
HAL Id: hal-01646613
https://hal.science/hal-01646613

Submitted on 23 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MLweb: A toolkit for machine learning on the web
Fabien Lauer

To cite this version:
Fabien Lauer. MLweb: A toolkit for machine learning on the web. Neurocomputing, 2018, 282,
pp.74-77. �10.1016/j.neucom.2017.11.069�. �hal-01646613�

https://hal.science/hal-01646613
https://hal.archives-ouvertes.fr

MLweb: A toolkit for machine learning

on the web

Fabien Lauer
Université de Lorraine, CNRS, Inria, LORIA, 54506 Vandoeuvre-lès-Nancy, France

Abstract

This paper describes MLweb, an open source software toolkit for ma-
chine learning on the web. The specificity of MLweb is that all computa-
tions are performed on the client side without the need to send data to a
third-party server. MLweb includes three main components: a JavaScript
API for scientific computing (LALOLib), an extension of this library with
machine learning tools (ML.js) and an online development environment
(LALOLab) with many examples.

1 Introduction

MLweb is an open source software toolkit for machine learning on the web avail-
able at http://mlweb.loria.fr . A number of web-based commercial solutions
exist to enable web applications with machine learning capabilities. These are
often server-based: both training and predictions are performed by the server
with data and results traveling across the Internet to the client upon request.
This model is particularly suitable for the “big data” challenge, where heavy
computing resources are needed. However, this also raises issues regarding for
instance the privacy of data or the offline use of the prediction models. In addi-
tion, such a computing model relies on expensive computing infrastructures and
leaves a number of individuals or nonprofit organizations without an easy and
free access to machine learning capabilities. On the opposite, MLweb focuses on
these issues (privacy, offline use, accessibility to non-experts and affordability
at the individual level).

With these goals in mind, MLweb develops machine learning tools for the
web in which all computations are performed on the client side, i.e., in the
browser. Such a client-side approach has the direct combined benefits of pri-
vacy and offline use, since no data, models or predictions need to travel across
the network. However, there is currently a lack of machine learning software
following that approach, except for a few libraries dedicated to some specific
algorithm (see, e.g., [1] for deep learning). Other open-source alternatives with
a broader scope like scikit-learn [2] that might satisfy privacy and accessibility
constraints do not work on the web and do not offer the possibility to de-
velop applications easily distributed on the Internet without requiring users to

1

go through a complex installation procedure. On the opposite, MLweb just
works on many platforms without requiring any installation step. For teaching
or communication purposes, this can be used to easily set up an interactive
demonstration of a (possibly novel) learning algorithm while ensuring that it is
accessible from anywhere (even tablets and smartphones). Other potential uses
include applications for which privacy might be more valuable than efficiency,
or where the network or server constitutes the efficiency bottleneck.

2 Software Framework

MLweb includes three main components described below: a client-side web API
in JavaScript for scientific computing (LALOLib), an extension of this library
with machine learning tools (ML.js) and an online development environment
(LALOLab). It also comes with an online help including many examples and
an extended documentation in the form of a webbook.

MLweb uses only two third-party libraries, glpk.js for linear programming
and JSZip for easy data compression. They are both automatically downloaded
when installing from the source code and fetched when necessary when using
the online executables.

2.1 LALOLib: a Linear Algebra Online Library

LALOLib is a Linear ALgebra Online Library written in JavaScript to enable
scientific computing in web pages. JavaScript is the standard language for web
applications, which is both very versatile and platform-independent. However,
as a non-compiled language, it was not made for computation-intensive tasks
and few numerical libraries exist. LALOLib attempts to fill this gap with both
ease of use and efficiency in mind. With LALOLib, many common linear algebra,
statistics and optimization operations are made available to the web page. A
script within the page can for instance compute the singular values of a random
matrix with

X = rand(200,300);

singularvalues = svd(X);

This example directly calls LALOLib functions, providing an easy access
to their results. However, such a synchronous approach blocks the page (and
freezes the browser) until the functions return. To maintain the responsiveness
of the web application, LALOLib also provides an asynchronous mode based on
callbacks.

A comparison of LALOLib with other JavaScript libraries [3, 4, 5] shows
that LALOLib is both the most comprehensive and the most efficient library
for linear algebra.

Indeed, the two JavaScript libraries math.js [3] and numeric.js [4] provide
basic scientific computing support. However, they both lack important features
such as sparse solvers, eigendecomposition, singular value decomposition (SVD)
(for math.js) or statistics (for numeric.js). In terms of performance, they are also

2

Table 1: Comparison of the computing time (in milliseconds) for various stan-
dard operations obtained with Firefox 41 on a laptop with an Intel i7-3540M
CPU at 3GHz. The meaning of the operations is as follows with all matrices
having random entries. Matrix creation: create 10 matrices of size 10000× 100.
Matrix multiply: multiply a 20000 × 100 matrix by a 100 × 100 matrix. Square
linear system: solve a square system with 500 variables. Least squares: Solve
an overdetermined system with 10000 rows and 200 columns in a least square
sense. Sparse least squares: same as least squares but with 2000 columns and
only 20% of nonzero coefficients. SVD: compute the thin SVD of a 300 × 200
matrix. Eigendecomposition: compute the eigendecomposition of a 50 × 50 real
and symmetric matrix. Details on the precise functions used can be found in
the source of the page at http://mlweb.loria.fr/benchmark/index.html .

Operation LALOLib math.js numeric.js Sushi
Matrix creation 59 151 1923 73
Matrix multiply 429 3854 1420 545
Square linear sys-
tem

98 1179 158 577

Least squares 667 > 12000 10905 1751
Sparse least squares 235 N/A N/A N/A
SVD 272 N/A 484 388
Eigen-
decomposition

24 N/A 6661 N/A

behind LALOLib, in particular for large matrices, as can be seen from Table 1.
This drop in performance is partly due to the choice of matrix representation
based on an Array of Arrays. While this provides easy access to the entries of
a matrix A with A[i][j], it has two major issues. First, operations on Arrays
are not easily optimized by the browser, since the size of the Array can change
and its entries are not typed.1 Second, for each row, this creates an Array,
which is a complex object that must be handled by the garbage collector. As a
result, a matrix with many rows implies significant slow downs at every garbage
collection cycle.

To avoid these issues, LALOLib stores matrix entries in a single
Float64Array, i.e., a typed array with fixed size for which browsers offer a
much more interesting level of optimization. Sushi [5] also implements a more
efficient matrix representation and multiplication. But it can be less accurate
for more complex tasks, since it uses 32-bits floats (Float32Array) instead of
64 bits. In addition, default tolerance constants are set to large values, which
results in large errors when solving linear systems or computing an SVD. Also
note that Sushi does not provide functions for solving linear systems, and we
had to explicitly compute the matrix inverse in the experiments of Table 1.

1Note that some browsers like Chrome are less sensitive to this issue.

3

2.2 ML.js: a JavaScript Library for Machine Learning

ML.js extends LALOLib with easy to use machine learning functions for classi-
fication, regression, clustering and dimensionality reduction. For instance, the
code

model = new Classifier(SVM, {kernel: "rbf", kernelpar: 2.5, C: 10});

model.train(X,Y);

label = model.predict(x);

creates a new support vector machine classifier and trains it on examples stacked
as rows in X and labeled by Y. Then, the classifier is used to predict the label
of x. All classification and regression methods enjoy a unified interface with
functions for training, prediction, test, tuning and cross-validation.

Despite the fact that MLweb targets small to moderate scale data sets, it has
been developed with efficiency in mind, both at the coding level and in the choice
of techniques implemented for the learning algorithms. While a JavaScript
application cannot compete in terms of speed with a compiled code written for
instance in C, Table 2 shows that MLweb still yields reasonable computing times
for moderate size data sets. Note that these performances could not have been
obtained with straightforward re-implementations of the algorithms due to the
specificities of the JavaScript engines running (and optimizing) the code in the
browsers.

In addition to standard training algorithms, MLweb includes automatic tun-
ing procedures based on cross-validation and grid search or more advanced
model selection techniques involving for instance regularization paths or fast
kernel matrix updates2. Finally, models trained on large data sets with, e.g.,
LibSVM [6] or MSVMpack [7], can also be easily loaded to make online predic-
tions.

2.3 LALOLab: a Linear Algebra Online Lab

LALOLab3 is an online development environment in the flavor of Matlab based
on the scientific computing library LALOLib. It also includes the functionalities
of ML.js by default and can easily be extended with more. LALOLab accepts
commands or scripts written in JavaScript or an easy to grasp Matlab-like syn-
tax, e.g.,

x = randn(10) // generate a random vector

A = randn(100,10) // generate a random matrix

y = A*x + 0.01*randn(100)

xhat = A \ y // solve the linear system Ax = y (min_x ||Ax - y||)

2Given a value of the Gaussian kernel, Kσ(x, x′) = exp
(
−‖x− x′‖2/2σ2

)
, for some band-

width σ, we can efficiently compute the value for another bandwidth σ′ as Kσ′ (x, x′) =

(Kσ(x, x′))(σ/σ
′)2 . In addition, by choosing a grid of bandwidths {σk}nk=1 such that

σk = 2−k/2β for some constant β > 0, we have Kσk+1 (x, x′) = Kσk (x, x′)2 and we can
update each value in the kernel matrix with a simple multiplication.

3LALOLab can be used simply by opening a browser at http://mlweb.loria.fr/lalolab/
or from the source code of MLweb.

4

Table 2: Training time (in seconds) on random (or well-known) data sets of
size #examples×dimension obtained with Firefox 53 on a laptop with an Intel
i7-3540M at 3GHz. These experiments can be reproduced by running examples
in LALOLab.

Method Data set size Time
Least squares regression 100000×1000 8.5

100000×1000 (sparse) 3.0
100000×2000 (sparse) 6.9

LASSO 442×10 (diabetes) 0.3
10000×100 5.1
1000×500 14.5

LARS 442×10 (diabetes) 0.01
entire regularization path 1000×500 3.2

5000×500 13.4
Kernel ridge regression 2000×1000 2.8

5000×1000 17.4
SVM classification (rbf) 1300×18 (image seg.) 12.2
(tuning C and σ over a 5×10
grid)
SVM (one-vs-all, rbf) 500×256, 10 classes (usps) 0.5
Crammer&Singer multiclass-
SVM (rbf)

500×256, 10 classes (usps) 61.4

K-nearest neighbors (tuning
K by leave-one-out cross-
validation)

500×256, 10 classes (usps) 4.9

Spectral clustering 500×100 3.5
1000×100 10.8

5

(a)

(b)

(c)

(d)

Figure 1: LALOLab web interface.

plot(y - A*xhat) // plot the error

norm(x - xhat) // compute the estimation error ||x - xhat||

LALOLab divides the screen in four parts (see Fig. 1): (a) a main panel
showing the results, (b) a command line, (c) a multi-line input block for writing
scripts and (d) the online help including a list of all implemented functions.
Illustrative examples are provided with the help of most functions and links to
a webbook explaining machine learning topics in more details are also included.
This provides a convenient platform to experiment with MLweb.

2.4 Extending MLweb

MLweb is meant to provide the basic building blocks for machine learning on
the web together with a solid implementation of a few baseline methods rather
than an exhaustive library of algorithms. Therefore, it was made to be easily
extended with additional toolboxes. This can be done with different levels of
expertise depending on the desired efficiency and the nature of the new features.
For instance, a toolbox can be written with the Matlab-like syntax of LALOLab
and easily converted into JavaScript by clicking a button in LALOLab. If more
efficiency is needed, the documentation provides a set of guidelines to avoid
common pitfalls and write faster code. Storing the resulting source file in the
toolboxes folder and running make finishes to include the toolbox in LALOLab.

6

3 Conclusions

MLweb provides an efficient JavaScript implementation of basic functions for
numerical computing together with a solid basis of machine learning tools for
the web. MLweb will continuously be extended with new features and learn-
ing algorithms. We are also considering the now experimental features of the
JavaScript language regarding shared-memory parallel processing in order to
benefit from multi-cores architectures in a transparent manner for the user.

Acknowledgements

The author thanks Pedro Ernesto Garcia Rodriguez for his contribution to the
software.

References

[1] A. Karpathy, Convnetjs: Deep learning in your browser (2014).
URL http://cs.stanford.edu/people/karpathy/convnetjs/

[2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Ma-
chine learning in Python, Journal of Machine Learning Research 12 (2011)
2825–2830.

[3] J. de Jong, math.js (2013).
URL http://mathjs.org/

[4] S. Loisel, Numeric javascript (2012).
URL http://numericjs.com/

[5] K. Miura, T. Mano, A. Kanehira, Y. Tsuchiya, T. Harada, Miljs :
Brand new javascript libraries for matrix calculation and machine learning,
arXiv:1502.06064 (2015).

[6] C. Chang, C. Lin, LibSVM: a Library for Support Vector Machines,
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/ (2001).

[7] F. Lauer, Y. Guermeur, MSVMpack: a multi-class support vector machine
package, Journal of Machine Learning Research 12 (2011) 2269–2272, http:
//www.loria.fr/~lauer/MSVMpack.

7

