Cauchy Problem for the Kuznetsov Equation

Abstract : We consider the Cauchy problem for a model of non-linear acoustics, named the Kuznetsov equation, describing sound propagation in thermo-viscous elastic media. For the viscous case, it is a weakly quasi-linear strongly damped wave equation, for which we prove the global existence in time of regular solutions for sufficiently small initial data, the size of which is specified, and give the corresponding energy estimates. In the non-viscous case, we update the known results of John for quasi-linear wave equations, obtaining the well-posedness results for less regular initial data. We obtain, using a priori estimates and a Klainerman inequality, the estimations of the maximal existence time, depending on the space dimension, which are optimal, thanks to the blow-up results of Alinhac. Alinhac's blow-up results are also confirmed by a L 2-stability estimate, obtained between a regular and a less regular solutions.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, In press, 39 (1)
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01648010
Contributeur : Adrien Dekkers <>
Soumis le : lundi 8 octobre 2018 - 14:36:16
Dernière modification le : mercredi 10 octobre 2018 - 01:18:13

Fichiers

PreprintKuznetsov.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01648010, version 2
  • ARXIV : 1711.09789

Citation

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy Problem for the Kuznetsov Equation. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, In press, 39 (1). 〈hal-01648010v2〉

Partager

Métriques

Consultations de la notice

36

Téléchargements de fichiers

11