S. Huang, G. Rauscher, T. Nawrocki, M. Ran, B. L. Feig et al., CHARMM36m: an improved force field for folded and intrinsically disordered proteins, Nature Methods, vol.120, issue.1, pp.71-73, 2017.
DOI : 10.1021/acs.jpcb.6b01316

M. Reif, P. H. Honenberger, and C. Oostenbrink, New Interaction Parameters for Charged Amino Acid Side Chains in the GROMOS Force Field, Journal of Chemical Theory and Computation, vol.8, issue.10, pp.3705-3723, 2012.
DOI : 10.1021/ct300156h

W. Ponder and D. A. Case, Force Fields for Protein Simulations, Adv. Protein Chem, vol.66, pp.27-85, 2003.
DOI : 10.1016/S0065-3233(03)66002-X

R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella et al., CHARMM: The biomolecular simulation program, Journal of Computational Chemistry, vol.103, issue.13, pp.1545-1614, 2009.
DOI : 10.1021/ci034261e

A. E. Kunz, J. R. Allison, D. P. Geerke, B. A. Horta, P. H. Hunenberger et al., New functionalities in the GROMOS biomolecular simulation software, Journal of Computational Chemistry, vol.23, issue.3, pp.340-353, 2012.
DOI : 10.1016/0021-9991(77)90098-5

D. A. Salomon-ferrer, R. C. Case, W. Walker, and . Interdiscip, An overview of the Amber biomolecular simulation package, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.120, issue.2, pp.198-210, 2013.
DOI : 10.1021/ja981844+

C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.84, issue.16, pp.1781-1802, 2005.
DOI : 10.1515/9783110879476

A. W. Salomon-ferrer, D. Gotz, S. Poole, R. C. Le-grand, and . Walker, Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.3878-3888, 2013.
DOI : 10.1021/ct400314y

I. T. Smith and . Todorov, A short description of DL_POLY, Molecular Simulation, vol.1, issue.12-13, pp.935-943, 2006.
DOI : 10.1016/0010-4655(94)90230-5

URL : https://hal.archives-ouvertes.fr/hal-00515003

J. Kobayashi, Y. Jung, T. Matsunaga, T. Mori, K. Ando et al., GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms, Journal of Computational Chemistry, vol.119, issue.25, pp.2193-2206, 2017.
DOI : 10.1021/acs.jpcb.5b07668

P. Gresh, A. Claverie, and . Pullman, Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison withab initio SCF computations, Theoretica Chimica Acta, vol.11, issue.1, pp.1-20, 1984.
DOI : 10.1103/PhysRevA.10.1528

. Stone, The Theory of Intermolcular Forces, 2013.

S. Gordon, M. A. Freitag, P. Bandyopadhyay, J. H. Jensen, V. Kairys et al., The Effective Fragment Potential Method:?? A QM-Based MM Approach to Modeling Environmental Effects in Chemistry, The Journal of Physical Chemistry A, vol.105, issue.2, pp.293-307, 2001.
DOI : 10.1021/jp002747h

P. Engkvist, G. Atrand, and . Karlstromm, Accurate Intermolecular Potentials Obtained from Molecular Wave Functions:?? Bridging the Gap between Quantum Chemistry and Molecular Simulations, Chemical Reviews, vol.100, issue.11, pp.4087-4108, 2000.
DOI : 10.1021/cr9900477

S. Gordon, L. Slipchenko, H. Li, and J. H. Jensen, Chapter 10 The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions, Annual Reports in Computational Chemistry Supplement C, vol.3, pp.177-193, 2007.
DOI : 10.1016/S1574-1400(07)03010-1

J. W. Ren and . Ponder, Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation, The Journal of Physical Chemistry B, vol.107, issue.24, pp.5933-5947, 2003.
DOI : 10.1021/jp027815+

G. Lamoureux and B. Roux, Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm, The Journal of Chemical Physics, vol.25, issue.6, pp.3025-3039, 2003.
DOI : 10.1063/1.473030

G. A. Gresh, T. A. Cisneros, J. Darden, and . Piquemal, Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand???Macromolecule Complexes. A Bottom-Up Strategy, Journal of Chemical Theory and Computation, vol.3, issue.6, pp.1960-1986, 2007.
DOI : 10.1021/ct700134r

URL : https://hal.archives-ouvertes.fr/hal-00494588

-. Piquemal and G. A. Cisneros, Many-Body Effects and Electrostatics in Biomolecules, Pan Standford, pp.269-299, 2016.

E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco et al., Accelerating molecular modeling applications with graphics processors, Journal of Computational Chemistry, vol.13, issue.16, pp.2618-2640, 2007.
DOI : 10.1016/0005-2744(75)90241-7

L. Grand, A. W. Gotz, and R. C. Walker, SPFP: Speed without compromise???A mixed precision model for GPU accelerated molecular dynamics simulations, Computer Physics Communications, vol.184, issue.2, pp.374-380, 2013.
DOI : 10.1016/j.cpc.2012.09.022

D. Harger, Z. Li, K. Wang, L. Dalby, J. Lagardère et al., Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs, Journal of Computational Chemistry, vol.71, issue.23, pp.2047-2055, 2017.
DOI : 10.1016/S0006-3495(96)79267-6

URL : https://hal.archives-ouvertes.fr/hal-01571313

W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera et al., Current Status of the AMOEBA Polarizable Force Field, The Journal of Physical Chemistry B, vol.114, issue.8, pp.2549-2564, 2007.
DOI : 10.1021/jp910674d

P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 1989.

L. Lipparini, B. Lagardère, E. Stamm, M. Cancès, P. Schnieders et al., Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations, Journal of Chemical Theory and Computation, vol.10, issue.4, pp.1638-1651, 2014.
DOI : 10.1021/ct401096t

URL : https://hal.archives-ouvertes.fr/hal-01090942

A. Aviat, B. Levitt, Y. Stamm, P. Maday, J. W. Ren et al., Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations, Journal of Chemical Theory and Computation, vol.13, issue.1, pp.180-190, 2017.
DOI : 10.1021/acs.jctc.6b00981

URL : https://hal.archives-ouvertes.fr/hal-01395833

F. Lipparini, B. Stamm, E. Cancès, Y. Maday, and B. Mennucci, Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives, Journal of Chemical Theory and Computation, vol.9, issue.8, pp.3637-3648, 2013.
DOI : 10.1021/ct400280b

URL : https://hal.archives-ouvertes.fr/hal-00956397

L. Essmann, M. L. Perera, T. Berkowitz, H. Darden, L. G. Lee et al., A smooth particle mesh Ewald method, The Journal of Chemical Physics, vol.100, issue.19, pp.8577-8593, 1995.
DOI : 10.1063/1.470043

C. Toukmaji, J. Sagui, T. Board, and . Darden, Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions, The Journal of Chemical Physics, vol.94, issue.24, pp.10913-10927, 2000.
DOI : 10.1063/1.466407

L. G. Sagui, T. A. Pedersen, and . Darden, Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations, The Journal of Chemical Physics, vol.34, issue.1, pp.73-87, 2004.
DOI : 10.1103/PhysRev.52.191

C. Narth, L. Lagardère, ´. E. Polack, N. Gresh, Q. Wang et al., Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles, Journal of Computational Chemistry, vol.20, issue.5, pp.494-506, 2016.
DOI : 10.1007/s00894-014-2471-6

URL : https://hal.archives-ouvertes.fr/hal-01223008

S. G. Frigo and . Johnson, Special issue on " Program Generation, Optimization, and Platform Adaptation, Proc. IEEE, pp.216-231, 2005.

J. Kolafa, Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules, Journal of Computational Chemistry, vol.19, issue.3, pp.335-342, 2004.
DOI : 10.1103/PhysRevA.31.1695

P. Wang, Q. Cieplak, M. Cai, J. Hsieh, Y. Wang et al., Development of Polarizable Models for Molecular Mechanical Calculations. 3. Polarizable Water Models Conforming to Thole Polarization Screening Schemes, The Journal of Physical Chemistry B, vol.116, issue.28, pp.7999-8008, 2012.
DOI : 10.1021/jp212117d

Z. Shi, J. Xia, R. Zhang, C. Best, J. W. Wu et al., Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.4046-4063, 2013.
DOI : 10.1021/ct4003702

A. Halgren, The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters, Journal of the American Chemical Society, vol.114, issue.20, pp.7827-7843, 1992.
DOI : 10.1021/ja00046a032

Z. Shi, J. Xia, R. Zhang, C. Best, J. W. Wu et al., Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.4046-4063, 2013.
DOI : 10.1021/ct4003702

-. Hynninen and M. F. Crowley, New faster CHARMM molecular dynamics engine, Journal of Computational Chemistry, vol.23, issue.5, pp.406-413, 2014.
DOI : 10.1016/0021-9991(77)90098-5

S. Z. Endres and . Abedin, Air and water stable ionic liquids in physical chemistry, Physical Chemistry Chemical Physics, vol.4, issue.147, pp.2101-2116, 2006.
DOI : 10.1039/b600519p

P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, Dissolution of Cellose with Ionic Liquids, Journal of the American Chemical Society, vol.124, issue.18, pp.4974-4975, 2002.
DOI : 10.1021/ja025790m

J. Zhang, J. Wu, J. Zhang, and . He, 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid:?? A New and Powerful Nonderivatizing Solvent for Cellulose, Macromolecules, vol.38, issue.20, pp.8272-8277, 2005.
DOI : 10.1021/ma0505676

M. Li, J. Wang, Q. Wu, Y. Zhang, Z. Luo et al., Application of a New Cyclic Guanidinium Ionic Liquid on Dye-Sensitized Solar Cells (DSCs), Langmuir, vol.25, issue.8, pp.4808-4814, 2009.
DOI : 10.1021/la8034209

N. Starovoytov, H. Torabifard, and G. A. Cisneros, Development of AMOEBA Force Field for 1,3-Dimethylimidazolium Based Ionic Liquids, The Journal of Physical Chemistry B, vol.118, issue.25, pp.7156-7166, 2014.
DOI : 10.1021/jp503347f

C. J. Yan, M. G. Burnham, G. A. Pópolo, and . Voth, Molecular Dynamics Simulation of Ionic Liquids:?? The Effect of Electronic Polarizability, The Journal of Physical Chemistry B, vol.108, issue.32, pp.11877-11881, 2004.
DOI : 10.1021/jp047619y

G. D. Borodin and . Smith, Development of Many???Body Polarizable Force Fields for Li-Battery Components:?? 1. Ether, Alkane, and Carbonate-Based Solvents, The Journal of Physical Chemistry B, vol.110, issue.12, pp.6279-6292, 2006.
DOI : 10.1021/jp055079e

V. Chaban and O. V. Prezhdo, A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures, Physical Chemistry Chemical Physics, vol.9, issue.2, pp.19345-19354, 2011.
DOI : 10.1039/b707419k

H. Bennett, Efficient estimation of free energy differences from Monte Carlo data, Journal of Computational Physics, vol.22, issue.2, pp.245-268, 1976.
DOI : 10.1016/0021-9991(76)90078-4

M. Zheng, W. Chen, and . Yang, Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems, Proceedings of the National Academy of Sciences, vol.109, issue.14, pp.20227-20232, 2008.
DOI : 10.1021/jp045424k

L. Freddolino, A. S. Arkhipov, S. B. Larson, A. Mcpherson, and K. Schulten, Molecular Dynamics Simulations of the Complete Satellite Tobacco Mosaic Virus, Structure, vol.14, issue.3, pp.437-449, 2006.
DOI : 10.1016/j.str.2005.11.014

R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu, R. C. Bernardi et al., Molecular dynamics simulations of large macromolecular complexes, Macromolecular machines and assemblies, pp.64-74, 2015.
DOI : 10.1016/j.sbi.2015.03.007

G. Kratz, A. R. Walker, L. Lagardère, F. Lipparini, J. Piquemal et al., LICHEM: A QM/MM program for simulations with multipolar and polarizable force fields, Journal of Computational Chemistry, vol.11, issue.11, pp.1019-1029, 2016.
DOI : 10.1021/ct500998q

URL : https://hal.archives-ouvertes.fr/hal-01287204

A. Curutchet, S. Muñoz-losa, J. Monti, G. D. Kongsted, B. Scholes et al., Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model, Journal of Chemical Theory and Computation, vol.5, issue.7, pp.1838-1848, 2009.
DOI : 10.1021/ct9001366

E. Loco, S. Polack, L. Caprasecca, F. Lagardère, J. Lipparini et al., A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations, Journal of Chemical Theory and Computation, vol.12, issue.8, pp.3654-3661, 2016.
DOI : 10.1021/acs.jctc.6b00385

L. Loco, S. Lagardère, F. Caprasecca, B. Lipparini, J. Mennucci et al., Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding, Journal of Chemical Theory and Computation, vol.13, issue.9, pp.4025-4033, 2017.
DOI : 10.1021/acs.jctc.7b00572

URL : https://hal.archives-ouvertes.fr/hal-01571619

L. Lipparini, G. Lagardère, B. Scalmani, E. Stamm, Y. Cancès et al., Quantum Calculations in Solution for Large to Very Large Molecules: A New Linear Scaling QM/Continuum Approach, The Journal of Physical Chemistry Letters, vol.5, issue.6, pp.953-958, 2014.
DOI : 10.1021/jz5002506

URL : https://hal.archives-ouvertes.fr/hal-00956401

B. Tomasi, R. Mennucci, and . Cammi, Quantum Mechanical Continuum Solvation Models, Chemical Reviews, vol.105, issue.8, pp.2999-3093, 2005.
DOI : 10.1021/cr9904009

D. Cramer and . Truhlar, Implicit Solvation Models:?? Equilibria, Structure, Spectra, and Dynamics, Chemical Reviews, vol.99, issue.8, pp.2161-2200, 1999.
DOI : 10.1021/cr960149m

M. Parrish, L. A. Burns, D. G. Smith, A. C. Simmonett, A. E. Deprince et al., 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability, Journal of Chemical Theory and Computation, vol.13, issue.7, pp.3185-3197, 2017.
DOI : 10.1021/acs.jctc.7b00174

URL : https://hal.archives-ouvertes.fr/hal-00905129

E. Valiev, N. Bylaska, K. Govind, T. Kowalski, H. V. Straatsma et al., NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Computer Physics Communications, vol.181, issue.9, pp.1477-1489, 2010.
DOI : 10.1016/j.cpc.2010.04.018

S. Devereux, D. G. Raghunathan, M. Fedorov, and . Meuwly, A Novel, Computationally Efficient Multipolar Model Employing Distributed Charges for Molecular Dynamics Simulations, Journal of Chemical Theory and Computation, vol.10, issue.10, pp.4229-4241, 2014.
DOI : 10.1021/ct500511t

T. Zhang, W. Lee, and . Yang, A pseudobond approach to combining quantum mechanical and molecular mechanical methods, The Journal of Chemical Physics, vol.63, issue.1, pp.46-54, 1999.
DOI : 10.1103/PhysRevLett.80.1357

E. Duke, O. N. Starovoytov, J. Piquemal, and G. A. Cisneros, GEM*: A Molecular Electronic Density-Based Force Field for Molecular Dynamics Simulations, Journal of Chemical Theory and Computation, vol.10, issue.4, pp.1361-1365, 2014.
DOI : 10.1021/ct500050p

URL : https://hal.archives-ouvertes.fr/hal-01287209