

4

B
163

Prootin |y | 1831% LT
el G| 574 iy
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“

Cassel | Cassel [Classed | Chssed [Clssed| Classed | Clsser

z .

Popoion | | 1831% 47T
Efeot - L Ly

Solde

1727% | 666

Ciasse! Classe2 Classed Classed ClasseS Classe6  Classa?

-~
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Mixture Models

Main ldea

x in clusterk (  x belongs to distributiorPy

clustering

Model Based clustering is a probabilistic approach.
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Mixture Models

Two softwares available
I R package MixAll

library (MixAll)
data(geyser)
## add 10 missing values as random
X = as.matrix(geyser); n <- nrow(x); p <- ncol(x);
indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol=2);
x[indexes] <- NA;
## estimate model
model<-clusterDiagGaussian( data=x, nbCluster=2:3, models=c( "gaussian_pk_sjk"))
plot(model)
missingValues(model)
row col value
133 1 2.029661
42 2 54.569144
49 2 79.970973
2
2

VVVVVVVVYVYV

209 54.569144
213 54.569144

b wWwN e

I SaaS software MixtComhttps://massiccc.lille.inria.fr/
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Mixture Models

I Clusterk is modeled by a parametric distribution

Xijz=k p(j «)

I Clusterk has probability
Mixture model

X
p(xi) = kP(Xi; k)
k=1
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EM Algorithm and variations

Starting from an initial arbitrary parameter®, the mth iteration of the EM
algorithm consists of repeating the followingE and M steps.
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EM Algorithm and variations

Starting from an initial arbitrary parameter®, the mth iteration of the EM
algorithm consists of repeating the followingE and M steps.

I | step: Impute by using expectation of the missing valué% using
x0, r1t
1 1 Mk
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EM Algorithm and variations

Starting from an initial arbitrary parameter®, the mth iteration of the EM
algorithm consists of repeating the followingE and M steps.

I | step: Impute by using expectation of the missing valué% using
1 1
X0, Tt
I E step: Compute conditional probabilitie = kjx; using current
value " ! of the parameter:

pk 1h(Xij rk ! ) 1
1 o 1y ( )
| 1P hixij

tic = te(xij " h=p
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EM Algorithm and variations

Starting from an initial arbitrary parameter?, the mth iteration of the EM
algorithm consists of repeating the followingE and M steps.
I | step: Impute by using expectation of the missing valué% using
Xo1 ’ |k
I E step: Compute conditional probabilitie = kjx; using current
value " ! of the parameter:

1y p PO
ST TR
I M step: Update ML estimate " using conditional probabilitief, as
mixing weights

(1)

tik = te(xij

- X1 X< .
L( jx1ii1iXnsth) = tic In[pch(xij )15
i=1k=1
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EM Algorithm and variations

Starting from an initial arbitrary parameter?, the mth iteration of the EM
algorithm consists of repeating the followingE and M steps.
I | step: Impute by using expectation of the missing valué% using
Xo1 ’ |k
I E step: Compute conditional probabilitie = kjx; using current
value " ! of the parameter:

1y p PO
ST TR
I M step: Update ML estimate " using conditional probabilitief, as
mixing weights

(1)

tik = te(xij

. r X1 X< r -
L( jxg;ii0Xnsth) = tic In[pch(xij )1
i=1k=1
I Iterate until convergence
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EM Algorithm and variations

Drawbacks
I The | step may be di cult
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EM Algorithm and variations

Drawbacks
I The | step may be di cult
I EMalgorithm may converges slowly and is slowed down by the
imputation step
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EM Algorithm and variations

Drawbacks
I The | step may be di cult
I EMalgorithm may converges slowly and is slowed down by the
imputation step
I Biased estimators
Solution: Use Monte Carlo
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EM Algorithm and variations

Drawbacks
I The | step may be di cult
I EMalgorithm may converges slowly and is slowed down by the
imputation step
I Biased estimators
Solution: Use Monte Carlo
I Replacd step by a simulation step
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EM Algorithm and variations

Drawbacks
I The | step may be di cult

I EMalgorithm may converges slowly and is slowed down by the

imputation step
I Biased estimators
Solution: Use Monte Carlo
I Replacd step by a simulation step
I IS step: simulate missing valueg™ usingx®, " 1, tf ..

" Siovie (Ullel)  Mixture Models with Missing data Classi cati 23 Juin 2017

13/30



EM Algorithm and variations

Drawbacks
I The | step may be di cult
I EMalgorithm may converges slowly and is slowed down by the
imputation step
I Biased estimators
Solution: Use Monte Carlo
I Replacd step by a simulation step
I IS step: simulate missing valueg” usingx®, " 1, t} L
I ReplaceE step by a simulation step (Optional)
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EM Algorithm and variations

Drawbacks
I The | step may be di cult
I EMalgorithm may converges slowly and is slowed down by the
imputation step
I Biased estimators
Solution: Use Monte Carlo
I Replacd step by a simulation step
I IS step: simulate missing valueg” usingx®, " 1, t} L
I ReplaceE step by a simulation step (Optional)
IS step: generate labelg" = fZz];:::; z;,g according to the categorical
distribution (tj ;1 k K).
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EM Algorithm and variations

Drawbacks
I The | step may be di cult
I EMalgorithm may converges slowly and is slowed down by the
imputation step
I Biased estimators
Solution: Use Monte Carlo
I Replacd step by a simulation step
I IS step: simulate missing valueg” usingx®, " 1, t} L
I ReplaceE step by a simulation step (Optional)
IS step: generate labelg" = fZz];:::; z;,g according to the categorical
distribution (tj ;1 k K).
SENMand SemiSEMoes not converge point wise. It generates a Markov
chain.
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EM Algorithm and variations

Drawbacks
I The | step may be di cult
I EMalgorithm may converges slowly and is slowed down by the
imputation step
I Biased estimators
Solution: Use Monte Carlo
I Replacd step by a simulation step
I IS step: simulate missing valueg” usingx®, " 1, t} L
I ReplaceE step by a simulation step (Optional)
IS step: generate labelg" = fZz];:::; z;,g according to the categorical
distribution (tj ;1 k K).
SENMand SemiSEMoes not converge point wise. It generates a Markov
chain.
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EM Algorithm and variations

Drawbacks
I The | step may be di cult
I EMalgorithm may converges slowly and is slowed down by the
imputation step
I Biased estimators
Solution: Use Monte Carlo
I Replacd step by a simulation step
I IS step: simulate missing valueg” usingx®, " 1, t} L
I ReplaceE step by a simulation step (Optional)
IS step: generate labelg" = fZz];:::; z;,g according to the categorical
distribution (tj ;1 k K).
SENMand SemiSEMoes not converge point wise. It generates a Markov
chain.
! =( Dr=1r
I missing values imputed using empirical MAP value (or expectation)
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Mixture Model and Mixed Data

Mixed data are handled using conditional independence of the variables
1. Observation space of the fordh = X1 Xo ;XL
2. x; arises from a mixture probability distribution with density

f(xi = (Xai; X3 X)j ) = o h i k)
k=1 I=1

3. The density functions (or probability distribution function8)(:j )

can be any implemented model.

MixAll implements Gaussian, Poisson, Categorical, Gamma distributions
MixtComp implements Gaussian, Poisson, Categorical and speci c
distributions for rank and ordinal data.
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Classi cation of Satellite Image Time Series
Cube of Data
Missing Data/Noisy Data/Sampling
(Long term) Obijective
Modeling
Missing Values ?

23 Juin 2017

15/ 30



Classi cation of Satellite Image Time Series

I Dé Mastodons: Appel & Projet 2016 "Qualité des données"

I Creation of the CloHe (CLustering Of Heterogeneous Data with
applications to satellite data records) project

I Members: Mathieu Fauvel (INRA), Stéphane Girard (Inria Grenoble
Vincent vandewalle (Lille2), Crisitan Preda (Université Lille 1)

https://modal.lille.inria.fr/CloHe/
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Classi cation of Satellite Image Time Series Cube of Data

_ _ Figure: Sentinel-2 furnish 13 spectral
Figure: Formosat-2 furnished _ bandwidths with 4 bandwidths with a
multi-spectral data (R, G, B, NIR) with 10 meters resolution and 6 bandwidths
a 8 meter resolution. 17 Complete with a 20 meters resolution. A
images of France by year complete image of France every 5 days
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Cube of Data

Figure: Sentinel-2 furnish approximately
20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard
de pixels.
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Cube of Data

Data Cube

X =(X); i21; k2fryv,b,irg;
Y =(Y;); 123 I

with
I i =(X;y) geographic position,
Ik spectral band,
It dates,

Figure: Sentinel-2 furnish approximately
20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard
de pixels.
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Cube of Data

Data Cube

X =(X); i21; k2fryv,b,irg;
Y =(Y;); 123 I

with
I i =(X;y) geographic position,
Ik spectral band,
It dates,
I missing values (clouds, ported

shadows) at some dates and

Figure: Sentinel-2 furnish approximately ._
some positions,

20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard
de pixels.
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Cube of Data

Data Cube

X =(X); i21; k2fryv,b,irg;
Y =(Y;); 123 I

with
I i =(X;y) geographic position,
Ik spectral band,
It dates,

I missing values (clouds, ported

Figure: Sentinel-2 furnish approximately shadows) at some dates and

20TB of images/year, and cover the some positions,
entire France in 5 days with 1.6 milliard 1 noisy data (undetected
de pixels. shadows, cloud veil, etc...).
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Cube of Data

Data Cube

X =(Xit); 121; k2fryv,b,irg;
Y =(Y;); 123 I

with
I i =(X;y) geographic position,
Ik spectral band,
It dates,

I missing values (clouds, ported

Figure: Sentinel-2 furnish approximately shadows) at some dates and

20TB of images/year, and cover the some positions,
entire France in 5 days with 1.6 milliard 1 noisy data (undetected
de pixels. shadows, cloud veil, etc...).

I mixel (mixture of pixel)

" Siovie (llel)  Mixture Models with Missing data Classi cati 23 Juin 2017 18130



Missing Data/Noisy Data/Sampling

Figure: Very cloudy Figure: A few number of clouds

D" " i : Some clouds with a veil
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Figure: clouds and their shadows



Missing Data/Noisy Data/Sampling

Efnutjr;tP:(EZJiz\il'\clic?r:s for Figure: Map of the Figure: Histogram of the

Every path (North-South number_ of times that number' of times that

track) is acquired on the every pixel sees the every pIXEI- Sees the
ground taking into ground taking into

same date every 16 days' account satellite revisit account satellite revisit
and cloud cover. and cloud cover.

Open Accesshttp://mwww.mdpi.com/2072-4292/9/1/95/htm
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The aim is to be able to cluster the whole France using Sentinel-2 data.



P LXijYi=g)= N( g; ¢)



Modeling

P LOXijYi=g)= N( ¢; g)
I Two kinds of parsimony assumptions on covariance matrices
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Modeling

P LOXijYi=g)= N( ¢; g)
I Two kinds of parsimony assumptions on covariance matrices

I independence between spectrg¢ of sizeT T, (T = 17),
I or independences between timesy; of sizeK K, (K = 4).
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Modeling

L(XijYi=9)= N( ¢; ¢)
Two kinds of parsimony assumptions on covariance matrices

I independence between spectrg¢ of sizeT T, (T = 17),
I or independences between timesy; of sizeK K, (K = 4).

handle missing values for both models
Implementations and tests in a R package.
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Modeling

Missing values formation process

Missing At Random (MAR): Probability for a value to be missing does n«
depends from its value conditionally to the other observations.

%O 0° oM

+ — i ~+ — i i ; ;
Denotex, = WME KT gMo e with O null matrix, and
ik . i ik
~M* — M MO O oM
ik = ik ik ik i - then
1 X h o i
+ + + + + ~+
Kk = e D )T T
k =1
~M*
ik

is correcting the variance due to the imputation by the mean.
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Figure: Tree species classi cation wild = 13



Missing Values ?

Main assumption
YiZ=k GP( ;C); k=1;:::;K 2)

whereGP( ; Cy) is a Gaussian Process with meap 2 Ly(l) and with
covariance operatofy : 1 |I! R.
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Missing Values ?

Main assumption
YiZ=k GP( ;C); k=1;:::;K 2)

whereGP( ; Cy) is a Gaussian Process with meap 2 Ly(l) and with
covariance operatofy : 1 |I! R.
I mean functions belongs to & dimensional subspace
X

k(t) = k' (t);
=1
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Missing Values ?

Main assumption
YiZ=k GP( ;C); k=1;:::;K (2)

whereGP( ; Cy) is a Gaussian Process with meap 2 Ly(l) and with
covariance operatofy : 1 |I! R.

I mean functions belongs to & dimensional subspace

X‘]
k(t) = k' ()
=1

I Covariance function

Cu(sit)(h) = «Q((t  s)=h);
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Missing Values ?

Main assumption
YiZ=k GP( ;C); k=1;:::;K (2)

whereGP( ; Cy) is a Gaussian Process with meap 2 Ly(l) and with
covariance operatofy : 1 |I! R.

I mean functions belongs to & dimensional subspace

X

k(t) = k' (t);
=1

I Covariance function
Ce(sit)(he) = «QUt  s)=hk);

I Spectrum are independents.
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Missing Values ?

For eachi, let B!, = ' j(t!), myq = B' | and

Ji;jo(hk)= kQ((tji tjio)=hk) =: kﬁi;jo(hk);

then

we end up withK independent minimization problems:

X )
(“«:h) = arg max log detS'(hy) + Tilog
kihs K 7=k

+ ik(yi B' W7S(h) Xy B )
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About 65% well classi ed.

Figure:G = 13 spectrum
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Figure: rst, 4th, 7th and 11th classes



Missing Values ?

I https://cran.r-project.org/web/packages/MixAll/
I https://massiccc.lille.inria.fr/

I https://modal.lille.inria.fr/CloHe/

I http://www.mdpi.com/2072-4292/9/1/95/htm
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