J. Hausser and M. Zavolan, Identification and consequences of miRNA???target interactions ??? beyond repression of gene expression, Nature Reviews Genetics, vol.8, issue.9, pp.599-612, 2014.
DOI : 10.1126/science.1215704

D. P. Bartel, MicroRNAs: Target Recognition and Regulatory Functions, Cell, vol.136, issue.2, pp.215-233, 2009.
DOI : 10.1016/j.cell.2009.01.002

URL : https://doi.org/10.1016/j.cell.2009.01.002

S. W. Chi, G. J. Hannon, and R. B. Darnell, An alternative mode of microRNA target recognition, Nature Structural & Molecular Biology, vol.2, issue.3, pp.321-327, 2012.
DOI : 10.1016/S0092-8674(01)00568-2

V. Agarwal, G. W. Bell, J. Nam, and D. P. Bartel, Author response, eLife, vol.304, p.5005, 2015.
DOI : 10.7554/eLife.05005.028

D. Kim, General rules for functional microRNA targeting, Nature Genetics, vol.460, issue.12, pp.1517-1526, 2016.
DOI : 10.1210/me.2009-0295

G. B. Loeb, Transcriptome-wide miR-155 Binding Map Reveals Widespread Noncanonical MicroRNA Targeting, Molecular Cell, vol.48, issue.5, pp.760-770, 2012.
DOI : 10.1016/j.molcel.2012.10.002

URL : https://doi.org/10.1016/j.molcel.2012.10.002

A. Helwak, G. Kudla, T. Dudnakova, and D. Tollervey, Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding, Cell, vol.153, issue.3, pp.654-665, 2013.
DOI : 10.1016/j.cell.2013.03.043

URL : https://doi.org/10.1016/j.cell.2013.03.043

M. Khorshid, J. Hausser, M. Zavolan, and E. Van-nimwegen, A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets, Nature Methods, vol.460, issue.3, pp.253-255, 2013.
DOI : 10.1198/016214504000000683

S. Grosswendt, Unambiguous Identification of miRNA:Target Site Interactions by Different Types of Ligation Reactions, Molecular Cell, vol.54, issue.6, pp.1042-1054, 2014.
DOI : 10.1016/j.molcel.2014.03.049

M. S. Ebert, J. R. Neilson, and P. A. Sharp, MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells, Nature Methods, vol.18, issue.9, pp.721-726, 2007.
DOI : 10.1038/nmeth1079

J. M. Franco-zorrilla, Target mimicry provides a new mechanism for regulation of microRNA activity, Nature Genetics, vol.17, issue.8, pp.1033-1037, 2007.
DOI : 10.1038/ng2079

S. A. Giusti, Author response image 1. Author response, eLife, vol.16, pp.1-22, 2014.
DOI : 10.7554/eLife.02755.020

M. Reichel, Y. Li, J. Li, and A. A. Millar, and STTMs all display variable efficacies against target microRNAs, Plant Biotechnology Journal, vol.83, issue.7, pp.915-926, 2015.
DOI : 10.1007/s11103-013-0089-1

URL : http://onlinelibrary.wiley.com/doi/10.1111/pbi.12327/pdf

Y. Tay, Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs, Cell, vol.147, issue.2, pp.344-357, 2011.
DOI : 10.1016/j.cell.2011.09.029

L. Poliseno, A coding-independent function of gene and pseudogene mRNAs regulates tumour biology, Nature, vol.33, issue.7301, pp.1033-1038, 2010.
DOI : 10.4161/cc.7.18.6734

F. A. Karreth, In??Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma, Cell, vol.147, issue.2, pp.382-395, 2011.
DOI : 10.1016/j.cell.2011.09.032

F. A. Karreth, The BRAF Pseudogene Functions as a Competitive Endogenous RNA and Induces Lymphoma In??Vivo, Cell, vol.161, issue.2, pp.319-332, 2015.
DOI : 10.1016/j.cell.2015.02.043

D. W. Thomson and M. E. Dinger, Endogenous microRNA sponges: evidence and controversy, Nature Reviews Genetics, vol.4, issue.5, pp.272-283, 2016.
DOI : 10.1016/j.molcel.2015.11.014

Y. Tay, J. Rinn, and P. P. Pandolfi, The multilayered complexity of ceRNA crosstalk and competition, Nature, vol.498, issue.7483, pp.344-352, 2014.
DOI : 10.1038/nature12132

J. U. Guo, V. Agarwal, H. Guo, and D. P. Bartel, Expanded identification and characterization of mammalian circular RNAs, Genome Biology, vol.19, issue.7, p.409, 2014.
DOI : 10.1101/gr.073585.107

S. Memczak, M. Jens, A. Elefsinioti, and F. Torti, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, vol.40, issue.7441, pp.333-338, 2013.
DOI : 10.1093/nar/gkr688

T. B. Hansen, Natural RNA circles function as efficient microRNA sponges, Nature, vol.175, issue.7441, pp.384-388, 2013.
DOI : 10.1007/s00221-006-0526-3

Q. Zheng, Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs, Nature Communications, vol.7, p.11215, 2016.
DOI : 10.1371/journal.pgen.1002363

M. Migault, E. Donnou-fournet, M. Galibert, and D. Gilot, Definition and identification of small RNA sponges: Focus on miRNA sequestration, Methods, vol.117, pp.35-47, 2017.
DOI : 10.1016/j.ymeth.2016.11.012

URL : https://hal.archives-ouvertes.fr/hal-01502131

R. E. Boissy, C. Sakai, H. Zhao, T. Kobayashi, and V. J. Hearing, Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1, Experimental Dermatology, vol.267, issue.4, pp.198-204, 1998.
DOI : 10.1006/geno.1995.1211

G. Ghanem and F. Journe, Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma, Molecular Oncology, vol.4, issue.1, pp.150-155, 2011.
DOI : 10.1007/s11703-009-0081-3

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528278/pdf

E. Hajj and P. , SNPs at miR-155 binding sites of TYRP1 explain discrepancy between mRNA and protein and refine TYRP1 prognostic value in melanoma, British Journal of Cancer, vol.58, issue.1, pp.91-98, 2015.
DOI : 10.1101/gad.1399806

URL : https://hal.archives-ouvertes.fr/hal-01175527

E. Hajj and P. , Tyrosinase-related protein 1 mRNA expression in lymph node metastases predicts overall survival in high-risk melanoma patients, British Journal of Cancer, vol.2, issue.8, pp.1641-1647, 2013.
DOI : 10.1158/1078-0432.CCR-05-0306

URL : https://hal.archives-ouvertes.fr/hal-01064483

F. Journe, TYRP1 mRNA expression in melanoma metastases correlates with clinical outcome, British Journal of Cancer, vol.2, issue.11, pp.1726-1732, 2011.
DOI : 10.1093/jnci/djj103

URL : https://hal.archives-ouvertes.fr/inserm-00638967

J. Li, Evidence for Positive Selection on a Number of MicroRNA Regulatory Interactions during Recent Human Evolution, PLoS Genetics, vol.99, issue.3, pp.1-12, 2012.
DOI : 10.1371/journal.pgen.1002578.s013

R. Kittler, Genome-scale RNAi profiling of cell division in human tissue culture cells, Nature Cell Biology, vol.2005, issue.12, pp.1401-1412, 2007.
DOI : 10.1038/ncb1659

C. Y. Li, The effect of antisense tyrosinase-related protein 1 on melanocytes and malignant melanoma cells, British Journal of Dermatology, vol.60, issue.6, pp.1081-1090, 2004.
DOI : 10.1016/S0169-409X(03)00105-4

K. Tominaga, Competitive Regulation of Nucleolin Expression by HuR and miR-494, Molecular and Cellular Biology, vol.31, issue.20, pp.4219-4231, 2011.
DOI : 10.1128/MCB.05955-11

M. Rehmsmeier, P. Steffen, M. Hochsmann, and R. Giegerich, Fast and effective prediction of microRNA/target duplexes, RNA, vol.10, issue.10, pp.1507-1517, 2004.
DOI : 10.1261/rna.5248604

M. Selbach, Widespread changes in protein synthesis induced by microRNAs, Nature, vol.4, issue.7209, pp.58-63, 2008.
DOI : 10.1074/mcp.M500241-MCP200

Y. Pekarsky and C. M. Croce, Role of miR-15/16 in CLL, Cell Death & Differentiation, vol.161, issue.1, pp.6-11, 2014.
DOI : 10.1038/nm.3048

J. B. Poell, A Functional Screen Identifies Specific MicroRNAs Capable of Inhibiting Human Melanoma Cell Viability, PLoS ONE, vol.7, issue.8, p.43569, 2012.
DOI : 10.1371/journal.pone.0043569.s004

M. S. Ebert and P. A. Sharp, MicroRNA sponges: Progress and possibilities, RNA, vol.16, issue.11, pp.2043-2050, 2010.
DOI : 10.1261/rna.2414110

URL : http://rnajournal.cshlp.org/content/16/11/2043.full.pdf

P. Hartmann, Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4, Nature Communications, vol.46, p.10521, 2016.
DOI : 10.2144/000113068

J. Wynendaele, An Illegitimate microRNA Target Site within the 3' UTR of MDM4 Affects Ovarian Cancer Progression and Chemosensitivity, Cancer Research, vol.70, issue.23, pp.9641-9649, 2010.
DOI : 10.1158/0008-5472.CAN-10-0527

A. Messina, A microRNA switch regulates the rise in hypothalamic GnRH production before puberty, Nature Neuroscience, vol.28, issue.6, pp.835-844, 2016.
DOI : 10.1038/nprot.2008.73

E. Leucci, Melanoma addiction to the long non-coding RNA SAMMSON, Nature, vol.10, issue.7595, pp.518-522, 2016.
DOI : 10.1186/gb-2009-10-6-r64

Q. Liu, miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes, Nucleic Acids Research, vol.55, issue.3, pp.5391-5404, 2008.
DOI : 10.1074/jbc.M705116200

URL : https://doi.org/10.1093/nar/gkn522

W. Kang, Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma, Molecular Cancer, vol.135, issue.1, pp.1-10, 2015.
DOI : 10.1053/j.gastro.2008.04.003

J. Falkenius, High expression of glycolytic and pigment proteins is associated with worse clinical outcome in stage III melanoma, Melanoma Research, vol.23, issue.6, pp.452-460, 2013.
DOI : 10.1097/CMR.0000000000000027

A. A. Rose, MAPK Pathway Inhibitors Sensitize BRAF-Mutant Melanoma to an Antibody-Drug Conjugate Targeting GPNMB, Clinical Cancer Research, vol.22, issue.24, pp.6088-6098, 2016.
DOI : 10.1158/1078-0432.CCR-16-1192

A. Grimson, MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing, Molecular Cell, vol.27, issue.1, pp.91-105, 2007.
DOI : 10.1016/j.molcel.2007.06.017

D. M. Garcia, Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs, Nature Structural & Molecular Biology, vol.18, issue.10, pp.1139-1146, 2011.
DOI : 10.1093/nar/gkp939

A. Arvey, E. Larsson, C. Sander, C. S. Leslie, and D. S. Marks, Target mRNA abundance dilutes microRNA and siRNA activity, Molecular Systems Biology, vol.4, p.363, 2010.
DOI : 10.1186/gb-2006-7-s1-s12

URL : http://msb.embopress.org/content/msb/6/1/363.full.pdf

J. M. Luna, Hepatitis C Virus RNA Functionally Sequesters miR-122, Cell, vol.160, issue.6, pp.1099-1110, 2015.
DOI : 10.1016/j.cell.2015.02.025

URL : https://doi.org/10.1016/j.cell.2015.02.025

A. K. Leung, The Whereabouts of microRNA Actions: Cytoplasm and Beyond, Trends in Cell Biology, vol.25, issue.10, pp.601-610, 2015.
DOI : 10.1016/j.tcb.2015.07.005

D. Alonso-curbelo, RAB7 Controls Melanoma Progression by Exploiting a Lineage-Specific Wiring of the Endolysosomal Pathway, Cancer Cell, vol.26, issue.1, pp.61-76, 2014.
DOI : 10.1016/j.ccr.2014.04.030

M. Vizoso, Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR, Nature Medicine, vol.39, issue.7, pp.741-750, 2015.
DOI : 10.1038/ncomms4608

F. J. Raal, Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial, The Lancet, vol.375, issue.9719, pp.998-1006, 2010.
DOI : 10.1016/S0140-6736(10)60284-X

R. S. Finkel, Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study, The Lancet, vol.388, issue.10063, pp.3017-3026, 2016.
DOI : 10.1016/S0140-6736(16)31408-8

J. D. Keene, J. M. Komisarow, and M. B. Friedersdorf, RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts, Nature Protocols, vol.101, issue.1, pp.302-307, 2006.
DOI : 10.1038/nprot.2006.47

H. H. Kim, HuR recruits let-7/RISC to repress c-Myc expression, Genes & Development, vol.23, issue.15, pp.1743-1748, 2009.
DOI : 10.1101/gad.1812509

URL : http://genesdev.cshlp.org/content/23/15/1743.full.pdf

L. Brigand, K. Barbry, and P. , Mediante: a web-based microarray data manager, Bioinformatics, vol.33, issue.suppl_2, pp.1304-1306, 2007.
DOI : 10.1093/nar/gki500

URL : https://hal.archives-ouvertes.fr/hal-00166120

D. Gilot, RNAi-Based Screening Identifies Kinases Interfering with Dioxin-Mediated Up-Regulation of CYP1A1 Activity, PLoS ONE, vol.89, issue.3, p.18261, 2011.
DOI : 10.1371/journal.pone.0018261.s007

URL : https://hal.archives-ouvertes.fr/inserm-00586840

M. Krayem, Prominent role of cyclic adenosine monophosphate signalling pathway in the sensitivity of WTBRAF/WTNRAS melanoma cells to vemurafenib, European Journal of Cancer, vol.50, issue.7, pp.1310-1320, 2014.
DOI : 10.1016/j.ejca.2014.01.021

G. K. Smyth, J. Michaud, and H. S. Scott, Use of within-array replicate spots for assessing differential expression in microarray experiments, Bioinformatics, vol.8, issue.6, pp.2067-2075, 2005.
DOI : 10.1089/106652701753307520

J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Storey, The sva package for removing batch effects and other unwanted variation in high-throughput experiments, Bioinformatics, vol.27, issue.6, pp.882-883, 2012.
DOI : 10.1093/bioinformatics/btr171