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Abstract. We propose a simple and original approach for solving linear-quadratic mean-
field stochastic control problems. We study both finite-horizon and infinite-horizon problems,
and allow notably some coefficients to be stochastic. Extension to the common noise case is
also addressed. Our method is based on a suitable version of the martingale formulation for
verification theorems in control theory. The optimal control involves the solution to a system
of Riccati ordinary differential equations and to a linear mean-field backward stochastic
differential equation; existence and uniqueness conditions are provided for such a system.
Finally, we illustrate our results through an application to the production of an exhaustible
resource.
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1 Introduction

In recent years, optimal control of McKean-Vlasov stochastic differential equations, i.e., equa-
tions involving the law of the state process, has gained more and more attention, due to the
increasing importance of problems with mean-field interactions and problems with cost function-
als depending on the law of the state process and/or the law of the control (e.g., mean-variance
portfolio selection problems or risk measures in finance). The goal of this paper is to design an el-
ementary original approach for solving linear-quadratic McKean-Vlasov control problems, which
provides a unified framework for a wide class of problems and allows to treat problems which,
to our knowledge, have not been studied before (e.g., common noise and stochastic coefficients
in the infinite-horizon case).

Linear-quadratic McKean-Vlasov (LQMKV) control problems are usually tackled by calculus
of variations methods via stochastic maximum principle and decoupling techniques. Instead, we
here consider a different approach, based on an extended version of the standard martingale
formulation for verification theorems in control theory. Our approach is valid for both finite-
horizon and infinite-horizon problems and is closely connected to the dynamic programming
principle (DPP), which holds in the LQ framework by taking into account both the state and
its mean, hence restoring the time consistency of the problem. Notice that [13] also used a
DPP approach, but in the Wasserstein space of probability measures, and considered a priori
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closed-loop controls. Our approach is simpler in the sense that it does not rely on the notion of
derivative in the Wasserstein space, and considers the larger class of open-loop controls. We are
able to obtain analytical solutions via the resolution of a system of two Riccati equations and
the solution to a linear mean-field backward stochastic differential equation.

We first consider linear-quadratic McKean-Vlasov (LQMKV) control problems in finite hori-
zon, where we allow some coefficients to be stochastic. We prove, by means of a weak martingale
optimality principle, that there exists, under mild assumption on the coefficients, a unique op-
timal control, expressed in terms of the solution to a suitable system of Riccati equations and
SDEs. We then provide some alternative sets of assumptions for the coefficient. We also show
how the results adapt to the case where several independent Brownian motions are present. We
also consider problem with common noise: Here, a similar formula holds, now considering condi-
tional expectations. We then study the infinite-horizon case, characterizing the optimal control
and the value function. Finally, we propose a detailed application, dealing with an infinite-
horizon model of production of an exhaustible resource with a large number of producers and
random price process.

We remark that in the infinite-horizon case some additional assumptions on the coefficients
are required. On the one hand, having a well-defined value function requires a lower bound on
the discounting parameter. On the other hand, we here deal with an infinite-horizon SDE, and
the existence of a solution is a non-trivial problem. Finally, the admissibility of the optimal
control requires a further condition of the discounting coefficient.

The literature on McKean-Vlasov control problems is now quite important, and we refer to
the recent books by Bensoussan, Frehse and Yam [3] and Carmona and Delarue [5], and the
references therein. In this McKean-Vlasov framework, linear-quadratic (LQ) models provide
an important class of solvable applications, and have been studied in many papers, including
[4, 17, 10, 13, 8], however mostly for constant or deterministic coefficients, with the exception of
[15] on finite horizon, and [12], which deals with stochastic coefficients but considering a priori
closed-loop strategies in linear form w.r.t. the state and its mean.

The contributions of this paper are the following. First, we provide a new elementary solving
technique for linear-quadratic McKean-Vlasov (LQMKV) control problems both on finite and
infinite horizon. Second, the approach we propose has the advantage of being adaptable to
several problems and allows several generalizations, which have not yet been studied before, as
here outlined. In particular, we are able to solve the case with common noise with some random
coefficients, in finite and infinite horizon. The only references to this class of problems are the
paper [8] on finite horizon where the coefficients are deterministic, and the paper [13], where
the controls are required to be adapted to the filtration of the common noise (we here consider
the case where α is adapted more generally to the pair of Brownian motions, that is, the one
in the SDE and the common noise). As in [15], we allow some coefficients to be stochastic,
but to the best of our knowledge, this is the first time that explicit formulas are provided for
infinite-horizon McKean-Vlasov control problems with random coefficients in the payoff. The
inclusion of randomness in some coefficients is an important point, as it leads to a richer class
of models, which is useful for many applications, see e.g. the investment problem in distributed
generation under a random centralised electricity price studied in [1].

The paper is organized as follows. Section 2 introduces finite-horizon LQMKV problems.
Section 3 presents the precise assumptions on the coefficients of the problems and provides a
detailed description of the solving technique. In Section 4 we solve, step by step, the control
problem. Some remarks on the assumptions, and extensions are collected in Section 5. In Section
6 we adapt the results to the infinite-horizon case. An application is studied in Section 7, which
combines common noise and random coefficients. Finally, Section 8 concludes.
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2 Formulation of the Finite-Horizon Problem

Given a finite horizon T > 0 (in Section 6 we will extend the results to the infinite-horizon
case), we fix a filtered probability space (Ω,F ,F,P), where F = (Ft)0≤t≤T satisfies the usual
conditions and is the natural filtration of a standard real Brownian motion W = (Wt)0≤t≤T ,
augmented with an independent σ-algebra G. Let ρ ≥ 0 be a discount factor, and define the set
of admissible (open-loop) controls as

A :=

{
α : Ω× [0, T ]→ Rm s.t. α is F-adapted and

∫ T

0
e−ρtE[|αt|2]dt <∞

}
.

Given a square-integrable G-measurable random variable X0, and a control α ∈ A, we consider
the controlled linear mean-field stochastic differential equation in Rd defined by{

dXα
t = bt

(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dt+ σt

(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dWt, 0 ≤ t ≤ T,

Xα
0 = X0,

(1)

where for each t ∈ [0, T ], x, x̄ ∈ Rd and a, ā ∈ Rm we have set

bt
(
x, x̄, a, ā

)
:= βt +Btx+ B̃tx̄+ Cta+ C̃tā,

σt
(
x, x̄, a, ā

)
:= γt +Dtx+ D̃tx̄+ Fta+ F̃tā.

(2)

Here, the coefficients β, γ of the affine terms are vector-valued F-progressively measurable pro-
cesses, whereas the other coefficients of the linear terms are deterministic matrix-valued pro-
cesses, see Section 3 for precise assumptions. The quadratic cost functional to be minimized
over α ∈ A is

J(α) := E
[ ∫ T

0
e−ρtft

(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dt+ e−ρT g

(
Xα
T ,E[Xα

T ]
)]
,

→ V0 := inf
α∈A

J(α),

(3)

where, for each t ∈ [0, T ], x, x̄ ∈ Rd and a, ā ∈ Rm we have set

ft
(
x, x̄, a, ā

)
:= (x− x̄)ᵀQt(x− x̄) + x̄ᵀ(Qt + Q̃t)x̄+ 2aᵀIt(x− x̄) + 2āᵀ(It + Ĩt)x̄

+ (a− ā)ᵀNt(a− ā) + āᵀ(Nt + Ñt)ā+ 2M ᵀ
t x+ 2Hᵀ

t a,

g
(
x, x̄

)
:= (x− x̄)ᵀP (x− x̄) + x̄ᵀ(P + P̃ )x̄+ 2Lᵀx.

(4)

Here, the coefficients M,H,L of the linear terms are vector-valued F-progressively measurable
processes, whereas the other coefficients are deterministic matrix-valued processes. We refer
again to Section 3 for the precise assumptions. The symbol ᵀ denotes the transpose of any
vector or matrix.

Remark 2.1. a. We have centred in (4) the quadratic terms in the payoff functions f and g.
One could equivalently formulate the quadratic terms in non-centred form as

f̃t
(
x, x̄, a, ā

)
:= xᵀQtx+ x̄ᵀQ̃tx̄+ aᵀNta+ āᵀÑtā+ 2M ᵀ

t x+ 2Hᵀ
t a+ 2aᵀItx+ 2āᵀĨtx̄,

g̃
(
x, x̄

)
:= xᵀPx+ x̄ᵀP̃ x̄+ 2Lᵀx,

by noting that, since Q, P , N , I are assumed to be deterministic, we have

E[ft
(
Xα
t ,E[Xα

t ], αt,E[αt]
)
] = E[f̃t

(
Xα
t ,E[Xα

t ], αt,E[αt]
)
], E[g(Xα

T ,E[Xα
T ])] = E[g̃(Xα

T ,E[Xα
T ])].

b. Notice that the only coefficients allowed to be stochastic are β, γ,M,H,L. Moreover, we
note that in (3)-(4) we could also consider a term of the form M̃T

t x̄, and then reduce for free the
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resulting problem to the case M̃t = 0. Indeed, since we consider the expectation of the running
cost, we could equivalently substitute such a term with E[M̃t]

ᵀx by noting that E[M̃ ᵀ
t E[Xα

t ]]
= E[E[M̃t]

ᵀXα
t ]. Similarly, we do not need to consider terms H̃ᵀ

t ā and āᵀǏtx, aᵀǏtx̄ (for a
deterministic matrix Ǐt).

c. See Section 5 for the case where several Brownian motions and a common noise are present.

3 Assumptions and Verification Theorem

Throughout the paper, for each q ∈ N we denote by Sq the set of q-dimensional symmetric
matrices. Moreover, for each normed space (M, | · |) we set

L∞([0, T ],M) :=

{
φ : [0, T ]→M s.t. φ is measurable and supt∈[0,T ] |φt| <∞

}
,

L2([0, T ],M) :=

{
φ : [0, T ]→M s.t. φ is measurable and

∫ T

0
e−ρt|φt|2dt <∞

}
,

L2
FT (M) :=

{
φ : Ω→M s.t. φ is FT -measurable and E[|φ|2] <∞

}
,

S2
F(Ω× [0, T ],M) :=

{
φ : Ω× [0, T ]→M s.t. φ is F-prog. meas. and E[ sup

0≤t≤T
|φt|2] <∞

}
,

L2
F(Ω× [0, T ],M) :=

{
φ : Ω× [0, T ]→M s.t. φ is F-progr. meas. and

∫ T

0
e−ρtE[|φt|2]dt <∞

}
.

We ask the following conditions on the coefficients of the problem to hold in the finite-horizon
case.

(H1) The coefficients in (2) satisfy:

(i) β, γ ∈ L2
F(Ω× [0, T ],Rd),

(ii) B, B̃,D, D̃ ∈ L∞([0, T ],Rd×d), C, C̃, F, F̃ ∈ L∞([0, T ],Rd×m).

(H2) The coefficients in (4) satisfy:

(i) Q, Q̃ ∈ L∞([0, T ],Sd), P, P̃ ∈ Sd, N, Ñ ∈ L∞([0, T ], Sm), I, Ĩ ∈ L∞([0, T ],Rm×d),
(ii) M ∈ L2

F(Ω× [0, T ],Rd), H ∈ L2
F(Ω× [0, T ],Rm), L ∈ L2

FT (Rd),
(iii) there exists δ > 0 such that, for each t ∈ [0, T ],

Nt ≥ δ Im, P ≥ 0, Qt−Iᵀ
tN
−1
t It ≥ 0,

(iv) there exists δ > 0 such that, for each t ∈ [0, T ],

Nt+Ñt ≥ δ Im, P+P̃ ≥ 0, (Qt+Q̃t)−(It+Ĩt)
ᵀ(Nt+Ñt)

−1(It+Ĩt) ≥ 0.

Remark 3.1. The uniform positive definite assumption on N and N + Ñ is a standard and
natural coercive condition when dealing with linear-quadratic control problems. We discuss in
Section 4 (see Remark 5.1) alternative assumptions when N and Ñ may be degenerate.

By (H1) and classical results, e.g. [17, Prop. 2.6], there exists a unique strong solution
Xα = (Xα

t )0≤t≤T to the mean-field SDE (1), which satisfies the standard estimate

E
[

sup
t∈[0,T ]

|Xα
t |2
]
≤ Cα

(
1 + E[|X0|2]

)
<∞, (5)
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where Cα is a constant which depends on α ∈ A only via
∫ T

0 e−ρtE[|αt|2]dt. Also, by (H2) and
(5), the LQMKV control problem (3) is well-defined, in the sense that

J(α) ∈ R, for each α ∈ A.

To solve the LQMKV control problem, we are going to use a suitable verification theorem.
Namely, we consider an extended version of the martingale optimality principle usually cited in
stochastic control theory: see Remark 3.3 for a discussion.

Lemma 3.2 (Finite-horizon verification theorem). Let {Wα
t , t ∈ [0, T ], α ∈ A} be a fam-

ily of F-adapted processes in the form Wα
t = wt(X

α
t ,E[Xα

t ]) for some F-adapted random field
{wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ Rd} satisfying

wt(x, x̄) ≤ C(χt + |x|2 + |x̄|2), t ∈ [0, T ], x, x̄ ∈ Rd, (6)

for some positive constant C, and nonnegative process χ with supt∈[0,T ] E[|χt|] < ∞, and such
that

(i) wT (x, x̄) = g(x, x̄), x, x̄ ∈ Rd;

(ii) the map t ∈ [0, T ] 7−→ E[Sαt ], with Sαt := e−ρtWα
t +

∫ t
0 e
−ρsfs

(
Xα
s ,E[Xα

s ], αs,E[αs]
)
ds, is

nondecreasing for all α ∈ A;

(iii) the map t ∈ [0, T ] 7−→ E[Sα∗t ] is constant for some α∗ ∈ A.

Then, α∗ is an optimal control and E[w0(X0,E[X0])] is the value of the LQMKV control problem
(3):

V0 = E[w0(X0,E[X0])] = J(α∗).

Moreover, any other optimal control satisfies the condition (iii).

Proof. From the growth condition (6) and estimation (5), we see that the function

t ∈ [0, T ] 7−→ E[Sαt ]

is well-defined for any α ∈ A. By (i) and (ii), we have for all α ∈ A

E[w0(X0,E[X0])] = E[Sα0 ]

≤ E[SαT ] = E
[
e−ρT g(Xα

T ,E[Xα
T ]) +

∫ T

0
e−ρtft

(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dt
]

= J(α),

which shows that E[w0(X0,E[X0])] ≤ V0 = infα∈A J(α), since α is arbitrary. Moreover, condition
(iii) with α∗ shows that E[w0(X0,E[X0])] = J(α∗), which proves the optimality of α∗ with J(α∗)
= E[w0(X0,E[X0])]. Finally, suppose that α̃ ∈ A is another optimal control. Then

E[S α̃0 ] = E[w0(X0,E[X0])] = J(α̃) = E[S α̃T ].

Since the map t ∈ [0, T ] 7−→ E[S α̃t ] is nondecreasing, this shows that this map is actually constant,
and concludes the proof.

The general procedure to apply such a verification theorem consists of the following three
steps.

- Step 1. We guess a suitable parametric expression for the candidate random field wt(x, x̄),
and set for each α ∈ A and t ∈ [0, T ],

Sαt := e−ρtwt(X
α
t ,E[Xα

t ]) +

∫ t

0
e−ρsfs

(
Xα
s ,E[Xα

s ], αs,E[αs]
)
ds. (7)
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- Step 2. We apply Itô’s formula to Sαt , for α ∈ A, and take the expectation to get

dE[Sαt ] = e−ρtE[Dαt ]dt,

for some F-adapted processes Dα with

E[Dαt ] = E
[
− ρwt(Xα

t ,E[Xα
t ]) +

d

dt
E
[
wt(X

α
t ,E[Xα

t ])
]

+ ft(X
α
t ,E[Xα

t ], αt,E[αt])
]
.

We then determine the coefficients in the random field wt(x, x̄) s.t. condition (i) in Lemma
3.2 (i.e., wT (.) = g(.)) is satisfied, and so as to have

E[Dαt ] ≥ 0, t ≥ 0,∀α ∈ A, and E[Dα∗t ] = 0, t ≥ 0, for some α∗ ∈ A,

which ensures that the mean optimality principle conditions (ii) and (iii) are satisfied, and
then α∗ will be the optimal control. This leads to a system of backward ordinary and
stochastic differential equations.

- Step 3. We study the existence of solutions to the system obtained in Step 2, which will
also ensure the square integrability condition of α∗ in A, hence its optimality.

Remark 3.3. The standard martingale optimality principle used in the verification theorem for
stochastic control problems, see e.g. [7], consists in finding a family of processes {Wα

t , 0 ≤ t ≤
T, α ∈ A} s.t.

(ii’) the process Sαt = e−ρtWα
t +

∫ t
0 e
−ρsfs

(
Xα
s ,E[Xα

s ], αs,E[αs]
)
ds, 0 ≤ t ≤ T , is a submartin-

gale for each α ∈ A,

(iii’) Sα∗ is a martingale for some α∗ ∈ A,

which obviously implies the weaker conditions (ii) and (iii) in Proposition 3.2. Practically, the
martingale optimality conditions (ii’)-(iii’) would reduce via the Itô decomposition of Sα to
the condition that Dαt ≥ 0, for each α ∈ A, and Dα∗t = 0, 0 ≤ t ≤ T , for a suitable control
α∗. In the classical framework of stochastic control problem without mean-field dependence,
one looks for Wα

t = wt(X
α
t ) for some random field wt(x) depending only on the state value,

and the martingale optimality principle leads to the classical Hamilton-Jacobi-Bellman (HJB)
equation (when all the coefficients are non-random) or to a stochastic HJB, see [14], in the
general random coefficients case. In our context of McKean-Vlasov control problems, one looks
for Wα

t = wt(X
α
t ,E[Xα

t ]) depending also on the mean of the state value, and the pathwise
condition on Dαt would not allow us to determine a suitable random field wt(x, x̄). Instead, we
exploit the weaker condition (ii) formulated as a mean condition on E[Dαt ], and we shall see in
the next section how it leads indeed to a suitable characterization of wt(x, x̄). The methodology
of the weak martingale approach in Lemma 3.2 works concretely whenever one can find a family
of value functions for the McKean-Vlasov control problem that depends upon the law of the
state process only via its mean (or conditional mean in the case of common noise). This imposes
a Markov property on the pair of controlled process (Xt,E[Xt]), and hence a linear structure
of the dynamics for X w.r.t. its mean and the control. The running payoff and terminal cost
function f, g should then also depend on the state and its mean (or conditional mean in the
case of common noise), but not necessarily in the quadratic form. The quadratic form has the
advantage of suggesting a suitable quadratic form for the candidate value function, while in
general it is not explicit. Actually, the candidate wt(x, x

′) for the value function should satisfy
a Bellman PDE in finite dimension, namely the dimension of (Xt,E[Xt]), which is a particular
finite dimensional case of the Master equation. This argument of making the McKean-Vlasov
control problem finite-dimensional is exploited more generally in [2] where the dependence on
the law is through the first p-moments of the state process.
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4 Solution to LQMKV

In this section, we apply the verification theorem in Lemma 3.2 to characterize an optimal
control for the problem (3). We will follow the procedure outlined at the end of Section 3. In
the sequel, and for convenience of notations, we set

B̂t := Bt + B̃t, Ĉt := Ct + C̃t, D̂t := Dt + D̃t, F̂t := Ft + F̃t,

Ît := It + Ĩt, N̂t := Nt + Ñt, Q̂t := Qt + Q̃t, P̂ := P + P̃.
(8)

Remark 4.1. To simplify the notations, throughout the paper we will often denote expectations
by an upper bar and omit the dependence on controls. Hence, for example, we will write Xt for
Xα
t , X̄t for E[Xα

t ], and ᾱt for E[αt].

Step 1. Given the quadratic structure of the cost functional ft in (4), we infer a candidate for
the random field {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ Rd} in the form:

wt(x, x̄) = (x− x̄)ᵀKt(x− x̄) + x̄ᵀΛtx̄+ 2Y ᵀ
t x+Rt, (9)

where Kt,Λt, Yt, Rt are suitable processes to be determined later. The centering of the quadratic
term is a convenient choice, which provides simpler calculations. Actually, since the quadratic
coefficients in the payoff (4) are deterministic symmetric matrices, we look for deterministic
symmetric matrices K,Λ as well. Moreover, since in the statement of Lemma 3.2 we always con-
sider the expectation of Wα

t = wt(X
α
t ,E[Xα

t ]), we can assume, w.l.o.g., that R is deterministic.
Given the randomness of the linear coefficients in (4), the process Y is considered in general
as an F-adapted process. Finally, the terminal condition wT (x, x̄) = g(x, x̄) ((i) in Lemma 3.2)
determines the terminal conditions satisfied by KT ,ΛT , YT , RT . We then search for processes
(K,Λ, Y, R) valued in Sd × Sd × Rd × R in backward form:

dKt = K̇tdt, 0 ≤ t ≤ T, KT = P,

dΛt = Λ̇tdt, 0 ≤ t ≤ T, ΛT = P̂,

dYt = Ẏtdt+ ZYt dWt, 0 ≤ t ≤ T, YT = L,

dRt = Ṙtdt, 0 ≤ t ≤ T, RT = 0,

(10)

for some deterministic processes (K̇, Λ̇, Ṙ) valued in Sd×Sd×R, and F-adapted processes Ẏ, ZY

valued in Rd.

Step 2. For α ∈ A and t ∈ [0, T ], let Sαt as in (7). We have

dE[Sαt ] = e−ρtE[Dαt ]dt,

for some F-adapted processes Dα with

E[Dαt ] = E
[
− ρwt(Xα

t ,E[Xα
t ]) +

d

dt
E
[
wt(X

α
t ,E[Xα

t ])
]

+ ft(X
α
t ,E[Xα

t ], αt,E[αt])
]
.

We apply the Itô’s formula to wt(X
α
t ,E[Xα

t ]), recalling the quadratic form (9) of wt, the equations
in (10), and the dynamics (see equation (1))

dX̄α
t = [β̄t + B̂tX̄

α
t + Ĉtᾱt]dt,

d(Xα
t − X̄α

t ) =
[
βt − β̄t +Bt(X

α
t − X̄α

t ) + Ct(αt − ᾱt)
]
dt

+
[
γt +Dt(X

α
t − X̄α

t ) + D̂tX̄
α
t + Ft(αt − ᾱt) + F̂tᾱt

]
dWt,

where we use the upper bar notation for expectation, see Remark 4.1. Recalling the quadratic
form (4) of the running cost ft, we obtain, after careful but straightforward computations, that

E[Dαt ] = E
[
(Xt − X̄t)

ᵀ(K̇t + Φt)(Xt − X̄t) + X̄ᵀ
t

(
Λ̇t + Ψt

)
X̄t

+ 2
(
Ẏt + ∆t

)ᵀ
Xt + Ṙt − ρRt + Γ̄t + χt(α)

]
, (11)
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(we omit the dependence in α of X = Xα, X̄ = X̄α), where

Φt := −ρKt +KtBt +Bᵀ
tKt +Dᵀ

tKtDt +Qt = Φt(Kt),

Ψt := −ρΛt + ΛtB̂t + B̂ᵀ
tΛt + D̂ᵀ

tKtD̂t + Q̂t = Ψt(Kt,Λt),

∆t := −ρYt +Bᵀ
tYt + B̃ᵀ

t Ȳt +Dᵀ
tZ

Y
t + D̃ᵀ

tZ
Y
t +Kt(βt − β̄t) + Λtβ̄t

+ Dᵀ
tKt(γt − γ̄t) + D̂ᵀ

tKtγ̄t +Mt = ∆t(Kt,Λt, Yt, Ȳt, Z
Y
t , Z

Y
t ),

Γt := γᵀ
tKtγt + 2βᵀ

tYt + 2γᵀ
tZ

Y
t = Γt(Kt, Yt, Z

Y
t ),

(12)

for t ∈ [0, T ], and

χt(α) := (αt − ᾱt)ᵀSt(αt − ᾱt) + ᾱᵀ
t Ŝtᾱt

+ 2
(
Ut(Xt − X̄t) + VtX̄t +Ot + ξt − ξ̄t

)ᵀ
αt. (13)

Here, the deterministic coefficients St, Ŝt, Ut, Vt, Ot are defined, for t ∈ [0, T ], by

St := Nt + F ᵀ
t KtFt = St(Kt),

Ŝt := N̂t + F̂ ᵀ
t KtF̂t = Ŝt(Kt),

Ut := It + F ᵀ
t KtDt + Cᵀ

tKt = Ut(Kt),

Vt := Ît + F̂ ᵀ
t KtD̂t + Ĉᵀ

tΛt = Vt(Kt,Λt),

Ot := H̄t + F̂ ᵀ
t Ktγ̄t + Ĉᵀ

t Ȳt + F̂ ᵀ
t Z

Y
t = Ot(Kt, Ȳt, ZYt ),

(14)

and the stochastic coefficient ξt of mean ξ̄t is defined, for t ∈ [0, T ], by{
ξt := Ht + F ᵀ

t Ktγt + Cᵀ
t Yt + F ᵀ

t Z
Y
t = ξt(Kt, Yt, Z

Y
t ),

ξ̄t := H̄t + F ᵀ
t Ktγ̄t + Cᵀ

t Ȳt + F ᵀ
t Z

Y
t = ξ̄t(Kt, Ȳt, ZYt ).

(15)

Notice that we have suitably rearranged the terms in (11) in order to keep only linear terms in
X and α, by using the elementary observation that E[φᵀ

tX̄t] = E[φ̄ᵀ
tXt], and E[ψᵀ

t ᾱt] = E[ψ̄ᵀ
tαt]

for any vector-valued random variable φt, ψt of mean φ̄t, ψ̄t.
Next, the key-point is to complete the square w.r.t. the control α in the process χt(α) defined

in (13). Assuming for the moment that the symmetric matrices St and Ŝt are positive definite
in Sm (this will follow typically from the non-negativity of the matrix K, as checked in Step 3,
and conditions (iii)-(iv) in (H2)), it is clear that one can find a deterministic Rm×m-valued Θ
(which may be not unique) s.t. for all t ∈ [0, T ],

ΘtStΘ
ᵀ
t = Ŝt,

for all t ∈ [0, T ], and which is also deterministic like St, Ŝt. We can then rewrite the expectation
of χt(α) as

E[χt(α)] = E
[(
αt − ᾱt + Θᵀ

t ᾱt − ηt)ᵀSt
(
αt − ᾱt + Θᵀ

t ᾱt − ηt
)
− ζt

]
,

where

ηt := a0
t (Xt, X̄t) + Θᵀ

ta
1
t (X̄t),

with a0
t (Xt, X̄t) a centred random variable, and a1

t (X̄t) a deterministic function

a0
t (x, x̄) := −S−1

t Ut(x− x̄)− S−1
t (ξt − ξ̄t), a1

t (x̄) := −Ŝ−1
t (Vtx̄+Ot),

and

ζt := (Xt − X̄t)
ᵀ
(
U ᵀ
t S
−1
t Ut

)
(Xt − X̄t) + X̄ᵀ

t

(
V ᵀ
t Ŝ
−1
t Vt

)
X̄t

+ 2
(
U ᵀ
t S
−1
t (ξt − ξ̄t) + V ᵀ

t Ŝ
−1
t Ot

)ᵀ
Xt

+ (ξt − ξ̄t)ᵀS−1
t (ξt − ξ̄t) +Oᵀ

t Ŝ
−1
t Ot.
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We can then rewrite the expectation in (11) as

E[Dαt ]

= E
[
(Xt − X̄t)

ᵀ
(
K̇t + Φ0

t

)
(Xt − X̄t) + X̄ᵀ

t

(
Λ̇t + Ψ0

t

)
X̄t

+ 2
(
Ẏt + ∆0

t

)ᵀ
Xt + Ṙt − ρRt + Γ0

t

+
(
αt − a0

t (Xt, X̄t)− ᾱt + Θᵀ
t (ᾱt − a1

t (X̄t))
)ᵀ
St
(
αt − a0

t (Xt, X̄t)− ᾱt + Θᵀ
t (ᾱt − a1

t (X̄t))
)]
,

where we set
Φ0
t := Φt − U ᵀ

t S
−1
t Ut = Φ0

t (Kt),

Ψ0
t := Ψt − V ᵀ

t Ŝ
−1
t Vt = Ψ0

t (Kt,Λt),

∆0
t := ∆t − U ᵀ

t S
−1
t (ξt − ξ̄t)− V ᵀ

t Ŝ
−1
t Ot = ∆0

t (Kt,Λt, Yt, Ȳt, Z
Y
t , Z

Y
t ),

Γ0
t := Γt − (ξt − ξ̄t)ᵀS−1

t (ξt − ξ̄t)−Oᵀ
t Ŝ
−1
t Ot = Γ0

t (Kt, Yt, Ȳt, Z
Y
t , Z

Y
t ),

(16)

and stress the dependence on (K,Λ, Y, ZY ) in view of (12), (14), (15). Therefore, whenever

K̇t + Φ0
t = 0, Λ̇t + Ψ0

t = 0, Ẏt + ∆0
t = 0, Ṙt − ρRt + Γ0

t = 0

holds for all t ∈ [0, T ], we have

E[Dαt ] (17)

= E
[(
αt − a0

t (Xt, X̄t)− ᾱt + Θᵀ
t (ᾱt − a1

t (X̄t))
)ᵀ
St
(
αt − a0

t (Xt, X̄t)− ᾱt + Θᵀ
t (ᾱt − a1

t (X̄t))
)]
,

which is non-negative for all 0 ≤ t ≤ T , α ∈ A, i.e., the process Sα satisfies the condition (ii)
of the verification theorem in Lemma 3.2. We are then led to consider the following system of
backward (ordinary and stochastic) differential equations (ODEs and BSDE):

dKt = −Φ0
t (Kt)dt, 0 ≤ t ≤ T, KT = P,

dΛt = −Ψ0
t (Kt,Λt)dt, 0 ≤ t ≤ T, ΛT = P + P̃,

dYt = −∆0
t (Kt,Λt, Yt,E[Yt], Z

Y
t ,E[ZYt ])dt+ ZYt dWt, 0 ≤ t ≤ T, YT = L,

dRt =
[
ρRt − E[Γ0

t (Kt, Yt,E[Yt], Z
Y
t ,E[ZYt ])

]
dt, 0 ≤ t ≤ T, RT = 0.

(18)

Definition 4.2. A solution to the system (18) is a quintuple of processes (K,Λ, Y, ZY , R) ∈
L∞([0, T ], Sd) × L∞([0, T ],Sd) × S2

F(Ω × [0, T ],Rd) × L2
F(Ω × [0, T ],Rd) × L∞([0, T ],R) s.t. the

Sm-valued processes S(K), Ŝ(K) ∈ L∞([0, T ],Sm), are positive definite a.s., and the following
relation 

Kt = P +
∫ T
t Φ0

s(Ks)ds,

Λt = P + P̃ +
∫ T
t Ψ0

s(Ks,Λs)ds,

Yt = L+
∫ T
t ∆0

s(Ks,Λs, Ys,E[Ys], Z
Y
s ,E[ZYs ])ds+

∫ T
t ZYs dWs,

Rt =
∫ T
t

(
− ρRs + E

[
Γ0
s(Ks, Ys,E[Ys], Z

Y
s ,E[ZYs ])

])
ds,

holds for all t ∈ [0, T ].

We shall discuss in the next paragraph (Step 3) the existence of a solution to the system
of ODEs-BSDE (18). For the moment, we provide the connection between this system and the
solution to the LQMKV control problem.

Proposition 4.3. Suppose that (K,Λ, Y, ZY , R) is a solution to the system of ODEs-BSDE
(18). Then, the control process

α∗t = a0
t (X

∗
t ,E[X∗t ]) + a1

t (E[X∗t ])

= −S−1
t (Kt)Ut(Kt)(Xt − E[X∗t ])− S−1

t (Kt)
(
ξt(Kt, Yt, Z

Y
t )− ξ̄t(Kt,E[Yt],E[ZYt ]

)
− Ŝ−1

t (Kt)
(
Vt(Kt,Λt)E[X∗t ] +Ot(Kt,E[Yt],E[ZYt ])

)
,
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where X∗ = Xα∗ is the state process with the feedback control a0
t (X

∗
t ,E[X∗t ]) + a1

t (E[X∗t ]), is the
optimal control for the LQMKV problem (3), i.e., V0 = J(α∗), and we have

V0 = E
[
(X0 − E[X0])ᵀK0(X0 − E[X0])

]
+ E[X0]ᵀΛ0E[X0] + 2E[Y ᵀ

0 X0] +R0.

Proof. Consider a solution (K,Λ, Y, ZY , R) to the system (18), and let wt as of the quadratic
form (9). First, notice that w satisfies the growth condition (6) as K,Λ, R are bounded and
Y satisfies a square-integrability condition in L2

F(Ω × [0, T ],Rd). The terminal condition wT (.)
= g is also satisfied from the terminal condition of the system (18). Next, for this choice of
(K,Λ, Y, ZY , R), the expectation E[Dαt ] in (17) is nonnegative for all t ∈ [0, T ], α ∈ A, which
means that the process Sα satisfies the condition (ii) of the verification theorem in Lemma 3.2.
Moreover, we see that E[Dαt ] = 0, 0 ≤ t ≤ T , for some α = α∗ if and only if (recall that St is
positive definite a.s.)

α∗t − a0
t (X

∗
t ,E[X∗t ])− E[α∗t ] + Θᵀ

t (E[α∗t ]− a1
t (E[X∗t ])) = 0, 0 ≤ t ≤ T.

Taking expectation in the above relation, and recalling that E[a0
t (X

∗
t ,E[X∗t ])] = 0, Θt is invert-

ible, we get E[α∗t ] = a1
t (E[X∗t ]), and thus

α∗t = a0
t (X

∗
t ,E[X∗t ]) + a1

t (E[X∗t ]), 0 ≤ t ≤ T. (19)

Notice that X∗ = Xα∗ is solution to a linear McKean-Vlasov dynamics, and satisfies the square-
integrability condition E[sup0≤t≤T |X∗t |2] < ∞, which implies in its turn that α∗ satisfies the

square-integrability condition L2
F(Ω × [0, T ],Rm), since S−1, Ŝ−1, U , V are bounded, and O,

ξ are square-integrable respectively in L2([0, T ],Rm) and L2
F(Ω × [0, T ],Rm). Therefore, α∗ ∈

A, and we conclude by the verification theorem in Lemma 3.2 that it is the unique optimal
control.

Step 3. Let us now verify under assumptions (H1)-(H2) the existence and uniqueness of a
solution to the decoupled system in (18).

(i) We first consider the equation for K, which is actually a matrix Riccati equation written
as:

d
dtKt +Qt − ρKt +KtBt +Bᵀ

tKt +Dᵀ
tKtDt

−(It + F ᵀ
t KtDt + Cᵀ

tKt)
ᵀ(Nt + F ᵀ

t KtFt)
−1(It + F ᵀ

t KtDt + Cᵀ
tKt) = 0, t ∈ [0, T ],
KT = P.

(20)
Multi-dimensional Riccati equations are known to be related to control theory. Namely,
(20) is associated to the standard linear-quadratic stochastic control problem:

vt(x) := inf
α∈A

E
[ ∫ T

t
e−ρt

(
(X̃t,x,α

s )ᵀQsX̃
t,x,α
s + 2αᵀ

sIsX̃
t,x,α
s + αᵀ

sNsαs

)
ds

+ e−ρT (X̃t,x,α
T )ᵀPX̃t,x,α

T

]
,

where X̃t,x,α is the controlled linear dynamics solution to

dX̃s = (BsX̃s + Csαs)ds+ (DsX̃s + Fsαs)dWs, t ≤ s ≤ T, X̃t = x.

By a standard result in control theory (see [18, Ch. 6, Thm. 6.1, 7,1, 7.2], with a straightfor-
ward adaptation of the arguments to include the discount factor), under (H1), (H2)(i)-(ii),
there exists a unique solution K ∈ L∞([0, T ], Sd) with Kt ≥ 0 to (20), provided that

P ≥ 0, Qt − Iᵀ
tN
−1
t It ≥ 0, Nt ≥ δ Im, 0 ≤ t ≤ T, (21)

for some δ > 0, which is true by (H2)(iii), and in this case, we have vt(x) = xᵀKtx. Notice
also that S(K) = N + F ᵀKF is positive definite.
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(ii) Given K, we now consider the equation for Λ. Again, this is a matrix Riccati equation
that we rewrite as

d
dtΛt + Q̂Kt − ρΛt + ΛtB̂t + B̂ᵀ

tΛt
−
(
ÎKt + Ĉᵀ

tΛt
)ᵀ

(N̂K
t )−1

(
ÎKt + Ĉᵀ

tΛt
)

= 0, t ∈ [0, T ],

ΛT = P̂,

(22)

where we have set, for t ∈ [0, T ],

Q̂Kt := Q̂t + D̂ᵀ
tKtD̂t,

ÎKt := Ît + F̂ ᵀ
t KtD̂t,

N̂K
t := N̂t + F̂ ᵀ

t KtF̂t.

As for the equation for K, there exists a unique solution Λ ∈ L∞([0, T ], Sd) with Λt ≥ 0
to (22), provided that

P̂ ≥ 0, Q̂Kt − (ÎKt )ᵀ(N̂K
t )−1(ÎKt ) ≥ 0, N̂K

t ≥ δ Im, 0 ≤ t ≤ T, (23)

for some δ > 0. Let us check that (H2)(iv) implies (23). We already have P̂ ≥ 0.
Moreover, as K ≥ 0 we have: N̂K

t ≥ N̂t ≥ δIm. By simple algebraic manipulations and as
N̂t > 0, we have (omitting the time dependence)

Q̂K − (ÎK)ᵀ(N̂K)−1ÎK = Q̂− ÎᵀN̂−1Î + (D̂ − F̂ N̂−1Î)ᵀK(D̂ − F̂ N̂−1Î)

−
(
F̂ ᵀK(D̂ − F̂ N̂−1Î)

)ᵀ

(N̂ + F̂ ᵀKF̂ )−1
(
F̂ ᵀK(D̂ − F̂ N̂−1Î)

)
≥ Q̂− ÎᵀN̂−1Î + (D̂ − F̂ N̂−1Î)ᵀK(D̂ − F̂ N̂−1Î)

−
(
F̂ ᵀK(D̂ − F̂ N̂−1Î)

)ᵀ

(F̂ ᵀKF̂ )−1
(
F̂ ᵀK(D̂ − F̂ N̂−1Î)

)
= Q̂− ÎᵀN̂−1Î ≥ 0, by (H2)(iv).

(iii) Given (K,Λ), we consider the equation for (Y,ZY ). This is a mean-field linear BSDE
written as{

dYt =
(
ϑt +Gᵀ

t (Yt − E[Yt]) + Ĝᵀ
tE[Yt] + Jᵀ

t (ZYt − E[ZYt ]) + Ĵᵀ
t E[ZYt ]

)
dt+ ZYt dWt,

YT = L,

(24)
where the deterministic coefficients G, Ĝ, J , Ĵ ∈ L∞([0, T ],Rd×d), and the stochastic
process ϑ ∈ L2

F(Ω× [0, T ],Rd) are defined by

Gt := ρ Id −Bt + CtS
−1
t Ut,

Ĝt := ρ Id − B̂t + ĈtŜ
−1
t Vt,

Jt := −Dt + FtS
−1
t Ut,

Ĵt := −D̂t + F̂tŜ
−1
t Vt,

ϑt := −Mt −Kt(βt − E[βt])− ΛtE[βt]−Dᵀ
tKt(γt − E[γt])− D̂ᵀ

tKtE[γt]

+ U ᵀ
t S
−1
t

(
Ht − E[Ht] + F ᵀ

t Kt(γt − E[γt])
)

+ V ᵀ
t Ŝ
−1
t

(
E[Ht] + F̂ ᵀ

t KtE[γt]
)
,

and the expressions for S, Ŝ, U, V are recalled in (14). By standard results, see [11,
Thm. 2.1], there exists a unique solution (Y,ZY ) ∈ S2

F(Ω× [0, T ],Rd)×L2
F(Ω× [0, T ],Rd)

to (24).
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(iv) Given (K,Λ, Y, ZY ), the equation for R is a linear ODE, whose unique solution is explicitly
given by

Rt =

∫ T

t
e−ρ(s−t)hsds. (25)

Here, the deterministic function h is defined, for t ∈ [0, T ], by

ht := E
[
− γᵀ

tKtγt − βᵀ
tYt − 2γᵀ

tZ
Y
t + ξᵀtS

−1
t ξt

]
− E[ξt]

ᵀS−1
t E[ξt] +Oᵀ

t Ŝ
−1
t Ot,

and the expressions of O and ξ are recalled in (14) and (15).

To sum up the arguments of this section, we have proved the following result.

Theorem 4.4. Under assumptions (H1)-(H2), the optimal control for the LQMKV problem
(3) is given by

α∗t = −S−1
t Ut(X

∗
t − E[X∗t ])− Ŝ−1

t (VtE[X∗t ] +Ot)− S−1
t (ξt − E[ξt]), (26)

where X∗ = Xα∗ and the deterministic coefficients S, Ŝ ∈ L∞([0, T ],Sm), U, V in L∞([0, T ],Rm×d),
O ∈ L∞([0, T ],Rm) and the stochastic coefficient ξ ∈ L2

F(Ω× [0, T ],Rm) are defined by

St := Nt + F ᵀ
t KtFt,

Ŝt := Nt + Ñt + (Ft + F̃t)
ᵀKt(Ft + F̃t),

Ut := It + F ᵀ
t KtDt + Cᵀ

tKt,

Vt := It + Ĩt + (Ft + F̃t)
ᵀKt(Dt + D̃t) + (Ct + C̃t)

ᵀΛt,

Ot := E[Ht] + (Ft + F̃t)
ᵀKtE[γt] + (Ct + C̃t)

ᵀE[Yt] + (Ft + F̃t)
ᵀE[ZYt ],

ξt := Ht + F ᵀ
t Ktγt + Cᵀ

t Yt + F ᵀ
t Z

Y
t ,

(27)

with (K,Λ, Y, ZY , R) ∈ L∞([0, T ],Sd)×L∞([0, T ], Sd)×S2
F(Ω× [0, T ],Rd)×L2

F(Ω× [0, T ],Rd)×
L∞([0, T ],R) the unique solution to (20), (22), (24), (25). The corresponding value of the
problem is

V0 = J(α∗) = E
[
(X0 − E[X0])ᵀK0(X0 − E[X0])

]
+ E[X0]ᵀΛ0E[X0] + 2E

[
Y ᵀ

0 X0] +R0.

5 Remarks and Extensions

We collect here some remarks and extensions for the problem presented in the previous sections.

Remark 5.1. Assumptions (H2)(iii)-(iv) are used only for ensuring the existence of a non-
negative solution (K,Λ) to equations (20), (22). In some specific cases, they can be substituted
by alternative conditions.

For example, in the one-dimensional case n = m = 1 (real-valued control and state variable),
with N = 0 (no quadratic term on the control in the running cost) and I = 0, the equation for
K writes

d

dt
Kt +Qt +

(
− ρ+ 2Bt − C2

t /F
2
t − 2CtDt/Ft

)
Kt = 0, t ∈ [0, T ], KT = P.

This is a first-order linear ODE, which clearly admits a unique solution, provided that Ft 6= 0.
Moreover, when P > 0, then K > 0 by classical maximum principle, so that we have St > 0.
Hence, an alternative condition to (H2)(iii) is, for t ∈ [0, T ],

(H2)(iii’) n = m = 1, Nt = It = 0, P > 0, Ft 6= 0.
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Let us now discuss an alternative condition to the uniform positive condition on N + Ñ in
(H2)(iv), in the case where N + Ñ is only assumed to be non-negative. When the constant
matrix P is positive definite, then K is uniformly positive definite in Sd, i.e., Kt ≥ δIm, 0 ≤
t ≤ T , for some δ > 0, by strong maximum principle for the ODE (20). Then, when F + F̃
is uniformly non-degenerate, i.e., |Ft + F̃t| ≥ δ, 0 ≤ t ≤ T , for some δ > 0, we see that Ŝt =
N̂K
t ≥ (Ft + F̃t)

ᵀKt(Ft + F̃t) ≥ δ′Id for some δ′ > 0. Notice also that when I + Ĩ = 0, then
Q̂K − (ÎK)ᵀ(N̂K)−1(ÎK) ≥ Q + Q̃. Consequently, assumption (H2)(iv) can be alternatively
replaced by

(H2)(iv’) Nt + Ñt, P + P̃ , Qt + Q̃t ≥ 0, P > 0, It + Ĩt = 0, |Ft + F̃t| ≥ δ,

for t ∈ [0, T ] and some δ > 0, which ensures that condition (23) is satisfied, hence giving the
existence and uniqueness of a nonnegative solution Λ to (22).

We underline that (H2)(iii’)-(iv’) are not the unique alternative to (H2)(iii)-(iv). In some
applications, none of such conditions is satisfied, typically as Q = Q̃ = 0, while I or Ĩ is non-zero.
However, a solution (K,Λ) (possibly non-positive) to (20)-(22) may still exist, with S(K) and
Ŝ(K) positive definite, and one can then still apply Proposition 4.3 to get the conclusion of
Theorem 4.4, i.e., the optimal control exists and is given by (26).

Remark 5.2. The result in Theorem 4.4 can be easily extended to the case where several Brownian
motions are present in the controlled equation:

dXα
t = bt

(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dt+

n∑
i=1

σit
(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dW i

t ,

where W 1, . . . ,Wn are standard independent real Brownian motions and, for each t ∈ [0, T ],
i ∈ {1, . . . , n}, x, x̄ ∈ Rd and a, ā ∈ Rm, we set

bt
(
x, x̄, a, ā

)
:= βt +Btx+ B̃tx̄+ Cta+ C̃tā,

σit
(
x, x̄, a, ā

)
:= γit +Di

tx+ D̃i
tx̄+ F it a+ F̃ it ā.

(28)

We ask the coefficients in (28) to satisfy a suitable adaptation of (H1): namely, we substitute
D, D̃, F, F̃ with Di, D̃i, F i, F̃ i, for i ∈ {1, . . . , n}. The cost functional and (H2) are unchanged.

The statement of Theorem 4.4 is easily adapted to this extended framework. To sim-
plify the notations we use Einstein convention: for example, we write (Di

t)
ᵀKDi

t instead of∑n
i=1(Di

t)
ᵀKDi

t. The optimal control α∗ is given by (26), where the coefficients are now defined
by 

St := Nt + (F it )
ᵀKtF

i
t ,

Ŝt := Nt + Ñt + (F it + F̃ it )
ᵀKt(F

i
t + F̃ it ),

Ut := It + (F it )
ᵀKtD

i
t + Cᵀ

tKt,

Vt := It + Ĩt + (F it + F̃ it )
ᵀKt(D

i
t + D̃i

t) + (Ct + C̃t)
ᵀΛt,

Ot := E[Ht] + (F it + F̃ it )
ᵀKtE[γt] + (Ct + C̃t)

ᵀE[Yt] + (F it + F̃ it )
ᵀE[ZYt ],

ξt := Ht + (F it )
ᵀKtγt + Cᵀ

t Yt + (F it )
ᵀZYt ,

and (K,Λ, Y, ZY , R) ∈ L∞([0, T ], Sd)×L∞([0, T ],Sd)×S2
F(Ω× [0, T ],Rd)×L2

F(Ω× [0, T ],Rd)×
L∞([0, T ],R) is the unique solution to (18), with

Φt(Kt) = −ρKt +KtBt +Bᵀ
tKt + (Di

t)
ᵀKtD

i
t +Qt,

Ψt(Kt,Λt) = −ρΛt + Λt(Bt + B̃t) + (Bt + B̃t)
ᵀΛt,

+ (Di
t + D̃i

t)
ᵀKt(D

i
t + D̃i

t) +Qt + Q̃t,

∆t(Kt,Λt, Yt,E[Yt], Z
Y
t ,E[ZYt ]) = −ρYt +Bᵀ

tYt + B̃ᵀ
tE[Yt] + k(βt − β̄t) + Λtβ̄t +Mt

+ (Di
t)

ᵀKtγt + (D̃i
t)

ᵀKtγ̄t + (Di
t)

ᵀZYt + (D̃i
t)

ᵀE[ZYt ],
Γt(Kt, Yt, Z

Y
t ) = γᵀ

tKtγt + 2βᵀ
tYt + 2γᵀ

tZ
Y
t , t ∈ [0, T ].
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Remark 5.3. The optimal control provided by Theorem 4.4 generalizes known results and stan-
dard formulas in control theory.

- For example, in the case where

It = Ĩt = βt = γt = Mt = Ht = Lt = 0,

then Y = ZY = 0, R = 0 (correspondingly, we have O = ξ = 0). We thus retrieve the
formula in [17, Thm. 4.1] for the optimal control (recalling the notations in (8)):

α∗t = −
(
Nt + F ᵀ

t KtFt
)−1

(F ᵀ
t KtDt + Cᵀ

tKt)(X
∗
t − E[X∗t ])

−
(
N̂t + F̂ ᵀ

t KtF̂t
)−1(

F̂ ᵀ
t KtD̂t + Ĉᵀ

tΛt
)
E[X∗t ].

- Consider now the case where all the mean-field coefficients are zero, that is

B̃t = C̃t = D̃t = F̃t = Q̃t = Ñt = P̃t ≡ 0.

Assume, in addition, that βt = γt = Ht = Mt = 0. In this case, Kt = Λt satisfy the same
Riccati equation, Yt = Ŷt = Rt = 0, and we have

St = Ŝt = Nt + F ᵀ
t KtFt,

Ut = Vt = It + F ᵀ
t KtDt + Cᵀ

tKt,

O = ξ = 0,

which leads to the well-known formula for classical linear-quadratic control problems (see,
e.g. [18]):

α∗t = −(Nt + F ᵀ
t KtFt)

−1(It + F ᵀ
t KtDt + Cᵀ

tKt)X
∗
t , 0 ≤ t ≤ T.

Remark 5.4. The mean of the optimal state X∗ = Xα∗ can be computed as the solution of a
linear ODE. Indeed,by plugging (26) into (1) and taking expectation, we get

d

dt
E[X∗t ] =

(
Bt + B̃t − (Ct + C̃t)Ŝ

−1
t Vt

)
E[X∗t ] +

(
E[βt]− (Ct + C̃t)Ŝ

−1
t Ot

)
,

which can be solved explicitly in the one-dimensional case d = 1, and expressed as an exponential
of matrices in the multidimensional case.

Remark 5.5. (The case of common noise). We now extend the results in Theorem 4.4 to the case
where a common noise is present. Let W and W 0 be two independent real Brownian motions
defined on the same filtered probability space (Ω,FT ,F,P). Let F = {Ft}t∈[0,T ] be the filtration
generated by the pair (W,W 0) and let F0 = {F0

t }t∈[0,T ] be the filtration generated by W 0.
For any X0 and α ∈ A as in Section 1, the controlled process Xα

t is defined by
dXα

t = bt
(
Xα
t ,E[Xα

t |W 0
t ], αt,E[αt|W 0

t ]
)
dt+ σt

(
Xα
t ,E[Xα

t |W 0
t ], αt,E[αt|W 0

t ]
)
dWt

+σ0
t

(
Xα
t ,E[Xα

t |W 0
t ], αt,E[αt|W 0

t ]
)
dW 0

t , 0 ≤ t ≤ T,
Xα

0 = X0,

(29)

where for each t ∈ [0, T ], x, x̄ ∈ Rd and a, ā ∈ Rm we have set

bt
(
x, x̄, a, ā

)
:= βt +Btx+ B̃tx̄+ Cta+ C̃tā,

σt
(
x, x̄, a, ā

)
:= γt +Dtx+ D̃tx̄+ Fta+ F̃tā,

σ0
t

(
x, x̄, a, ā

)
:= γ0

t +D0
t x+ D̃0

t x̄+ F 0
t a+ F̃ 0

t ā.
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Here, B,B̃,C,C̃,D,D̃,F ,F̃ ,D0,D̃0,F 0,F̃ 0 are essentially bounded F0-adapted processes, whereas
β, γ, γ0 are square-integrable F-adapted processes. We underline that β, γ, γ0 can depend on W
as well. The problem is

J(α) := E
[ ∫ T

0
e−ρtft

(
Xα
t ,E[Xα

t |W 0
t ], αt,E[αt|W 0

t ]
)
dt+ e−ρT g

(
Xα
T ,E[Xα

T |W 0
T ]
)]
,

→ V0 := inf
α∈A

J(α),

with ft, g as in (4). The coefficients in ft, g here satisfy the following assumptions: Q,Q̃,I,Ĩ,N ,Ñ
are essentially bounded F0-adapted processes, P, P̃ are essentially bounded F0

T -measurable ran-
dom variables, M,H are square-integrable F-adapted processes, L is a square-integrable FT -
measurable random variables. We also ask conditions (iii) and (iv) in (H2) to hold. We remark
that M,H,L can also depend on W .

As in Section 4, we guess a quadratic expression for the candidate random field. Namely, we
consider wt(X

α
t ,E[Xα

t |W 0
t ]), with {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ Rd} as in (9), that we here recall:

wt(x, x̄) = (x− x̄)ᵀKt(x− x̄) + x̄ᵀΛtx̄+ 2Y ᵀ
t x+Rt, (30)

for suitable coefficients K,Λ, Y, R. Since the quadratic coefficients in ft, g are F0-adapted, we
guess that the coefficients K,Λ are F0-adapted as well (notice the difference with respect to
Section 4, where K,Λ were deterministic). The affine coefficients in bt, σt, σ

0
t and the linear

coefficients in ft, g are F-adapted, so that Y needs to depend on both W and W 0. Finally, as
in Section 4 we can choose R deterministic. We then look for processes (K,Λ, Y, R) valued in
Sd × Sd × Rd × R and in the form:

dKt = K̇tdt+ ZKt dW
0
t , 0 ≤ t ≤ T, KT = P,

dΛt = Λ̇tdt+ ZΛ
t dW

0
t , 0 ≤ t ≤ T, ΛT = P̂,

dYt = Ẏtdt+ ZYt dWt + ZY,0t dW 0
t , 0 ≤ t ≤ T, YT = L,

dRt = Ṙtdt, 0 ≤ t ≤ T, RT = 0,

for some F0-adapted processes K̇, Λ̇, ZK , ZΛ valued in Sd, some F-adapted processes Ẏ, ZY , ZY,0

valued in Rd and a continuous function Ṙ valued in R.
We use the notations in (8) and extend them to the new coefficients D0, D̃0, F 0, F̃ 0 (e.g., we

denote D̂0
t = D0

t + D̃0
t ). Moreover, for any random variable ζ, we denote by ζ̄ the conditional

expectation with respect ot W 0
t , i.e., ζ̄ = E[ζ|W 0

t ]. For each α ∈ A and t ∈ [0, T ], let Sαt be
defined by

Sαt := e−ρtwt(X
α
t ,E[Xα

t |W 0
t ]) +

∫ t

0
e−ρsfs

(
Xα
s ,E[Xα

s |W 0
s ], αs,E[αs|W 0

s ]
)
ds,

and letDαt be defined by dE[Sαt ] = e−ρtE[Dαt ]dt. By applying the Itô formula to Sαt , an expression
for E[Dαt ] is given by (11) and (13), whose coefficients are now defined as follows. The coefficients
in (11) are here given by

Φt := −ρKt +KtBt +Bᵀ
tKt + ZKt D

0
t + (D0

t )
ᵀZKt

+Dᵀ
tKtDt + (D0

t )
ᵀKtD

0
t +Qt = Φt(Kt, Z

K
t ),

Ψt := −ρΛt + ΛtB̂t + B̂ᵀ
tΛt + ZΛ

t D̂
0
t + (D̂0

t )
ᵀZΛ

t

+D̂ᵀ
tKtD̂t + (D̂0

t )
ᵀΛtD̂

0
t + Q̂t = Ψt(Kt,Λt, Z

Λ
t ),

∆t := −ρYt +Bᵀ
tYt + B̃ᵀ

tYt +Dᵀ
tZ

Y
t + D̃ᵀ

tZ
Y
t + (D0

t )
ᵀZY,0t + (D̃0

t )
ᵀZY,0t

+Kt(βt − β̄t) + Λtβ̄t + ZKt (γ0
t − γ̄0

t ) + ZΛ
t γ̄

0
t +Dᵀ

tKt(γt − γ̄t) + D̂ᵀ
tKtγ̄t

+(D0
t )
′Kt(γ

0
t − γ̄0

t ) + (D̂0
t )
′Λtγ̄

0
t +Mt = ∆t(Kt,Λt, Yt, Z

Y
t , Z

Y,0
t , Yt, ZYt , Z

Y,0
t ),

Γt := (γt − γ̄t)ᵀKt(γt − γ̄t) + γ̄ᵀ
tKtγ̄t + (γ0

t − γ̄0
t )ᵀKt(γ

0
t − γ̄0

t ) + (γ̄0
t )ᵀΛtγ̄

0
t

+2βᵀ
tYt + 2γᵀ

tZ
Y
t + 2(γ0

t )ᵀZY,0t = Γt(Kt,Λt, Yt, Z
Y
t , Z

Y,0
t ),
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whereas the coefficients in (13) are given by

St := Nt + F ᵀ
t KtFt + (F 0

t )ᵀKtF
0
t = St(Kt),

Ŝt := N̂t + F̂ ᵀ
t KtF̂t + (F̂ 0

t )ᵀΛtF̂
0
t = Ŝt(Kt,Λt),

Ut := It + F ᵀ
t KtDt + (F 0

t )ᵀKtD
0
t + Cᵀ

tKt + (F 0
t )ᵀZKt = Ut(Kt, Z

K
t ),

Vt := Ît + F̂ ᵀ
t KtD̂t + (F̂ 0

t )ᵀΛtD̂
0
t + Ĉᵀ

tΛt + (F̂ 0
t )ᵀZΛ

t = Vt(Kt,Λt, Z
Λ
t ),

Ot := H̄t + F̂ ᵀ
t Ktγ̄t + (F̂ 0

t )ᵀΛtγ̄
0
t + Ĉᵀ

t Yt + F̂ ᵀ
t Z

Y
t + (F̂ 0

t )ᵀZY,0t = Ot(Kt, Yt, ZYt , Z
Y,0
t ),

ξt := Ht + F ᵀ
t Ktγt + (F 0

t )ᵀKtγ
0
t + Cᵀ

t Yt + F ᵀ
t Z

Y
t + (F 0

t )ᵀZY,0t = ξt(Kt, Yt, Z
Y
t , Z

Y,0
t ).

Completing the square as in Section 4 and setting to zero all the terms which do not depend on
the control, we get that (K,Λ, Y, R) satisfy the following problem

dKt := −Φ0
tdt+ ZKt dW

0
t , 0 ≤ t ≤ T, KT = P,

dΛt := −Ψ0
tdt+ ZΛ

t dW
0
t , 0 ≤ t ≤ T, ΛT = P + P̃,

dYt := −∆0
tdt+ ZYt dWt + ZY,0t dW 0

t , 0 ≤ t ≤ T, YT = L,
dRt := (ρRt − E[Γ0

t ])dt, 0 ≤ t ≤ T, RT = 0,

(31)

where the coefficients Φ0,Ψ0,∆0,Γ0 are defined by
Φ0
t := Φt − U ᵀ

t S
−1
t Ut = Φ0

t (Kt, Z
K
t ),

Ψ0
t := Ψt − V ᵀ

t Ŝ
−1
t Vt = Ψ0

t (Kt,Λt, Z
Λ
t ),

∆0
t := ∆t − U ᵀ

t S
−1
t (ξt − ξ̄t)− V ᵀ

t Ŝ
−1
t Ot = ∆0

t (Kt, Z
K
t ,Λt, Z

Λ
t , Yt, Z

Y
t , Z

Y,0
t , Yt, ZYt , Z

Y,0
t ),

Γ0
t := Γt − (ξt − ξ̄t)ᵀS−1

t (ξt − ξ̄t)−Oᵀ
t Ŝ
−1
t Ot = Γ0

t (Yt, Z
Y
t , Z

Y,0
t , Yt, ZYt , Z

Y,0
t ).

Existence and uniqueness of a solution (K,Λ) to the backward stochastic Riccati equation
(BSRE) in (31) is discussed in Section 3.2 in [13] by relating BSRE to standard LQ control
problems. Given (K,Λ), existence of a solution (Y,ZY , ZY,0) to the linear mean-field BSDE in
(31) is obtained as in Step 3(iii) of Section 4 by results in [11, Thm. 2.1]. Finally, the optimal
control is given by

α∗t = −S−1
t Ut

(
Xt − E[X∗t |W 0

t ]
)
− S−1

t

(
ξt − E[ξt|W 0

t ]
)
− Ŝ−1

t

(
VtE[X∗t |W 0

t ] +Ot
)
,

where we have set X∗ = Xα∗ .

Remark 5.6. The method we propose requires some coefficients to be deterministic. Namely,
only β, γ,M,H,L are here allowed to be stochastic. Indeed, if any other coefficient in the SDE
or in the cost functional were stochastic, after completing the square we would have a term
in the form E[ΞtX

α
t ]2, with Ξt stochastic. Due to the randomness of Ξt, this term cannot be

rewritten to match the terms in the candidate wt(X
α
t ,E[Xα

t ]). Conversely, if (H1) holds, Ξt is
deterministic and the term above rewrites as ΞtE[Xα

t ]2. 2

6 The Infinite-Horizon Problem

We now consider an infinite-horizon version of the problem in (3) and adapt the results to this
framework. The procedure is similar to the finite-horizon case, but non-trivial technical issues
emerge when dealing with the equations for (K,Λ, Y, R) and the admissibility of the optimal
control.

On a filtered probability space (Ω,F ,F,P) as in Section 1 with F = (Ft)t≥0, let ρ > 0 be a
positive discount factor, and define the set of admissible controls as

A :=

{
α : Ω× R+ → Rm s.t. α is F-adapted and

∫ ∞
0

e−ρtE[|αt|2]dt <∞
}
,
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while the controlled process is defined on R+ by{
dXα

t = bt
(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dt+ σt

(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dWt, t ≥ 0,

Xα
0 = X0,

(32)

where for each t ≥ 0, x, x̄ ∈ Rd and a, ā ∈ Rm we now set

bt
(
x, x̄, a, ā

)
:= βt +Bx+ B̃x̄+ Ca+ C̃ā,

σt
(
x, x̄, a, ā

)
:= γt +Dx+ D̃x̄+ Fa+ F̃ ā.

(33)

Notice that, unlike Section 1 and as usual in infinite-horizon problems, the coefficients of the
linear terms are constant vectors, but the coefficients β and γ are allowed to be stochastic
processes.

The control problem on infinite horizon is formulated as

J(α) := E
[ ∫∞

0 e−ρtft
(
Xα
t ,E[Xα

t ], αt,E[αt]
)
dt
]
,

→ V0 := inf
α∈A

J(α),
(34)

where, for each t ≥ 0, x, x̄ ∈ Rd and a, ā ∈ Rm we have set

ft
(
x, x̄, a, ā

)
:= (x− x̄)ᵀQ(x− x̄) + x̄ᵀ(Q+ Q̃)x̄+ 2aᵀI(x− x̄) + 2āᵀ(I + Ĩ)x̄

+ (a− ā)ᵀN(a− ā) + āᵀ(N + Ñ)ā+ 2M ᵀ
t x+ 2Hᵀ

t a. (35)

Notice that, as usual in infinite-horizon problems, the coefficients of the quadratic terms are
here constant matrices, and the only non-constant coefficients are H,M , which may be stochastic
processes. Given a normed space (M, |.|), we set

L∞(R+,M) :=

{
φ : R+ →M s.t. φ is measurable and supt≥0 |φt| <∞

}
,

L2(R+,M) :=

{
φ : R+ →M s.t. φ is measurable and

∫∞
0 e−ρt|φt|2dt <∞

}
,

L2
F(Ω× R+,M) :=

{
φ : Ω× R+ →M s.t. φ is F-adapted and

∫ ∞
0

e−ρtE[|φt|2]dt <∞
}
,

and ask the following conditions on the coefficients of the problem to hold in the infinite-horizon
case.

(H1’) The coefficients in (33) satisfy:

(i) β, γ ∈ L2
F(Ω× R+,Rd),

(ii) B, B̃,D, D̃ ∈ Rd×d, C, C̃, F, F̃ ∈ Rd×m.

(H2’) The coefficients in (35) satisfy:

(i) Q, Q̃ ∈ Sd, N, Ñ ∈ Sm, I, Ĩ ∈ Rm×d,
(ii) M ∈ L2

F(Ω× R+,Rd), H ∈ L2
F(Ω× R+,Rm),

(iii) N > 0, Q−IᵀN−1I ≥ 0,

(iv) N+Ñ > 0, (Q+Q̃)−(I+Ĩ)ᵀ(N+Ñ)−1(I+Ĩ) ≥ 0.

(H3’) The coefficients in (33) satisfy ρ > 2 max
{
|B|+ |D|2, |B + B̃|

}
.
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Assumptions (H1’) and (H2’) are simply a rewriting of (H1) and (H2) for the case where
the coefficients do not depend on the time. A further condition (H3’), not present in the
finite-horizon case, is here required in order to have a well-defined problem, as justified below.

By (H1’) and classical results, there exists a unique strong solution Xα = (Xα
t )t≥0 to the

SDE in (32). Moreover, by (H1’) and (H3’), standard estimates (see Lemma 6.1 below) lead
to: ∫ ∞

0
e−ρtE[|Xα

t |2]dt ≤ C̃α(1 + E[|X0|2]) < ∞, (36)

where C̃α is a constant depending on α ∈ A only via
∫∞

0 e−ρtE[|αt|2]dt. Also, by (H2’) and
(36), the problem in (34) is well-defined, in the sense that J(α) is finite for each α ∈ A.

Lemma 6.1. Under (H1’) and (H3’), the estimate in (36) holds for each square-integrable
variable X0 and α ∈ A.

Proof. By the Itô formula and the Young inequality, for each ε > 0 we have (using shortened
bar notations, see Remark 4.1, e.g., X̄ = E[X])

d

dt
e−ρt|X̄t|2 = e−ρt

(
− ρ|X̄t|2 + 2b̄t · X̄t

)
≤ e−ρt

[
− ρ|X̄t|2 + 2

(
|β̄t||X̄t|+ |C + C̃||ᾱt||X̄t|+ X̄ ′t(B + B̃)X̄t

)]
≤ e−ρt

[(
− ρ+ 2|B + B̃|+ ε

)
|X̄t|2 + cε

(
|β̄t|2 + |ᾱt|2

)]
, (37)

where cε > 0 is a suitable constant. We define

ζε =
∣∣E[X0]

∣∣2 + cε

∫ ∞
0

e−ρtE
[
|βt|2 + |αt|2

]
dt, ηε = ρ− 2|B + B̃| − ε,

and notice that ζε < ∞ by (H1’) and by α ∈ A, while ηε > 0 for ε small enough, by (H3’).
Applying the Gronwall inequality, we then get∫ ∞

0
e−ρt

∣∣E[Xt]
∣∣2dt ≤ ζε

∫ ∞
0

e−ηεtdt ≤ cα,ε(1 + E[|X0|2]), (38)

for a suitable constant cα,ε. By similar estimates, we have

d

dt
E
[
e−ρt|Xt − X̄t|2

]
= e−ρtE

[
− ρ|Xt − X̄t|2 + 2(bt − b̄t) · (Xt − X̄t) + |σt|2

]
≤ e−ρtE

[
− ρ|Xt−X̄t|2+2

(
|βt−β̄t||Xt−X̄t|+|C||αt−ᾱt||Xt−X̄t|+(Xt−X̄t)

′B(Xt−X̄t)
)

+ 2
(
|γt|2 + |D|2|Xt − X̄t|2 + |D + D̃|2|X̄t|2 + |F ||αt|2 + |F̃ ||ᾱt|2

)]
≤ e−ρtE

[(
− ρ+ 2|B|+ 2|D|2 + ε

)
|Xt − X̄t|2 + c̃ε

(
|βt|2 + |γt|2 + |αt|2 + |X̄t|2

)]
, (39)

where c̃ε > 0 is a suitable constant, and hence∫ ∞
0

e−ρtE[|Xt − E[Xt]|2]dt ≤ c̃α,ε(1 + E[|X0|2]), (40)

for a suitable c̃α,ε > 0 (recall that
∫∞

0 e−ρt
∣∣E[Xt]

∣∣2dt <∞ by (38)). The estimate in (36) follows
by (38) and (40), since∫ ∞

0
e−ρtE[|Xt|2]dt =

∫ ∞
0

e−ρtE
[
|Xt − E[Xt]|2

]
dt−

∫ ∞
0

e−ρt
∣∣E[Xt]

∣∣2dt.
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Remark 6.2. In some particular cases, the condition in (H3’) can be weakened. For example,
assume that B ≤ 0 and B + B̃ ≤ 0. Then, since xᵀBx, xᵀ(B + B̃)x ≤ 0 for each x, one term in
(37) and in (38) can be simplified, so that (H3’) simply writes

ρ > 2|D|2.

If, in addition, γ = D̃ = F = F̃ = 0, then |σ|2 = |D|2|X|2, so that we do not need the estimate
on the square which introduces the factor 2 in (39). Correspondingly, (H3’) simply writes

ρ > |D|2.

The infinite-horizon version of the verification theorem is an easy adaptation of the arguments
in Lemma 3.2.

Lemma 6.3 (Infinite-horizon verification theorem). Let {Wα
t , t ≥ 0, α ∈ A} be a fam-

ily of F-adapted processes in the form Wα
t = wt(X

α
t ,E[Xα

t ]) for some F-adapted random field
{wt(x, x̄), t ≥ 0, x, x̄ ∈ Rd} satisfying

wt(x, x̄) ≤ C(χt + |x|2 + |x̄|2), t ∈ R+, x, x̄ ∈ Rd, (41)

for some positive constant C, and non-negative process χ s.t. e−ρtE[χt] converges to zero as
t→∞, and such that

(i) the map t ∈ R+ 7−→ E[Sαt ], with Sαt = e−ρtWα
t +

∫ t
0 e
−ρsfs

(
Xα
s ,E[Xα

s ], αs,E[αs]
)
ds, is

non-decreasing for all α ∈ A;

(ii) the map t ∈ R+ 7−→ E[Sα∗t ] is constant for some α∗ ∈ A.

Then, α∗ is an optimal control and E[w0(X0,E[X0])] is the value of the LQMKV control problem
(34):

V0 = E[w0(X0,E[X0])] = J(α∗).

Moreover, any other optimal control satisfies the condition (iii).

Proof. Since the integral in (36) is finite, we have limt→∞ e
−ρtE[|Xα

t |2] = 0 for each α; by (41),
we deduce that limt→∞ e

−ρtE[|Wα
t |] = limt→∞ e

−ρtE[|wt(Xα
t ,E[Xα

t ])|] = 0. Then, the rest of the
proof follows the same arguments as in the one of Lemma 3.2.

The steps to apply Lemma 6.3 are the same as the ones in the finite-horizon case. We report
the main changes in the arguments with respect to the finite-horizon case.

Steps 1-2. We search for a random field wt(x, x̄) in a quadratic form as in (9):

wt(x, x̄) = (x− x̄)ᵀKt(x− x̄) + x̄ᵀΛtx̄+ 2Y ᵀ
t x+Rt,

where the mean optimality principle of Lemma 6.3 leads now to the following system
dKt = −Φ0

t (Kt)dt, t ≥ 0,
dΛt = −Ψ0

t (Kt,Λt)dt, t ≥ 0,
dYt = −∆0

t (Kt,Λt, Yt,E[Yt], Z
Y
t ,E[ZYt ])dt+ ZYt dWt, t ≥ 0,

dRt =
[
ρRt − E[Γ0

t (Kt, Yt,E[Yt], Z
Y
t ,E[ZYt ])

]
dt, t ≥ 0.

(42)

Notice that there are no terminal conditions in the system, since we are considering an infinite-
horizon framework. The maps Φ0, Ψ0, ∆0, Γ0 are defined as in (16), (12), (14), (15), where the
coefficients B, B̃, C, C̃,D, D̃, F, F̃, Q, Q̃,N, Ñ, I, Ĩ are now constant.

Step 3. We now prove the existence of a solution to the system in (42).
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(i) Consider the ODE for K. Notice that the map k ∈ Sd 7→ Φ0(k) does not depend on time
as the coefficients are constant. We then look for a constant non-negative matrix K ∈ Sd
satisfying Φ0(K) = 0, i.e., solution to

Q− ρK +KB +BᵀK +DᵀKD

− (I + F ᵀKD + CᵀK)ᵀ(N + F ᵀKF )−1(I + F ᵀKD + CᵀK) = 0. (43)

As in the finite-horizon case, we prove the existence of a solution to (43) by relating it to a
suitable infinite-horizon linear-quadratic control problem. However, as we could not find a
direct result in the literature for such a connection, we proceed through an approximation
argument. For T ∈ R+ ∪ {∞} and x ∈ Rd, we consider the following control problems:

V T (x) := inf
α∈AT

E
[ ∫ T

0
e−ρt

(
(X̃x,α

t )ᵀQX̃x,α
t + 2αᵀ

tIX̃
x,α
t + αᵀ

tNαt

)
dt
]
,

where we have set

AT :=
{
α : Ω× [0, T [→ Rd s.t. α is F-progr. measurable and

∫ T

0
e−ρtE[|αt|2]dt <∞

}
,

and where, for α ∈ AT , (X̃x,α)0≤t≤T is the solution to

dX̃t = (BX̃t + Cαt)dt+ (DX̃t + Fαt)dWt, X̃0 = x.

The integrability condition α ∈ AT implies that
∫ T

0 e−ρtE[|X̃x,α
t |2]dt < ∞, and so the

problems VT (x) are well-defined for any T ∈ R+ ∪ {∞}. If T < ∞, as already recalled in
the finite-horizon case, (H1’)-(H2’) imply that there exists a unique symmetric solution
{KT

t }t∈[0,T ] to
d
dtK

T
t +Q− ρKT

t +KT
t B +BᵀKT

t +DᵀKT
t D

−(I + F ᵀKT
t D + CᵀKT

t )ᵀ(N + F ᵀKT
t F )−1(I + F ᵀKT

t D + CᵀKT
t ) = 0, t ∈ [0, T ],
KT
T = 0,

(44)
and that for every x ∈ Rd we have: V T (x) = xᵀKT

0 x. It is easy to check from the definition
of V T that V T (x) → V∞(x) as T goes to infinity, from which we deduce that

V∞(x) = lim
T→∞

xᵀKT
0 x = xᵀ( lim

T→∞
KT

0 )x, ∀x ∈ Rd.

This implies the existence of the limit K = limT→∞K
T
0 . By passing to the limit in T in

the above ODE (44) at t = 0, we obtain by standard arguments (see, e.g., Lemma 2.8 in
[16]) that K satisfies (43). Moreover, K ∈ Sd and K ≥ 0 as it is the limit of symmetric
non-negative matrices.

(ii) Given K, we now consider the equation for Λ. Notice that the map ` ∈ Sd 7→ Ψ0(K, `)
does not depend on time as the coefficients are constant. We then look for a constant
non-negative matrix Λ ∈ Sd satisfying Φ0(K,Λ) = 0, i.e., solution to

Q̂K − ρΛ + Λ(B + B̃) + (B + B̃)ᵀΛ

−
(
ÎK + (C + C̃)ᵀΛ

)ᵀ
(N̂K)−1

(
ÎK + (C + C̃)ᵀΛ

)
= 0, (45)

where we set

Q̂K := (Q+ Q̃) + (D + D̃)ᵀK(D + D̃),

ÎK := (I + Ĩ) + (F + F̃ )ᵀK(D + D̃),

N̂K := (N + Ñ) + (F + F̃ )ᵀK(F + F̃ ).

Existence of a solution to (45) is obtained by the same arguments used for (43) under
(H2’).
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(iii) Given (K,Λ), we consider the equation for (Y,ZY ). This is a mean-field linear BSDE on
infinite-horizon

dYt =
(
ϑt +Gᵀ(Yt − E[Yt]) + ĜᵀE[Yt] + Jᵀ(ZYt − E[ZYt ]) + ĴᵀE[ZYt ]

)
dt

+ ZYt dWt, t ≥ 0 (46)

where G Ĝ, J , Ĵ are constant coefficients in Rd×d, and ϑ is a random process in L2
F(Ω ×

R+,Rd) defined by

G := ρ Id −B + CS−1U,

Ĝ := ρ Id −B − B̃ + (C + C̃)Ŝ−1V,

J := −D + FS−1U,

Ĵ := −(D + D̃) + (F + F̃ )Ŝ−1V,

ϑt := −Mt −K(βt − E[βt])− ΛE[βt]−DᵀK(γt − E[γt])− D̂ᵀKE[γt]

+ U ᵀS−1
(
Ht − E[Ht] + F ᵀK(γt − E[γt])

)
+ V ᵀŜ−1

(
E[Ht] + (F + F̃ )ᵀKE[γt]

)
,

with 
S := N + F ᵀKF = S(K),

Ŝ := N + Ñ + (F + F̃ )ᵀK(F + F̃ ) = Ŝ(K),
U := I + F ᵀKD + CᵀK = U(K),

V := I + Ĩ + (F + F̃ )ᵀK(D + D̃) + (C + C̃)ᵀΛ = V (K,Λ).

(47)

Although in many practical case an explicit solution is possible (see below), there are no
general existence results for such a mean-field BSDE on infinite-horizon, to the best of our
knowledge. We then assume what follows.

(H4’) There exists a solution (Y, ZY ) ∈ L2
F(Ω× R+,Rd)× L2

F(Ω× R+,Rd) to (46).

Remark 6.4. In many practical cases, (H4’) is satisfied and explicit expressions for Y may
be available. We list here some examples.

- In the case where β = γ = H = M ≡ 0, so that ϑ ≡ 0, we see that Y = ZY ≡ 0 is a
solution to (46), and (H4’) clearly holds.

- If β, γ,H,M are deterministic (hence, all the coefficients are non-random), the process
Y is deterministic as well, that is ZY ≡ 0 and E[Y ] = Y . Then, the mean-field BSDE
becomes a standard linear ODE:

dYt =
(
ϑt + ĜᵀYt

)
dt, t ≥ 0.

In the one-dimensional case d = 1, we get

Yt = −
∫ ∞
t

e−Ĝ(s−t)ϑsds, t ≥ 0.

Therefore, when Ĝ − ρ > 0, i.e., (C + C̃)Ŝ−1V > B + B̃, we have by the Jensen
inequality and the Fubini theorem∫ ∞

0
e−ρtY 2

t dt ≤ c̃1

∫ ∞
0

∫ ∞
t
e−ρte−Ĝ(s−t)ϑ2

sds dt ≤ c̃2

∫ ∞
0
e−ρsϑ2

sds <∞,

for suitable constants c̃1, c̃2 > 0, so that (H4’) is satisfied. In the multi-dimensional
case d > 1, if β, γ,H,M are constant vectors (hence, ϑ is constant as well), we have
Yt = Y , with

Y = −(Ĝ−1)ᵀϑ,

and (H4’) is clearly satisfied.
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- In many relevant cases, the sources of randomness of the state variable and the
coefficients in the payoff are independent. More precisely, let us consider a problem
with two independent Brownian motions (W 1,W 2) (to adapt the formulas above, we
proceed as in Remark 5.2). Assume that only W 1 appears in the controlled mean-field
SDE:

dXα
t =

(
βt +BXα

t + B̃E[Xα
t ] + Cαt + C̃E[αt]

)
dt

+
(
γ1
t +D1Xα

t + D̃1E[Xα
t ] + F 1αt + F̃ 1E[αt]

)
dW 1

t ,

where β, γ1 are deterministic processes. On the other hand, the coefficients M,H in
the payoff are adapted to the filtration of W 2 and independent from W 1. In this case,
the equation for

(
Y, ZY = (Z1,Y , Z2,Y )

)
writes

dYt =
(
ϑt +Gᵀ(Yt − E[Yt]) + ĜᵀE[Yt] + (J1)ᵀ(Z1,Y

t − E[Z1,Y
t ]) + (Ĵ1)ᵀE[Z1,Y

t ]
)
dt

+ Z1,Y
t dW 1

t + Z2,Y
t dW 2

t , t ≥ 0,

where we notice that Z2,Y does not appear in the drift as the corresponding coefficients
are zero. Notice that the process (ϑt)t is adapted with respect to the filtration of W 2,
while the other coefficients are constant. Then, it is natural to look for a solution Y
which is, as well, adapted to the filtration of W 2, i.e., such that Z1,Y ≡ 0. This leads
to the equation:

dYt =
(
ϑt +Gᵀ(Yt − E[Yt]) + ĜᵀE[Yt]

)
dt+ Z2,Y

t dW 2
t , t ≥ 0.

For simplicity, let us consider the one-dimensional case d = 1. Taking expectation in
the above equation, we get a linear ODE for E[Yt], and a linear BSDE for Yt −E[Yt],
given by

dE[Yt] =
(
E[ϑt] + ĜE[Yt]

)
dt, t ≥ 0,

d(Yt − E[Yt]) =
(
ϑt − E[ϑt] +G(Yt − E[Yt])

)
dt+ Z2,Y

t dW 2
t , t ≥ 0,

which lead to

Yt = −
∫ ∞
t

e−G(s−t)ϑsds−
∫ ∞
t

(
e−Ĝ(s−t) − e−G(s−t)

)
E[ϑs]ds.

Provided that G − ρ, Ĝ − ρ > 0, and recalling that ϑ ∈ L2
F(Ω × R+,Rd), condition

(H4’) is satisfied by the same estimates as above. See [1] and Section 7 for practical
examples from mathematical finance with such properties.

(iv) Given (K,Λ, Y, ZY ) the equation for R is a linear ODE, whose unique solution is explicitly
given by

Rt =

∫ ∞
t

e−ρ(s−t)hsds, t ≥ 0, (48)

where the deterministic function h is defined, for t ∈ R+, by

ht := E
[
− γᵀ

tKγt − β
ᵀ
tYt − 2γᵀ

tZ
Y
t + ξᵀtS

−1ξt
]
− E[ξt]

ᵀS−1E[ξt] +Oᵀ
t Ŝ
−1Ot,

with {
ξt := Ht + F ᵀKγt + CᵀYt + F ᵀZYt ,

Ot := E[Ht] + (F + F̃ )ᵀKE[γt] + (C + C̃)ᵀE[Yt] + (F + F̃ )ᵀE[ZYt ].
(49)

Under assumptions (H1’)(i), (H2’)(ii) and (H4’), we see that
∫∞

0 e−ρt|ht|dt < ∞, from
which we obtain that Rt is well-defined for all t ≥ 0. Therefore, e−ρt|Rt| ≤

∫∞
t e−ρs|hs|ds

→ 0 as t goes to infinity.
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Final step. Given (K,Λ, Y, ZY , R) solution to (43), (45), (46), (48), i.e., to the system in (42),
the function

wt(x, x̄) = (x− x̄)ᵀK(x− x̄) + x̄ᵀΛx̄+ 2Y ᵀ
t x+Rt,

satisfies the growth condition (41), and by construction the conditions (i)-(ii) of the verification
theorem in Lemma 6.3. Let us now consider as in the finite-horizon case the candidate for the
optimal control given by

α∗t = a0
t (X

∗
t ,E[X∗t ]) + a1

t (E[X∗t ])

= −S−1U(Xt − E[X∗t ])− S−1
(
ξt − E[ξt]

)
− Ŝ−1

(
V E[X∗t ] +Ot

)
, t ≥ 0, (50)

where X∗ = Xα∗ is the state process with the feedback control a0
t (X

∗
t ,E[X∗t ]) + a1

t (E[X∗t ]), and
S, Ŝ, U, V , ξ,O are recalled in (47), (49). With respect to the finite-horizon case in Proposition
4.3, the main technical issue is to check that α∗ satisfies the admissibility condition in A. We
need to make an additional condition on the discount factor:

(H5’) ρ > 2 max
{
|B − CS−1U |+ |D − FS−1U |2, |(B + B̃)− (C + C̃)Ŝ−1V |

}
.

From the expression of α∗ in (50), we see that X∗ = Xα∗ satisfies,

dX∗t := b∗tdt+ σ∗t dWt, t ≥ 0,

with

b∗t := β∗t +B∗(X∗t − E[X∗t ]) + B̃∗E[X∗t ], σ∗t := γ∗t +D∗(X∗t − E[X∗t ]) + D̃∗E[X∗t ],

where we set

B∗ := B − CS−1U, B̃∗ := (B + B̃)− (C + C̃)Ŝ−1V,

D∗ := D − FS−1U, D̃∗ := (D + D̃)− (F + F̃ )Ŝ−1V,

β∗t := βt − CS−1(ξt − E[ξt])− (C + C̃)Ŝ−1Ot,

γ∗t := γt − FS−1(ξt − E[ξt])− (F + F̃ )Ŝ−1Ot.

If (H5’) holds, by replicating the arguments in the proof of Lemma 6.1 to X∗, we get∫∞
0 e−ρtE[|X∗t |2]dt <∞, so that

∫∞
0 e−ρtE[|α∗t |2]dt <∞ by (50), hence α∗ ∈ A.

Remark 6.5. In some specific cases, (H5’) can be weakened. For example, assume that

B − CS−1U ≤ 0, (B + B̃)− (C + C̃)Ŝ−1V ≤ 0, γt = D̃ = F = F̃ = 0.

In this case, the matrices B∗, B̃∗ are negative definite and |σ∗t |2 = |D||X∗t |2, so that, by the same
arguments as in Remark 6.2, Assumption (H5’) can be simplified into

ρ > |D|2.

To sum up the arguments of this section, we have proved the following result.

Theorem 6.6. Under assumptions (H1’)-(H5’), the optimal control for the LQMKV problem
on infinite-horizon (34) is given by (50), and the corresponding value of the problem is

V0 = J(α∗) = E
[
(X0 − E[X0])ᵀK(X0 − E[X0])

]
+ E[X0]ᵀΛE[X0] + 2E

[
Y ᵀ

0 X0] +R0.
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Remark 6.7. The remarks in Section 5 can be immediately adapted to the infinite-horizon
framework. In particular, as in Remark 5.1, one can have existence of a solution to (43)-(45),
even when condition (H2’) is not satisfied, and obtain the optimal control as in (50) provided
that (H4’)-(H5’) are satisfied. On the other hand, the model considered here easily extends
to the case where several independent Brownian motions are present, as described in Remark
5.2. Finally, the results can be extended to the common noise case of Remark 5.5, recalling that
only the coefficients βt, γt,Mt, Ht are time-dependent and stochastic, namely, adapted to the
filtration generated by the pair (W,W 0), where W 0 is a Brownian motion independent of W .

Remark 6.8. McKean-Vlasov control problems in infinite horizon have also been considered
in [10]. Besides the new approach, as outlined in Section 1, the novelty in this paper is the
presence of some stochastic coefficients (namely, βt, γt, Ht,Mt). Allowing some coefficients to be
stochastic is important from the practical point of view of applications, see the example in the
next Section 7.

7 Application to Production of Exhaustible Resource

We study an infinite-horizon model of substitutable production goods of exhaustible resource
with a large number N of producers, inspired by the papers [9] and [6], see also [8]. For a
producer i = 1, . . . , N , denote by αit her quantity supplied at time t ≥ 0, and by Xi

t her current
level of reserve in the good. As in [9], we assume that the dynamics of the reserve is stochastic
with a noise proportional to the current level of reserves, hence evolving according to

dXi
t = −αitdt+ σXi

tdW
i
t , t ≥ 0, Xi

0 = xi0 > 0,

where σ > 0, and W i, i = 1, . . . , N , are independent standard Brownian motions. The selling
price P i for producer i follows a linear inverse demand rule, as in [6], and is subject to a
permanent market impact depending on the average extracted quantity of the other producers.
It is then given by

P it = P 0
t − δαit − ε

∫ t

0

1

N

N∑
j=1

αjsds,

where δ, ε > 0 are positive constants, and P 0 is some continuous random process driven by a
Brownian motion W 0 independent of W i. The interpretation is that the exogenous price P 0 in
absence of transaction is independent of the idiosyncratic noises of the producers. We assume
that the filtration generated by the common observation of the process P 0 is equal to the natural
filtration F0 of W 0.

The gain functional for producer i is1

J i(α1, . . . , αN ) := E
[ ∫ ∞

0
e−ρt

(
αitP

i
t − ηVar(αit|W 0)− cαit

(xi0 −Xi
t

xi0

))
dt
]
,

where ρ > 0 is the discount rate over an infinite horizon. The first term represents the instanta-
neous profit from selling quantity αi at price P i, the second term penalizes via the non-negative
parameter η high individual variations of the produced quantity (given the observation of the
process P 0) measured by the theoretical (conditional) variance, while the last term Ci(αi) =

cαit
xi0−Xi

t

xi0
, with c > 0, represents the cost of extraction. In the beginning, this cost is negligible,

and increases as the reserve is depleted. Notice that we assume that the constants c and η are
the same for all the producers i, i.e., the producers are indistinguishable.

1We thank René Aid for insightful discussions on this example.
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We consider a social planner who imposes the same feedback control policy for all the pro-
ducers αit = a(t,Xi

t , (P
0
s )0≤s≤t) for some measurable function a on R+ × R × C(R+;R), and

look for a Pareto optimality among all the producers. This means that, in contrast with Nash
equilibrium where the producers act strategically, i.e., each control is perturbed one at a time,
here, we focus on a cooperative equilibrium where all the controls are perturbed simultaneously.
From the theory of propagation of chaos, the individual level of reserve Xi and price process
P i, i = 1, . . . , N , become independent and identically distributed, conditionally on P 0, when
N goes to infinity, with a common distribution given by the law of the solution (X,P ) to the
stochastic McKean-Vlasov equation{

dXt = −αtdt+ σXtdWt,

Pt = P 0
t − δαt − ε

∫ t
0 E[αs|W 0]ds,

(51)

for some Brownian motion W independent of W 0, and where αt = a(t,Xt, (P
0
s )0≤s≤t), t ≥ 0.

We are then reduced to the problem of a representative producer with initial reserve x0 > 0,
dynamics of level of resource X as in (51), controlled by the extracted quantity α, and selling
price P as in (51). Her objective is to maximize over α ∈ A, i.e., the set of R-valued progressively
measurable process w.r.t. the natural filtration of (W,W 0), the gain functional

J(α) := E
[ ∫ ∞

0
e−ρt

(
αtPt − ηVar(αt|W 0)− cαt

(x0 −Xt

x0

))
dt
]
.

By noting that E[Xt|W 0] = x0 −
∫ t

0 E[αs|W 0]ds, so that Pt = P 0
t − δαt − ε(x0 − E[Xt|W 0]), we

see that we are in the framework of Section 6 with d = m = 1 (one-dimensional state variable
and control) in the common noise case of Remark 5.5, and the coefficients in (33) and (35) are
given by:

C = −1, D = σ, N = δ + η, N + Ñ = δ,

I = − c

2x0
, I + Ĩ = −c+ εx0

2x0
, Ht =

c+ εx0 − P 0
t

2
,

while the other coefficients are identically zero. Notice that (Ht)t is a random F0-adapted
process. Under the following assumptions∫ ∞

0
e−ρtE[|P 0

t |2]dt <∞, ρ > σ2, (52)

it is clear that (H1’) and (H3’) hold true (for the condition in (H3’), we can omit the factor
2, see Remark 6.2). The equations for K and Λ read as

(K+ c
2x0

)2

δ+η + (ρ− σ2)K = 0,
(Λ+

c+εx0
2x0

)2

δ + ρΛ− σ2K = 0.
(53)

Notice that condition (H2’) is not satisfied. However, we have existence of a solution (K,Λ) to

(53) such that Kη :=
K+ c

2x0
δ+η > 0, Λε :=

Λ+
c+εx0
2x0
δ > 0, and given by

Kη =
−(ρ−σ2)+

√
(ρ−σ2)2+2c ρ−σ2

x0(δ+η)

2 > 0,

Λε =
−ρ+

√
ρ2+2

ρ(c+εx0)+2σ2K
δx0

2 > 0.

(54)

The (linear) BSDE for Y is written as

dYt =
[
(ρ+ Λε)Yt −

Λε
2

(c+ εx0 − P 0
t )
]
dt+ ZY,0t dW 0

t , t ≥ 0,
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whose solution is explicitly given by

Yt = −E
[ ∫ ∞

t
Λεe

−(ρ+Λε)(s−t)P
0
s − c− εx0

2
ds
∣∣F0

t

]
, t ≥ 0.

It clearly satisfies condition (H4’) from the square integrability condition (52) on P 0. We also
notice with Remark 6.5 that the condition in (H5’) here writes as ρ > σ2, which is satisfied.
By Theorem 6.6, the optimal control is then given by

α∗t = Kη(X
∗
t − E[X∗t |W 0]) + ΛεE[X∗t |W 0]

+
1

2δ

(
P 0
t −

∫ ∞
t

Λεe
−(ρ+Λε)(s−t)E[P 0

s |F0
t ]ds− (c+ εx0)

ρ

ρ+ Λε

)
,

with a conditional optimal level of reserve given by

E[X∗t |W 0] = x0e
−Λεt +

ρ(c+ εx0)

2δ

1− e−Λεt

Λε(ρ+ Λε)
(55)

− 1

2δ

∫ t

0
e−Λε(t−s)

(
P 0
s −

∫ ∞
s

Λεe
−(ρ+Λε)(u−s)E[P 0

u |F0
t ]du

)
ds, t ≥ 0.

Suppose that the price P 0 admits a stationary level in mean, i.e., E[P 0
t ] converges to some

constant p̄ when t goes to infinity: p̄ is interpreted as a substitute price for the exhaustible
resource. In this case, it is easy to see from (55) that the optimal level of reserve also admits a
stationary level in mean:

lim
t→∞

E[X∗t ] =
ρ(c+ εx0 − p̄)
2δΛε(ρ+ Λε)

=: x̄∞.

From straightforward algebraic calculations on (53), we have:

2δΛε(ρ+ Λε) = ρε+
Kη + ρ

Kη + ρ− σ2
(ρ− σ2)

c

x0
,

and thus

x̄∞ =
1

εx0
c+εx0

+ c
c+εx0

λη

(
1− p̄

c+ εx0

)
x0. (56)

with λη := ρ−σ2

σ2
Kη

Kη+ρ−σ2 ∈ (0, 1). The term c+ εx0 is the cost of extraction for the last unit of

resource. When it is larger than the substitute price p̄, i.e., the Hotelling rent Hr := p̄− c− εx0

is negative, this ensures that the average long term level of reserve x̄∞ is positive, meaning that
there is remaining resource when switching to the substitute good.

One can study the sensitivity of x̄∞ = x̄∞(η, ε) w.r.t. the intermittence parameter η and
permanent market impact ε. When the Hotelling rent Hr is negative, and noting that Kη is
decreasing with η, and so λη is increasing with η, we see from (56) that x̄∞ is decreasing with
η, and

x̄∞ ↘ x0

(
1− p̄

c+ εx0

)
, as η ↗∞.

On the other hand, for fixed η, we easily see from (56) that

lim
ε→0

x̄∞ =
1

λη
x0

(
1− p̄

c

)
, and lim

ε→∞
x̄∞ = x0.

Finally, notice that the existence of a stationary level of resource in mean implies that limt→∞ E[α∗t ]
= 0. In other words, one stops on average to extract the resource in the long term.
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8 Conclusion

In this paper we propose a weak martingale approach to solve linear-quadratic McKean-Vlasov
stochastic control problems. In particular, we allow some coefficients to be stochastic. We
first consider finite-horizon problems, characterizing the value function and the optimal control
through a suitable system of BSDEs and ODEs. Precise conditions are set on the coefficients,
ensuring that such a system admits a unique solution. We then extend the results to the case
where several Brownian motions and a common noise are present. Infinite-horizon problems
are also considered. In this case, additional conditions are required to the coefficients of the
problem. We finally provide a detailed example from mathematical finance.
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