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mits of current model reduction methods are examined in the case of solid me-
lving significant nonlinearitiesdsuch as (visco)plasticity, damage, contact with
eters. Particular emphasis will be put on the PGD method (Proper Generalized

ts last developments. These reduced models are the key to the introduction of
mulation-driven structural design, a domain in which quasi real-time simulations
1. Introduction

1.1. Our main motivation

Our work is part of the “composites” revolution which the
aeronautical industry has engaged in, particularly in Europe. The
share of composites in civilian planes has grown a lot and vital
elements are made of carbon-fiber laminated composites. The
current design approach is prohibitively expensive in cost and
duration (and, therefore, today inadequate) because it is based
almost exclusively on testing. Today, industrializing a new matrix
grade requires carrying out the whole series of tests with their
numerous stacking sequences all over again, which inhibits
innovation.

This is leading the aeronautical industry to a reversal of the
situation through “virtual testing”, which consists in replacing,
whenever possible, the numerous experimental tests used today by
virtual charts (see Fig. 1). This should lead to a significant decrease
in the cost and duration of the design and sizing stage. Virtual
Charts are particular Reduced Order Models (ROM) associated to
goal-oriented quantities. Fig. 2 gives an illustration of a virtual chart
for a coupon family of composite plates with a hole, the parameters
being the hole diameter as well as the angles defining the fiber
directions of the different plies. The virtual chart here gives the
maximum of the longitudinal strain in term of the parameters over
the parameter set.
2015.
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1.2. The scope of the paper and the state-of-the-art

This paper deals with the computation offline of a reduced-
order model (ROM) in nonlinear solid mechanics. We focus on
complex constitutive relations as (visco)plasticity and damage and
also unilateral contact with friction and damage. However, we limit
ourselves to quasi-static and small displacements conditions.
Loading and material parameters could be stochastic and one
considers here that they belong to a given set.

We have been working on ROM computation for 30 years with
the so-called LATIN-PGD andwhat we are doing at the present time
is the result of many works. PGD means “Proper Generalized
Decomposition” and LATIN denotes the computational method
which is nonincremental. The LATIN-PGD method was introduced
in Ladev�eze et al. (Ladev�eze, 1985a, 1985b) for viscoplastic mate-
rials whose constitutive relations are described using a functional
approach. Its extension to modern material descriptions involving
internal variables, still for viscoplastic materials, was proposed in
Ladev�eze et al. (Ladev�eze, 1989; Ladev�eze, 1991). A number of
mathematical properties regarding convergence and error in-
dicators were proved in the book (Ladev�eze, 1999). Overview could
be found in Ladev�eze et al. (Ladev�eze, 1999; Chinesta and Ladev�eze,
2014; Ladev�eze et al., 2009). Originally, PGD was called radial
loading approximation, which, to us, meant a “mechanics”
approximation in solid mechanics. In 2010, together with F. Chi-
nesta, we changed the name because PGD can be viewed as an
extension of the classical Proper Orthogonal Decomposition (POD).

This paper should be seen as a revisit of the LATIN-PGD leading
to a new, general and robust PGD computation technique. This is



Fig. 1. Future of the test/computation pyramid.

Fig. 2. Virtual chart for a composite coupon family.
based on an “abstract” reformulation of parametric nonlinear solid
mechanics problems defined over a time-space domain. This work
is the follow-up to (Ladev�eze et al., 2010; Relun et al., 2013; Allier
et al., 2015; Jessus et al., 2016). Today, there are few other works
except the works of Ryckelynck and his group done with POD
(Ryckelynck, 2005, 2009; Ryckelynck et al., 2012). However, things
are changing and today there are more and more POD-approaches
developed in relation with the homogenization technique FE2

(Lamari et al., 2010; Ammar et al., 2007; Hern�andez et al., 2014;
Radermacher and Reese, 2015; Yvonnet et al., 2013). Another
attempt has been done recently with the Asymptotic Numerical
Method (ANM) but this approach seems to be quite limited. PGD,
like any ROM technique for nonlinear problems, can lead to the
computation of numerous nonlinear integrals, which can become
very expensive. Additional reduction or interpolation are then
introduced to reduce their computation cost. This is done offline
with the PGD computation. Our answer is the so-called Reference
Point Method (RPM), which is recalled here; furthermore, a per-
formance analysis is given in term of the RPM-parameters.
1.3. Basic features of the new generation of ROM computational
methods

By new generation of ROM computational methods, we intend
Reduced Based method (RB) (Patera and Rozza, 2006; Rozza and
Veroy, 2007; Maday and Ronquist, 2004; Barrault et al., 2004),
POD (Kunisch and Xie, 2005; Lieu et al., 2006; Gunzburger et al.,
2007) and PGD methods. They are based on the same ideas. The
first and main idea is that the shape functions are not as usual a
2

priori given. They are computed simultaneously with the solution
itself thanks to an iterative procedure. For a problem defined over
the time-space domain, the solution is then written as:

sðt; xÞzsmðt; xÞ ¼
Xm
i¼1

aiJiðt; xÞ (1)

The second idea is to introduce a variable separation hypothesis
or something equivalent:

Jiðt; xÞ ¼ liðtÞGiðxÞ (2)

where the time functions li and the space functions Gi are arbitrary.
That is a departure from other approximation methods for which
shape functions are a priori given or partially given. However, ROM
computational techniques are quite different (Chinesta and
Ladev�eze, 2014).

The PGD is characterized by two ingredients: the variable sep-
aration hypothesis and a residual which should be minimized or
something equivalent. Let R be the residual which satisfies:

cs2S½0;T �; RðsÞ⩾0 and RðsÞ ¼ 00s ¼ sex (3)

the problem to solve is then:

min
sm2S½0;T �

RðsmÞ (4)

which is twice nonlinear. Mechanically, it is nonlinear.
Furthermore, the computation of a PGD approximation is always a
nonlinear problem.



Remark. d The simplest case is the situation where one com-
putes the PGD of a given function. It has been proved that the time
functions are the eigenfunctions of a certain eigenvalue problem
(Ladev�eze, 1999). For the L2 norm, PGD is exactly the classical
Singular Value Decomposition (Golub and Van Loan, 1996). It fol-
lows that PGD modes can be seen as “eigenmodes”.

2. The reference problem

With the assumption of small perturbations, let us consider the
quasi-static and isothermal evolution of a structure defined over
the time-space domain [0,T] � U. This structure is subjected to
prescribed body forces fd, traction forces Fd over a part v2U of the
boundary, and displacements ud over the complementary part v1U
(see Fig. 3).

The state of the structure is defined by the set of the fields
s ¼ ð _εp; _X;s;YÞ (where the dot notation _, denotes the time de-
rivative), in which:

� εp designates the inelastic part of the strain field ε which cor-
responds to the displacement field u, uncoupled into an elastic
part εe and an inelastic part εp ¼ ε � εe; X designates the
remaining internal variables;

� s designates the Cauchy stress field and Y the set of variables
conjugate of X (Y and X have the same dimension). X could be
hardening variables, damage variables, chemical variables, …

All these quantities are defined over the time-space domain
[0,T] � U and assumed to be sufficiently regular. For the sake of
simplicity, the displacement u is assumed to have a null initial
value.

Introducing the following notations for the primal fields:

ep ¼
�
εp
�X

�
; e ¼

�
ε

0

�
and ee ¼

�
εe
X

�
so that ep ¼ e� ee

(5)

and for the dual fields:

f ¼
�
s
Y

�
(6)

The mechanical dissipation rate for the entire structure U is:Z
U

�
_εp : s� _X,Y

�
dU ¼

Z
U

�
_ep+f

�
dU (7)

where , denotes the contraction adapted to the tensorial nature of
X and Y. Notation + denotes the contraction operator for
Fig. 3. The reference problem.
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generalized quantities. Let us introduce the following fundamental
bilinear “dissipation” form:*
s; s0

+
¼

Z
½0;T ��U

�
1� t

T

	�
_ep+f0 þ _ep0+f

�
dUdt (8)

along with E and F, the spaces of the fields _ep and f which are
compatible with (8). These spaces enable us to define S ¼ E � F, the
space in which the state s ¼ ð _ep; fÞ of the structure is being sought.

Following (Ladev�eze, 1999), a normal formulation with internal
state variables is used to represent the behavior of the material. If r
denotes the mass density of the material, from the free energy
rJðεe;XÞ with the usual uncoupling assumptions, the state law
yields:

s ¼ r
vj

vεe
¼ Kεe

Y ¼ r
vj

vX
¼ LX

(9)

where the Hooke's tensor K and the constant, symmetric and
positive definite tensor L are material characteristics.

The state evolution laws can be written:

_ep ¼ BðfÞ with epjt¼0 ¼ 0 (10)

where B is a positive operator which is also for most viscoplastic
models maximal monotone (Ladev�eze, 1999). Let us introduce now
the space U ½0;T �

ad of admissible displacement fields u defined over
[0,T] � U and U ½0;T �

ad;0 the associated vectorial space. The compati-
bility equation can be written as:

Find u2U ½0;T �
ad such that cu+2U ½0;T �

ad;0 ;Z
½0;T ��U

Tr


εðuÞKε�u+

��
dUdt ¼

Z
½0;T ��U

Tr


εpKε

�
u+

��
dUdt

þ
Z

½0;T ��U

f d,u
+dUdt

þ
Z

½0;T ��v2U

Fd,u
+dSdt (11)

It follows that the stress s¼K(ε(u)�εp) can be written:

s ¼ Uεp þ rd (12)

where U is a linear given operator and rd is a prestress depending
on the data. Introducing the generalized stress, the admissibility
conditions can be written as:

f ¼ Qep þ rd (13)

with

Q ¼
�
U 0
0 L

�
and rd ¼

�
rd
0

�
(14)

where Q is a linear symmetric positive operator. Finally, the prob-
lem to solve is:

Find s ¼ ð _ep; fÞ2S½0;T � such that:

f ¼ Qep þ rd and _ep ¼ BðfÞ with epjt¼0 ¼ 0 (15)

Consequently, one has to solve a first order differential equation
with an initial condition; The operatorsQ and B as well as the right-



hand-side member rd could depend on the parameter m belonging
to the parameter set Sm.
3. The solver LATIN for ROM computation

3.1. ROM in nonlinear solid mechanics

Let us consider ROM computations based on time/space sepa-
ration. A natural and general idea is to transform the reference
problem into a succession of linear global problems over [0,T] � U
which could depend on parameters. Using RB, POD or PGD, a
Reduced Order Model can be built over [0,T] � U for each linear
problem. The final ROM is then obtained gathering all the previous
ROM.
Fig. 5. The geometric representation associated to the reformulation of the reference
problem.
3.2. Our answer: the solver LATIN

The LATIN method is an iterative strategy which differs from
classical incremental or step-by-step techniques in that, at each
iteration, it produces an approximation of the complete structural
response over the whole loading history being considered. In other
words, the name LATIN for Large Time Increment method was not
chosen very well because the method is essentially non-
incremental. A review of the state-of-the-art and more recent ex-
tensions could be found in Ladev�eze et al. (Ladev�eze,1999; Chinesta
and Ladev�eze, 2014; Ladev�eze et al., 2009; Ladev�eze and Perego,
2000).

The LATIN method is designed as a mechanics-based compu-
tational strategy whose aim is to achieve the best possible perfor-
mance level for solid mechanics problems. Consequently, this
alternative approach is rooted in some remarkable properties
which are verified by most of the models encountered in structural
mechanics.

The LATIN method operates over the time-space domain
[0,T] � U, and its first principle (P1) consists in separating the dif-
ficulties. Thus, the equations are divided into (see Fig. 4):

� a set of linear equations which can be global in the space vari-
ables: the equilibrium and compatibility equations, the state
equations;

� a set of equations which are local in the space variables but can
be nonlinear: the state evolution laws.

The reformulation (15) of the reference problem enters into this
framework because:
Fig. 4. The LATIN method and cla
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� Q is a linear operator;
� B is at least local in space variables.

In the geometric representation given Fig. 5, Ad and G represent
the solutions of the first and second set respectively. The exact
solution is the intersection of Ad and G. The partition into Ad and G

is very natural, Ad being associated to the free energy and G with
the dissipation. The LATIN second principle (P2) is also very natural.
It consists in solving the two sets of equations alternatively until
practical convergence. In order to do that, one uses search di-
rections given as parameters. One possible choice (Newton search
direction) consists of the tangent direction and its conjugate di-
rection (see Fig. 6).

Local stage at iteration n þ 1. d Findbsnþ1=2 ¼ ðb_ep;nþ1=2;
bfnþ1=2Þ2S½0;T � such that:

b_ep;nþ1=2 ¼ B
�bfnþ1=2

�
with bep;nþ1=2 ¼ 0 at t ¼ 0b_ep;nþ1=2 � _ep;n þHþ

�bfnþ1=2 � fn
�
¼ 0

(16)

The search direction Hþ is a parameter. Practically, one takes a
linear positive operator which is local both on time and space
variables. It follows that the problem to solve is local on the space
variable and then can be split into small independent problems
associated to Gauss points. This local stage is very suitable for
parallel computing.

Linear stage at iteration nþ 1.d Find snþ1 ¼ ð _ep;nþ1; fnþ1Þ2S½0;T �

such that:
ssical step-by-step methods.



Fig. 6. Iteration n þ 1 of the LATIN method over [0,T] � U.
fnþ1¼Qep;nþ1þrd
_ep;nþ1�b_ep;nþ1=2�H�

�
fnþ1�bfnþ1=2

�
¼0 with ep;nþ1¼0at t¼0

(17)

The search direction H� is a parameter. This is a linear positive
operator which is local both on time and space variables. It is
associated to the material operator B. One has to solve a first order
linear differential equationwith an initial condition, the operator Q
being non-explicit.

Remark. d In practice, H� is chosen close to the tangent to the
manifold G at the point bsnþ1=2 ¼ ðb_ep;nþ1=2;

bfnþ1=2Þ. For Hþ, one
takes 0 or H�.

Convergence of the LATIN solver. d The convergence of the iter-
ative process has been proved in the case of non-softening mate-
rials and contacts without friction (Ladev�eze, 1999). Precisely, the
iterative process converges if:

� the material operator B is maximal monotone;
� the material operator L is positive definite;
� the search directions H� and Hþ are positive definite and equal
H� ¼ H�.

The distance between two successive approximations gives a
good and easily computed error indicator. Let us also note that one
often uses an additional relaxation with a coefficient equal to 0.8.

4. PGD computation

4.1. The linear stage at iteration n þ 1

Let us introduce corrections:

D _ep ¼ _ep;nþ1 � _ep;n
Df ¼ fnþ1 � fn

(18)

where snþ1 ¼ ð _ep;n; fnÞ has been computed at iteration n. The
problem to solve over [0,T] � U at iteration n þ 1 is then:

Find Ds ¼ ðD _ep;DfÞ2S½0;T � such that

Df ¼ QD _ep
D _ep �H�Df ¼ Rd with Dep ¼ 0 at t ¼ 0 (19)

4.2. The PGD computational tools

Numerous constitutive relations have been studied: viscoplas-
ticity, damage, large displacements and deformations, contacts
with friction. Various Galerkin computational approaches have
been considered in order to increase robustness. Surveys can be
founded in Ladev�eze et al. (Ladev�eze, 1999; Chinesta and Ladev�eze,
5

2014; Ladev�eze et al., 2009). However, it is only recently that a new
way leading to a truly robust version has been introduced and
developed. It is a non-Galerkin approach described in Ladev�eze
et al. (Ladev�eze, 2008; Allier et al., 2015; Jessus et al., 2016). This
robust PGD computation method is extended here to a large family
of constitutive relations.

4.3. A robust PGD computation method

4.3.1. The residual
Let us consider the problem (19) where the second equation is

related to the search direction. The main idea is to interpret it as a
linear constitutive relation, the operator H� being local both on
time and space variables and positive definite as the Hooke tensor.
Consequently, one introduces the associated constitutive relation
error which will be minimized:

rðDs; tÞ ¼ 1
2

Z
U

h
D _ep �H�Df � Rd

i�
H�

��1h
D _ep �H�Df

� Rd

i
dU (20)

and

RðDsÞ ¼
Z

½0;T �

�
1� t

T

	
rðDs; tÞdt (21)

with Ds ¼ ðD _ep;DfÞ2S½0;T �. The problem (19) becomes:
Find Ds2S½0;T � minimizing

Ds2S½0;T �1RðsÞ2ℝ
with the constrains Df ¼ QD _ep and Dep ¼ 0 at t ¼ 0

(22)

Remark. d The time-residual r(Ds,t) can be used to build ROM
with RB method.

4.3.2. Time/space variable separation hypothesis
One only prescribes that:

Dep ¼
Xm
i¼1

liðtÞgiðxÞ (23)

with li(0) ¼ 0 (initial condition), gi2L2(U) and li(t)2L2[0,T]. It
follows, using admissibility conditions, that:

Df ¼
Xm
i¼1

liðtÞQgiðxÞ (24)

where Qgi(x) are computed solving several elasticity problems.

4.3.3. Minimization technique
Let us start with:

sn ¼
�
_e0p; f

0
�
þ
Xm
i¼1

�
_liE

i
p; liF

i
�

(25)

The iteration n þ 1 has two steps.
Step 1: Updating of the PGD time-functions. d This POD phase

relies on the space PGD modes ðEip; FiÞ for which the computation
cost is relatively high. New time-functions, still noted li are
computed minimizing the residual R with the constraint li(0) ¼ 0.
One gets a small system of differential equations over the time
interval with conditions at the two extremities. The problem can be
also solved globally over the time interval [0,T].



Step 2: Addition of a new PGDmode.d One computes following a
“greedy” algorithm:

snþ1 ¼ sn þ
�
_lEp; lF

�
(26)

with l(0) ¼ 0. The additional PGD mode is obtained through the
minimization of the residual R, alternatively on the time function l

and on the space function Ep. The initialisation of this iterative
process is done taking as the first time function guess the root
square of the time residual r(0,t). The minimization with respect to
the space variables leads to the resolution of a time-independent
spatial problem defined over U; that is a classical FE problem. The
minimization with respect to the time variable leads to a scalar
differential equation over [0,T] with conditions at the two ex-
tremities whose resolution is quite inexpensive; the easier way is to
solve the global time-problem coming from the residual minimi-
zation. The iterative process is stopped after few iterations, prac-
tically 2 or 3. Let us also note that this second step is cancelled if the
residual R(0) is relatively small.
4.3.4. Some remarks
Number of computed PGDmodes.d For most nonlinear problems

we computed, the number of needed computed PGD modes does
not exceed 20.

Optimality. d Here, one compares for a given accuracy the
number of PGD modes computed with the LATIN-PGD with the
number of PGD modes computed directly from the exact solution.
For transient linear diffusion problems, we have proved numeri-
cally that this PGD computational method is quasi-optimal (Allier
et al., 2015).

Low-cost version. d The dimension of the space problem to be
solved in the PGD computational method described previously is
twice the usual one. A low cost version has been derived modifying
the computation technique of the space PGD modes; they are
computed using the classical Galerkin approach associated to the
problem reformulation (24) and then the dimension of the spatial
PGD problem is the usual one. In Allier et al. (Allier et al., 2015), the
two approaches are compared still on a transient linear diffusion
problem: for a given accuracy, the low cost version is much more
suitable in terms of cost even if one needs to compute more PGD
modes. Numerical illustrations given here after are computed based
on to the low cost version. To be clear, let us introduce the Galerkin
computational approach of the space PGD modes and then of:

Ds ¼
�
_lEp; lF

�
(27)

for a given l. One supposes for the sake of simplicity, that the
search direction H� is diagonal per block, that is:

H�f ¼
"
H�
11s

H�
22Y

#
(28)

One has from (19):Z
½0;T �

�
1� t

T

	 Z
U

h
D _εp �H�

11Ds� sd

i
s+dUdt

¼ 0; cs+2S ½0;T �
ad;0 (29)

where S ½0;T �
ad;0 is the space of the stress fields satisfying equilibrium

equations over [0,T] � U for null loadings. Introducing Ds i.e. D _εp ¼
_lSp and Ds ¼ lC, one gets:
6

Z
½0;T �

�
1� t

T

	 Z
U

h
_llSp �H�

11l
2C � lsd

i
C+dUdt

¼ 0; cC+2S ½0;T �
ad;0 (30)

Let us note that ε ¼ εp þ K�1s leads to:Z
U

h�
_ll
�
K�1C þ

�
l2H�

11

�
C þ ðlsdÞ

i
C+dU ¼ 0; cC+2S ½0;T �

ad;0

(31)

where ð�Þ ¼ R
½0;T �

ð1� t
TÞ � dt. IntroducingUC ¼ ð _llÞK�1C þðl2H�

11ÞC

where U is a symmetric positive definite linear operator, one
obtains from the previous equation:

UC þ ðlsdÞ ¼ εð~uÞ (32)

where ~u2U ad;0. Consequently to compute C, ones computes
~u2U ad;0 minimizing:

U ad;0/ℝ

~u01
1
2

Z
U

Tr
h
εð~u0ÞU�1

εð~u0Þ
i
dU�

Z
U

Tr
h
ðlsdÞU�1

εð~u0Þ
i
dU

(33)

The computation of the additional variables is easier. From (19),
one has:

DY ¼ LDX
D _X ¼ H�

22DY þ Xd
(34)

Introducing DX ¼ lG, G is defined by:h�
_ll
�
þ
�
l2H�

22

�
L
i
G ¼ ðlXdÞ (35)

and it follows: DY ¼ LDX.
Problems with parameters. d To solve parametrized problems,

PGD has been popularized by the works of Chinesta et al. who
proposed to introduce parameters as new coordinates in the
decomposition (see (Chinesta et al., 2013) for a survey). The prob-
lems that are classically considered are linear and concern pa-
rameters (material characteristic, width of a structure, loading
amplitude …) that belong to a certain range of variation and then
influence continuously the solution. Here we are considering time-
dependent nonlinear problems for which the operators Q,B and rd
depend on parameters m belonging to Sm. The previous PGD tech-
niques can be extended easily. The two ingredients, the residual
and the variable separation hypothesis, are now:

RðDsÞ ¼
Z
Sm

dm
Z

½0;T �
rðDs; t;mÞdt

Dep ¼
X
i¼1

m

liðtÞgiðmÞgiðxÞ
(36)

This technique works well but is intrusive. Then, for parameters
less than 10, we prefer to use another technique based on a
remarkable property of the LATIN method: the initialisation of the
iterative process could be any function defined over [0,T] � U. The
technique is very simple. We cover step-by-step the parameter set;
for a new set of parameters, one starts with an initialisation which
is the solution obtained for the previous parameter set (Boucard



and Ladev�eze, 1999; Heyberger et al., 2013). This technique is used
here with the low cost PGD computational technique. Recently, we
have proposed in (Courard et al., 2016) an extension to “positional
parameters”which corresponds to situations that do not arise from
a classical discretization and can be totally disconnected (different
loading cases, different types of material …).

5. Additional “reduction” or interpolation

5.1. The cost problem and classical answers

Let us note that the LATIN-PGD needs to compute numerous
integrals as:

I ¼
Z

½0;T �

Z
U

f ðt; xÞHðt; xÞgðt; xÞdUdt (37)

where H changes along the iterations. It can be time-dependent
and also nonlinear in term of the computed solution. f and g are
not necessarily represented in the PGD framework. It follows that
the computation of I requires to loop on all the time steps and all
the space Gauss points and consequently its cost could be high. For
ROM computations where such integral computation are done
online, this problem is a crucial one. This is not the case of the
LATIN-PGD where all these calculations are done offline; however,
it is always interesting to reduce the computation cost. Several
additional reduction or interpolation methods have been proposed
to overcome this difficulty. A very popular technique is the
Empirical Interpolation Method (EIM) (Barrault et al., 2004; Grepl
et al., 2007) and its discrete version named DEIM (Chaturantabut
and Sorensen, 2010). The Hyperreduction method (Ryckelynck,
2005, 2009; Ryckelynck et al., 2012) makes the most of a
restricted subdomain of the space domain. Other techniques can be
seen as particular Gappy-POD methods (Everson and Sirovich,
1994; Astrid et al., 2008; Carlberg and Farhat, 2010). In the next
paragraph is detailed the Reference Point Method (RPM); intro-
duced in (Ladev�eze, 1997; Ladev�eze et al., 2009), RPM has been
developed in (N�eron and Ladev�eze, 2012; Capaldo et al., 2016).

5.2. The reference point method (RPM)

Definition of the reference points. d Let us divide the time in-
terval I ¼ [0,T] being studied into m subintervals fIigi¼1;…;m of
lengths fDtigi¼1;…;m as shown in Fig. 7. Introducing the centers
ftigi¼1;…;m of these subintervals, called “reference times”, one has
Ii ¼ [ti � Dti/2,ti þ Dti/2].

In the space domain, let us also introduce m' points fxjgj¼1;…;m0

and partition U into fUjgj¼1;…;m0 as shown in Fig. 8. These points are
called “reference points” and the measures of the subdomains are
denoted fujgi¼j;…;m0 . In practice, therewould usually be a few dozen
reference points.

Let us consider that one needs 20 modes to describe the solu-
tion. One can take twice space reference points i.e. 40 and for the
reference times the minimum between 40 and the number of time
dofs.

Generalized components. d To describe a function defined over
I � U, one consider its generalized components:

bajiðtÞ ¼ �
f
�
t; xj

�
if t2Ii

0 otherwise
and bbjiðxÞ

¼
�
f ðti; xÞ if x2Uj

0 otherwise
(38)

with i ¼ 1,…,m and j ¼ 1,…,m'. The sets fðbaji; bbjiÞgj¼1;…;m0

i¼1;…;m are the
generalized components of f. One should note that these quantities
verify the following compatibility conditions: for i ¼ 1,…,m and
j ¼ 1,…,m',

bajiðtiÞ ¼ bbji�xj� (39)

It could happen that the quantity f is not well represented over
the time-space domain. Then, one adds if necessary a PGD
description of the complement.

Computation using generalized components. d All basic opera-
tions as sum, product, time and space derivations are inexpensive.
That is the interest of RPM. Then, the main question is: how can one
build or rebuild a field from its components? We choose to define
function f from its components using only one product per time-
space subdomain Ii � Uj:

f ðt; xÞ : ajiðtÞb
j
iðxÞ cðt; xÞ2Ii � Uj (40)

where the sets fðaji; b
j
iÞg

j¼1;…;m0

i¼1;…;m should be defined from the sets
fðbaji; bbjiÞgj¼1;…;m0

i¼1;…;m . However, in this case, we let the time domain play
a special role because there are many more spatial degrees of
freedom than there are time degrees of freedom. Thus, function f is
defined by:

f ðt; xÞ : aiðtÞbiðxÞ cðt; xÞ2Ii � U (41)

Let us introduce the following scalar products:

〈f ; g〉Ii ¼
Z
Ii

fg dt and 〈f ; g〉Uj
¼

Z
Uj

fg dU (42)

In order to obtain the sets fðai; biÞgi¼1;…;m, we minimize:

Jðai;biÞ¼
Xm0

j¼1

�
uj







baj
i
ðtÞ�aiðtÞbi

�
xj
�





2

Ii
þDti









bbj
i
ðxÞ�aiðtiÞbiðxÞ









2
Uj

�
(43)

which leads to:

f ðt; xÞ : aiðtÞbiðxÞ ¼
Pm0

k¼1ukbaki ðtÞbaki ðtiÞPm0
k¼1ukbaki ðtiÞbaki ðtiÞbbj

iðxÞ
(44)

This gives an inexpensive reconstruction.
Extension to parameter-dependent functions. d The extension toFig. 7. The reference times over [0,T].

Fig. 8. The reference points over U.

7



parameter-dependent functions is easy. The generalized compo-
nents are:

bakj ðtÞ ¼ f
�
t; xj;mk

�
if t2Ibbki ðMÞ ¼ f ðti; x;mkÞ if x2UbcjiðmÞ ¼ f

�
ti; xj;m

�
if m2Sm

(45)

5.3. Application of RPM

One considers the model example introduced in Grepl et al.
(Grepl et al., 2007) to illustrate the behavior of the EIM approach
and used also in Chaturantabut and Sorensen (Chaturantabut and
Sorensen, 2010) for the DEIM. This is a parametric nonlinear 2D
problemwhich consists in finding u(x,m) with x ¼ (x1,x2)2U¼]0,1[2

and m ¼ (m1,m2)2Sm ¼ [0.01,10]2 and homogeneous Dirichlet
boundary condition on vU, such that:

�V2uþ m1
m2

ðem2u � 1Þ ¼ 100sinð2px1Þsinð2px2Þ (46)

This model can be interpreted as a 2D stationary diffusion
problem with a nonlinear interior heat source density. It has the
particularity to present strong variations of the solution regarding
the values of the parameter m. The space is discretized through
2500 P1-elements, the parameter set is defined by 225 points i.e.
(15 � 15). Fig. 9 shows the reference solution, denoted uref, of the
problem for two values of the parameter m and one can notice that
Fig. 9. Reference solution uref for m

Fig. 10. Error in terms of the number of PG
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the studied problem is strongly nonlinear.
To compare the quality of results obtained by a direct approach

and with the RPM, the following error is introduced:

ε ¼ 1=p
Xp
j¼1







uref �x;mj

�
� uRPM

�
x;mj

�






L2





uref�x;mj

�






L2

(47)

Fig. 10 gives the error in terms of the number of PGD modes for
various numbers of reference points. The notation (mm,mx) means
that mm parameter reference points and mx space reference points.
One can see that with very few reference points, one is close to the
optimal curve. It appears also still with very few reference points
even if one needs more PGD modes, one still converges toward the
reference solution. That is a remarkable property.

Fig. 5 shows the gain which is important for the updating stage.
However for this academic example, the total gain comparing the
PGD alone of the PGD combined to the RPM is about 3. For more
complex problems, RPM implementation is in progress and one can
expect much higher values (See Table 1).

The interested reader can find in (Capaldo et al., 2016), a com-
parison of the behavior of the RPM and of the EIM.
6. A parametrized engineering problem

To illustrate the use of the technique to deal with parametrized
problems, we consider an example issued from (N�eron et al., 2015)
and which is freely inspired from a blade of the Vulcain engine of
¼ (0.01,0.01) and m ¼ (10,10).

D modes for several reference points.



Table 1
CPU time gain with respect to the reference for a given level of error (ε¼10�2).

PGD PGD-RPM PGD-RPM PGD-RPM

nm ¼ 1 � 1 nm ¼ 2 � 2 nm ¼ 3 � 3

nm ¼ 1 � 1 nm ¼ 1 � 1 nm ¼ 1 � 1

Number of PGD pairs 7 9 7 7
Gain with respect to direct method 6 18 14.2 11.5
the Ariane 5 launcher. The geometry, boundary conditions and
mesh are presented on Fig. 11. A four-sinusoidal-cycles displace-
ment with is prescribed on the lower part. The total number of
DOFs is 141,500 and the time interval is discretized using 120 time
steps. The material coefficients used for the Marquis-Chaboche
elastic-viscoplastic material are typical of a Titanium TA6V mate-
rial at 500+ K.

A first run is carried out and we compare on Fig. 12 the Von
Mises fields obtained with ABAQUS and the LATIN method. The
comparison shows that there is no appreciable difference between
this two fields (the same scale is used for the two plots). A quan-
titative comparison is presented on Fig. 13: the stress-versus-strain
curve is plotted at the most loaded gauss point. Again, the two
curves obtained with ABAQUS and the LATIN method are almost
identical. Fig. 14 shows the first 3 modes of the PGD decomposition
of equivalent plastic strain.
Fig. 11. Geometry, boundary conditions

Fig. 12. Comparison of the Von Mises fields obtained at ti

9

Then, we perform the parametric study of Table 2, which con-
cerns the influence of the loading amplitude, of the limit stress and
the power coefficient in the evolution law. The range of variation of
each parameter was discretized into 10 values, leading to 1000
different problems.

The chosen three parameters play an important role on the
value of the maximum Von Mises stress. Indeed, the virtual chart
depicted by Fig. 15 shows the maximum Von Mises stress as a
function of the parameters: the variation of this quantity is more
than 35%.

To illustrate the performances of the LATIN-PGD with multiple
runs algorithm, we compare the CPU times:

� about 50 days (estimated time) are necessary to complete the
1000 resolutions with ABAQUS;
and mesh of the blade test-case.

me step 55 with the LATIN (left) and ABAQUS (right).



Fig. 13. Stress vs strain curves at the most loaded gauss point.

Fig. 14. First 3 modes of the PGD decomposition.

Table 2
Range of variation of loading amplitude, R0 and g.

Parameter Min. value Max. value Step Range of variation

± Loading amplitude 0.1 mm 0.19 mm 0.01 mm ±31%
Limit stress R0 20 MPa 29 MPa 1 MPa ±18%
Power g 285 330 5 ±7%

Fig. 15. Maximum Von Mises stress as a function of the parameters.
� about 18 days (estimated time) are necessary to complete the
1000 resolutions with the classical LATIN-PGD;

� less than 17 h are necessary to complete the 1000 resolutions
with the LATIN-PGD with multiple runs algorithm.

The gain is an about 70 using the multiple runs algorithm, but
can achieve more than 700 when using also the RPM strategy. The
important point is that, once this parametric study has been per-
formed, a reduced-model of the nonlinear problem is built. For
example, some stochastic studies can be performed very easily.
Assuming a probabilistic distribution of the three parameters, a
10
probabilistic distribution of the quantity of interest can be
computed in quasi-real time.
7. Conclusion and prospects

LATIN-PGD with its last version is a robust method to compute
ROM for a rather large family of time-dependent nonlinear prob-
lems in Solid Mechanics. It includes (visco)-plasticity with moder-
ate damage but for small displacement problems; the number of
parameters which could be stochastic variables should be today
less than 10. Consequently, engineering applications as the one of
paragraph 5will bemore andmore numerous. LATIN-PGD has been
developed for most of structural mechanics problems but robust
ROM computational methods are still missing for several important
issues:

� cyclic viscoplasticity (Cognard and Ladev�eze, 1993; Cognard
et al., 1999);

� large displacement problems with instabilities (Aubard et al.,
2002; Boucard et al., 1997; Bussy et al., 1990);



� damage and final fracture (in particular for composites);
� multiscale and multiphysics problems (N�eron and Ladev�eze,
2010; Ladev�eze and Nouy, 2003; Ladev�eze et al., 2007; Nouy
and Ladev�eze, 2004; N�eron and Dureisseix, 2008);

� verification (Ladev�eze and Chamoin, 2011; Chamoin and
Ladev�eze, 2012; Ladev�eze and Chamoin, 2012).

For all these issues, the LATIN-PGD version described in this
paper should be a paradigm. However, ROM computation is still a
scientific challenge for several items as:

� transient dynamics (time/space separation);
� very large number of parameters.

and works are still in progress.
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