B. Besselink, U. Tabak, A. Lutowska, N. Van-de-wouw, H. Nijmeijer et al., A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control, Journal of Sound and Vibration, vol.332, issue.19, pp.332-4403, 2013.
DOI : 10.1016/j.jsv.2013.03.025

U. Hetmaniuk, R. Tezaur, and C. Farhat, Review and assessment of interpolatory model order reduction methods for frequency response structural dynamics and acoustics problems, International Journal for Numerical Methods in Engineering, vol.51, issue.1, pp.90-1636, 2011.
DOI : 10.1002/nme.212

J. V. Aguado, A. Huerta, F. Chinesta, and E. Cueto, Real-time monitoring of thermal processes by reduced-order modeling, International Journal for Numerical Methods in Engineering, vol.18, issue.1, pp.991-1017, 2015.
DOI : 10.1016/j.cma.2013.09.003

Y. Aoyama and G. Yagawa, Component mode synthesis for large-scale structural eigenanalysis, Computers & Structures, vol.79, issue.6, pp.605-615, 2001.
DOI : 10.1016/S0045-7949(00)00165-6

R. Shioya and G. Yagawa, Parallel finite elements of ten-million dofs based on domain decomposition method, WCCM IV, Computational Mechanics-New Trends and Applications, pp.1-12, 1998.

C. Farhat, J. Li, and P. Avery, A FETI-DP method for the parallel iterative solution of indefinite and complex-valued solid and shell vibration problems, International Journal for Numerical Methods in Engineering, vol.47, issue.3, pp.63-398, 2005.
DOI : 10.1007/978-3-642-56118-4

D. De-klerk, D. J. Rixen, and S. N. Voormeeren, General Framework for Dynamic Substructuring: History, Review and Classification of Techniques, AIAA Journal, vol.2002, issue.3, pp.46-1169, 2008.
DOI : 10.1002/eqe.513

A. L. Hale and L. Meirovitch, A general substructure synthesis method for the dynamic simulation of complex structures, Journal of Sound and Vibration, vol.69, issue.2, pp.69-309, 1980.
DOI : 10.1016/0022-460X(80)90615-X

M. F. Kaplan, Implementation of automated multilevel substructuring for frequency response analysis of structures, 2001.

W. Gao, X. S. Li, C. Yang, and Z. Bai, An Implementation and Evaluation of the AMLS Method for Sparse Eigenvalue Problems, ACM Transactions on Mathematical Software, vol.34, issue.4, pp.5-6, 2008.
DOI : 10.1145/1377596.1377600

D. J. Rixen, A dual Craig???Bampton method for dynamic substructuring, Journal of Computational and Applied Mathematics, vol.168, issue.1-2, pp.383-391, 2004.
DOI : 10.1016/j.cam.2003.12.014

URL : https://doi.org/10.1016/j.cam.2003.12.014

A. Shanmugam and C. Padmanabhan, A fixed???free interface component mode synthesis method for rotordynamic analysis, Journal of Sound and Vibration, vol.297, issue.3-5, pp.664-679, 2006.
DOI : 10.1016/j.jsv.2006.04.011

N. Bouhaddi and J. P. Lombard, Improved free-interface substructures representation method, Computers and Structures, pp.269-283, 2000.
DOI : 10.1016/s0045-7949(99)00219-9

. U. Ch and . Bucher, A modal synthesis method employing physical coordinates, free component modes, and residual flexibilities, Computers & Structures, vol.22, pp.559-564, 1986.

C. Farhat and M. Géradin, On a component mode synthesis method and its application to incompatible substructures, Computers & Structures, vol.51, issue.5, pp.51-459, 1994.
DOI : 10.1016/0045-7949(94)90053-1

D. R. Martinez, A. K. Miller, and T. G. Carne, Combined experimental/analytical modeling of shell/payload structures, Sandia National Labs, 1985.

D. M. Tran, Component mode synthesis methods using partial interface modes: Application to tuned and mistuned structures with cyclic symmetry, Computers & Structures, vol.87, issue.17-18, pp.1141-1153, 2009.
DOI : 10.1016/j.compstruc.2009.04.009

URL : https://hal.archives-ouvertes.fr/hal-01537665

G. Vermot-des-roches, Frequency and time simulation of squeal instabilities Application to the design of industrial automotive brakes, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00594224

K. Brahmi, N. Bouhaddi, and R. Fillod, Reduction of Junction Degrees of Freedom in Certain Methods of Dynamic Substructure Synthesis, Proceedings-SPIE The International Society for Optical Engineering. SPIE International Society for Optical, pp.1763-1769, 1995.

D. M. Tran, Component mode synthesis methods using interface modes. Application to structures with cyclic symmetry, Computers & Structures, vol.79, issue.2, pp.1141-1153, 2001.
DOI : 10.1016/S0045-7949(00)00121-8

URL : https://hal.archives-ouvertes.fr/hal-01537665

O. Dorival, P. Rouch, and O. Allix, A substructured version of the variational theory of complex rays dedicated to the calculation of assemblies with dissipative joints in the medium???frequency range, Engineering Computations, vol.23, issue.7, pp.23-729, 2006.
DOI : 10.1016/S0045-7825(03)00352-9

URL : https://hal.archives-ouvertes.fr/hal-01023404

F. Tisseur and K. Meerbergen, The Quadratic Eigenvalue Problem, SIAM Review, vol.43, issue.2, pp.235-286, 2001.
DOI : 10.1137/S0036144500381988

H. Hassis, PROPOSITION OF A NEW APPROACH FOR THE SUBSTRUCTURE METHOD, Journal of Sound and Vibration, vol.232, issue.4, pp.659-668, 2000.
DOI : 10.1006/jsvi.1999.2776

P. Garambois, S. Besset, and L. Jézéquel, Various double component mode synthesis and sub-structuring methods for dynamic mixed FEM, European Journal of Mechanics - A/Solids, vol.53, pp.53-196, 2015.
DOI : 10.1016/j.euromechsol.2015.04.005

URL : https://hal.archives-ouvertes.fr/hal-01266856

R. J. Allemang, The Modal Assurance Criterion -Twenty Years of Use and Abuse, Sound and Vibration, pp.14-20, 2003.