
HAL Id: hal-01644356
https://hal.science/hal-01644356

Submitted on 8 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Controller Synthesis for the IoT
Arthur Gatouillat, Youakim Badr, Bertrand Massot

To cite this version:
Arthur Gatouillat, Youakim Badr, Bertrand Massot. Hybrid Controller Synthesis for the IoT. The 33rd
ACM/SIGAPP Symposium On Applied Computing (ACM SAC), Apr 2018, Pau, France. pp.778-785,
�10.1145/3167132.3167219�. �hal-01644356�

https://hal.science/hal-01644356
https://hal.archives-ouvertes.fr

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

Hybrid controller synthesis for the IoT
Arthur Gatouillat

Univ Lyon, INSA Lyon
LIRIS, UMR5205

arthur.gatouillat@insa-lyon.fr

Youakim Badr
Univ Lyon, INSA Lyon

LIRIS, UMR5205

youakim.badr@insa-lyon.fr

Bertrand Massot
Univ Lyon, INSA Lyon

INL, UMR5270

bertrand.massot@insa-lyon.fr

ABSTRACT

The Internet-of-Things designates the interconnection of a variety
of communication-enabled physical objects, and IoT-based
systems and devices must operate with a deterministic behavior and
respect user-defined system goals in any situation. We thus defined
hybrid controller synthesis for decentralized and critical IoT-based
systems relying on a set of rules to handle situations with
asynchronous and synchronous event processing. This framework
defines a declarative rule-driven governance mechanism of locally
synchronous sub-systems enabling the hybrid control of IoT
systems with formal guarantees of the satisfaction of system-wide
QoS requirements. In order to prove the practicality of our
framework, then applied if to a critical medical Internet-of-Things
use case, demonstrating its usability for critical IoT applications.

CCS Concepts
• Computer systems organization➝Dependable and fault-

tolerant systems and networks • Computer systems
organization➝Embedded and cyber-physical systems.

Keywords

Adaptive IoT; Hybrid controller synthesis; Rule-based control

1. INTRODUCTION
The Internet of Things (IoT) paradigm designates the
interconnection of a variety of communication-enabled physical
objects (e.g. sensors, actuators, robots, wearable devices, etc.)
integrated into wide-scale systems. In many IoT-based systems for
critical applications (e.g. healthcare, traffic control, building
automation, etc.), connected objects have very limited hardware
and their usages require a continuous control in an always evolving
physical world. More particularly, IoT-based systems and devices
must operate with a deterministic behavior and respect user-defined
system goals in almost any situation (e.g. device failure, loss of data
packages, low power consumption, etc.).

In response to such requirements, self-adaption software
frameworks were developed [10, 17, 18]. Notably, self-adaptive
software systems (SAS), which designates the study of adaptation
of centralized or distributed applications in response to changes in
digital environments. These changes are mainly due to human
interventions and systems must maintain an appropriate quality-of-
service and safe behavior. Such systems are typically based on
closed feedback loops to adjust their behaviors to either internal
changes (such as changes in software architectures and available
services), or external changes (such as changes in user loads and
contextual information). In order to enable self-diagnostics
capabilities for adaptive systems, monitors are implemented to
sense internal and external contextual information that can be used
to trigger self-adaptation strategies. These strategies aim at the
guarantee of expected functional and non-functional
requirements.From the IoT perspective, self-adaptation is a salient
property of connected devices. It allows smart objects to be
configured and adapted to extreme conditions while preserving the
target system requirements in terms of automation, security and
safety goals. Self-adaptation mechanisms driven by adaptation
goals dynamically modify smart objects behavior. Discrete

controllers for IoT-based applications have also been proposed to
ensure that they evolve following predefined state transition
automata [20, 21]. Nevertheless, they rely on the use of
synchronous programming languages and event processing, and
assume that controlled systems should satisfy the synchrony
hypothesis, by which all required events should simultaneously be
available to trigger a transition from one state to another. As result,
the computing time to react in response to events should be
negligible in comparison with the rate of events generated by the
system itself [9]. Otherwise the reactive system will fail to timely
respond to changes. While this hypothesis holds for small-size IoT-
based systems, it becomes invalid for complex systems (i.e.,
systems of systems) because of the large number of generated
events and the difficulty of their synchronization. This mandates
the investigation of hybrid discrete controllers and adaptation
strategies to handle synchronous and asynchronous event
processing and to ensure secure behavior based on state transitions,
in order to control large-scale IoT-based systems.

Yet another important issue in self-adaptive systems is the
specification of the monitoring logic in adaptation strategies. A
monitoring and adaptation logic can be expressed with either
imperative programming or imperative programming approaches.
The imperative programming approach, implemented in languages
such as Java, C, Perl and many others specialized languages (i.e.
LNT [1] and BZR [6]), defines the control of the sequence flow of
instructions to be executed. However, a purely manual imperative
approach for IoT-based control is not appropriate. Indeed, IoT-
based systems are highly distributed, heterogeneous and might
account hundreds or thousands of devices. The description of such
systems in purely imperative languages will lead to a massive and
difficultly maintainable codebase, resulting in the need of
investigating a declarative and decentralized approach to specify
the monitoring logic in self-adaptation strategies.

The main advantage of a declarative approach relies on its ability
to not specify directly the sequence flow of instructions to be
executed by the system in response to changes. SQL queries,
functional languages, business rules and production rules are few
examples of declarative programming. Particularly, rule-based
controls have recently gained interest for home-automation and IoT
environments with a special focus on monitoring and adaptation
strategies expressed in terms of IF-Condition-Then-Action rules [2,
3, 19]. Conditions are logic expressions over events generated by
the IoT systems and/or contextual information whereas actions are
operations that must be trigger in order to self-adapt the IoT system.
Rules-driven controllers in large scale and critical IoT-based
systems lacks formal verification mechanisms that can avoid
conflicts, dead locks and inconsistent situations. As a matter of fact,
the translation of a declarative based logic into an imperative logic
is necessary to cope with both the verification capabilities of
imperative approaches and the expressiveness and modularity of
declarative approaches.

In this paper, we propose a hybrid controller synthesis for
decentralized and critical IoT-based systems. Our hybrid controller
relies on a set of rules to handle situations with asynchronous and
synchronous event processing. In the synchronous scheme, all

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

events must simultaneously be available in a near real-time manner
in order to check whether a rule’s condition holds and then triggers
its corresponding action. In the asynchronous scheme, events are
queued upon their arrival. Once all events are available, the
controller checks whether any rule’s condition holds. Our hybrid
controller synthesis emphasizes on non-functional properties to
express its self-adaptation behaviors. Monitors on quality of service
(QoS) of non-functional properties generate streams of events. In
order to validate our controller, we develop an e-health continuous
monitoring use-case, where IoT-based systems are used to remotely
monitor risk patients. We also implement a declarative rule-driven
governance mechanism of locally synchronous sub-systems
enabling the hybrid control of smart homes and smart objects to
guarantee the satisfaction of QoS requirements specified in service
level agreements (SLA). SLAs specify end-user requirements in
terms of functional and non-functional properties, such as safety,
health awareness and resource awareness. By ensuring separation
of concerns for adaption objectives, context monitoring and
adaptation strategies, our system is able to handle changing user
requirements and to redeploy the appropriate controllers if
necessary.

The remaining paper is organized as follows: section 2 describes
related works on self-adaptation in software systems, classical
control and home-automation. Section 3 briefly introduces the e-
Health use-case applied to our self-adaptation system, focusing on
the safety property in the context of healthcare. Section 4 introduces
the notion of layered SLAs, the global QoS ontology and our rule
grammar. The implementation of our hybrid controller and its
experiments are described in section 5. Eventually, research
perspectives and conclusions about our work are given in section 6.

2. RELATED WORKS
The work described in this paper is at the intersection of three fields
of study: self-adaptation in software systems, classical control and
home-automation. In fact, software adaptation contributions study
the integration of techniques enabling better software reaction to a
changing digital environment. In most contributions, variations of
monitor analyzer planner executor and knowledge feedback
(MAPE-K) loops as detailed in [11]. In this feedback loop,
monitors (i.e., sensors) are used to trigger system adaptation
deployed using executors (i.e. actuators) using analyzers and
planners provided with shared knowledge about the system.
Because of its genericity, MAPE-K feedback loops can be adapted
to deal with various self-adaptation concerns. For instance, the
DYNAMICO adaptation framework [15–17] introduces a self-
adaptation framework based on three distinct but communicating
MAPE-K loops, each of the loop being used to control a specific
aspect of software adaptation (i.e., adaptation of the monitoring
infrastructure, adaptation of the control objectives and finally
system adaptation). Formal adaptation frameworks based on
MAPE-K loops have also been proposed in [10, 18], where
adaptation strategies are modeled as plan automata. However, for
both these contributions, adaptation strategies must be specified
manually by the end-user, and such approach lacks expressivity and
is thus difficult to apply to wide scale systems, where global
adaptation strategies can be very complex. Moreover, typical
DYNAMICO implementations (i.e. SMARTERCONTEXT monitoring
infrastructure with the QoS-CARE/FRASCATI middleware [15])
are not relevant to distributed smart objects with limited resources.

Automated controller synthesis was studied in the control
community, more particularly under the field of discrete controller
synthesis (DCS). In such approach, controllers are synthesized
automatically from a labeled transition system description of the
functional elements of the system to be controlled and a set of
control objectives (also called a control contract) usually specified
as rules [4–6, 20, 21]. The DCS community relies on the use of

synchronous languages (e.g. SIGNAL [13] or Heptagon/BZR [6, 7])
to specify target systems and control objectives. Synchronous
languages enable the specification of the components of the system
as concurrent labeled transition systems. Labelled transitions
systems model functional and non-functional behavior using two
sets, one representing the states of the system and the other
representing the transitions between the states. Transitions are
associated with variables over functional or non-functional
properties, which are categorized as either controllable or non-
controllable in the discrete controller synthesis community.
Controllable variables can be triggered externally by the controller
in order to verify control objectives, while non-controllable
transitions can only be triggered internally and the triggering of
transitions associated with non-controllable variables cannot be
forced. Such techniques have been successfully used to achieve
functional control of smart houses in [20]. However, the study was
limited to only a few sensors and actuators, are the scalability issue
was not explored.

Globally asynchronous locally synchronous systems are a category
of systems which exhibit a global asynchronous behavior with local
subsystems adopting a synchronous behavior [14]. Considering the
IoT still is mainly built around networks of gateways controlling
smaller networks of devices, this is model of computation is a good
abstraction for such systems. Indeed, because the number of event
in a gateway-controlled sub-network is limited because of the
smaller number of devices connected to a single gateway, the
synchrony hypothesis is verified. However, when a global view of
the system is adopted, where numerous gateways are
interconnected and communicate, the high number of event
generated mandated an asynchronous approach. While this model
of computation is typically used to describe very low-level systems
[14], SystemJ, a higher-level system specification language, was
developed [12]. Such language was used along with data-
compression to specify IoT-based systems [8]. However, this
language does not propose automated controller generation, which
is a key aspect of controller design for the IoT. Indeed, the changing
nature of IoT systems when sensors and actuators can be added or
removed to the network at any moments mandates the presence of
automation tools. This dynamic nature of IoT systems also calls for
great maintainability, and is penalized by using centralized
languages such as SystemJ.

Rule-based control strategies was widely studied by the home
automation community. This field of study focuses on improving
quality of life by instrumenting houses with a wide variety of
sensors, actuators or gateways, in order to enable better monitoring
and control of houses occupants on their environment. The ultimate
goals of this community are broad, but they can be summarized as
the enabling ambient intelligence to achieve better home lifecycle,
and perform self-adaptation to address a variety of concerns such
as energy efficiency, safety, security, comfort or remote patient
monitoring [3]. More particularly, rule-based monitoring
infrastructure were used to enable remote elderly adults monitoring
and assistance [19] or to provide assisted decision-making in
medical situations [2]. Unfortunately, such solutions typically lack
any formal analysis or guarantees of non-functional properties, and
potential devices’ failure are not considered, which limits their use
for critical applications.

Our contribution is at the center of the contributions described in
this section. By adopting a hybrid approach by using asynchronous
rules as a driver of discrete controller synthesis of synchronous
subsystems, and by adapting software adaptation tools enabling the
management of changing monitoring infrastructure and control
objectives, our approach is a comprehensive answer to the
challenges of wide IoT-based systems control.

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

3. MOTIVATION CASE STUDY
As a motivation case study, we consider the remote monitoring of
a set of patients at risk for cardiac malfunction. To successfully
achieve this goal, patients are equipped with a variety of body-
wearable biomedical sensors that continuously monitor a wide
range of biomedical signals (e.g. cardiac and respiratory activity,
physical activity, electrodermal activity). Such physiological
sensors can be used to detect suspicious health events that can
trigger medical response if deemed necessary. Such body- wearable
sensors are battery operated, and feature limited processing and
storage capabilities because of the energy consumption constraints
brought associated with battery operation. Additionally, the living
environment is also continuously monitored, using both battery
operated and continuously powered sensors. As a result, the overall
system is built around several instrument houses occupied by
several instrumented patients. Consequently, our adaptation
framework must be scalable and modular, and adding a patient and
a house in our framework must be a transparent operation.

As in most IoT-based systems, devices used to monitor patients
present with strong constraints in terms of resources and
communication capabilities: the computing abilities of monitoring
devices are very limited (CPU frequency up to a few hundreds of
megahertz), as well as storage (up to a few megabytes) and volatile
memory (up to a few hundreds of kilobytes). Strong resources
constraints, especially in the case of battery operated devices, has
implications on the communication protocols used by these
wireless objects. Indeed, in order to maintain a good battery life,
the wireless communication protocols used in such objects must be
lightweight, both in terms of physical characteristics and software
requirements, in order to avoid excessive communication overhead.

Considering the adaptation requirements of this medical IoT-based
system, this case-study is of peculiar interest. Indeed, the adaptation
goal is to guarantee robust and continuous monitoring of the
patients, and it is achieved considering the qualitative safety quality
of service property. To satisfy this goal, the adaptation strategy
considers three quality of service factors: the resource-awareness
factor in which adaptive behavior is triggered using devices
resources monitoring, the resilience factor, which is verified
through the substitution of failed objects with sub-optimal but
functional alternatives, and the healthcare awareness factor (i.e.,
the definition of patient specific monitoring threshold used to
trigger medical or technical intervention).

These adaptation goals mandate the implementation of safety-
enabled smart homes for each patient. In each of these smart-
homes, a flock of resources-aware sensors are deployed and used
to satisfy self-adaptation requirements in terms of resource
consumption, resilience and external assistance. The adaptation
strategy is thus based on the behavioral modification of smart-
sensors by remotely modifying their configuration parameters
based on a set of control objectives, specified as a set of rules, or
the triggering of external medical response if monitored health-
parameters exceed specified thresholds. In the following sections,
we limit ourselves with a few patients, equipped with identical
biomedical and environmental sensors:

• A battery-operated and multi-function heart sensor,
including heart rate (HR), heart rate variability (HRV)
and respiratory measurement (RR). The sensor exposes
streaming services to acquire these measurements. It also
monitors its battery level and can determine if it is
unattached. The sensor’s low-battery failsoft mode can
be internally and remotely triggered to extend the battery-
life. In the low-battery failsoft mode, the respiration
measurements are stopped, as well as the computation of
the HRV parameters. In this mode, the sensor will not be

able to determine its attachment status, and the HR
measurements are not streamed in real-time but they are
rather sent every five minutes as an average value.

• A battery operated electrodermal activity (EDA) sensor,
which exposes a single streaming measurement service.
Similarly to the cardiac and respiratory activity sensor, it
is equipped with self-battery monitoring capability and a
failsoft mode that can be internally or externally
triggered.

• Line powered ambient sensors such as position sensor
(PO) and occupancy [YB1]sensor (CO). The position
sensor streams the coordinates of the monitored patient
within the space whereas the occupancy sensor detects
the presence of the patient in their living environment.
These sensors can be remotely activated and turned-off.
Since they are line powered, they do not require self-
battery monitoring.

These ambient and critical medical sensors are embedded in the
houses and are worn by the monitored patients. Fixed and mobile
gateways, such as fixed Raspberry Pis or mobile smartphones, are
wirelessly connected to the sensors using low-energy protocols
(i.e., Bluetooth). They also are connected to service-oriented
analytical and medical framework through an Internet-related
protocol (i.e., HTTP RESTful API). The self-adaptation framework
is implemented in the service-oriented analytical framework and
the gateways. The global control architecture is described in the
next section.

4. HYBRID CONTROLLER SYNTHESIS

4.1 Global Framework Description
In order to enable self-adaptation of decentralized and critical IoT-
based systems, we introduce a hybrid self-adaptation framework as
illustrated in Figure 1. The framework seeks to enable declarative
rule-driven governance mechanism not only with respect to
changes in the ambient environment, but also changes in control
objectives or in the monitoring infrastructure. The framework
extends the DYNAMICO reference architecture [17] to the realm
of the IoT, taking into considering sensors’ resources awareness
and decentralized nature of IoT-based systems. Indeed,
DYNAMICO aims at designing and implementing self-adaptive
software, where control objectives, adaptation strategies and the
monitoring infrastructure are considered as three interacting but
distinct feedback control loops. By ensuring separation of concerns
for adaption objectives, context monitoring and adaptation
strategies, DYNAMICO architecture and its MAPE-K control
loops are able to handle changes in user requirements and to adjust
itself accordingly.

The hybrid self-adaptation framework includes several
components, namely the asynchronous rule engine, asynchronous
controllers, synchronous monitors, and synchronous subsystems
each of which comprises battery powered physical devices, line
powered physical devices and gateways. These components
interact through three closed loops; The higher-level loop is the
control objectives feedback loop, which dictates the reaction of the
system to changing control objectives (i.e. in our case, changing
control in the SLA). The lower-level loop is the monitoring
feedback loop, and it enables the IoT-based system with adaptation
capabilities with respect to changing monitoring infrastructure.
This feedback loop also infers context variables to be measured
from the contracted QoS requirements as specified in the service
level objectives of the SLAs, and adapts or redeploys relevant
monitors with respect to updated QoS obligations. The last
feedback control loop describes target system regulation strategies
to preserve the contracted QoS.

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

In the IoT context, the monitoring feedback loop and the adaptation
feedback loop are implemented in gateways, measuring and
controlling a set of connected sensors and actuators. The control
objectives adaptation feedback loop, because of its higher-level
nature, is implemented in centralized servers, controlling
distributed synchronous controllers.

Figure 1. Hybrid self-adaptation framework

As displayed in Figure 1, the three feedback control loops are
connected through four distinct interactions. The first interaction (i)
holds between the control objectives feedback loop and the
adaptation and monitoring feedback loops and describes the
deployment of new control and monitoring strategies that are
triggered by changes in control objectives (QoS monitoring).

For example, the resource-aware adaptation in our use-case deals
with the sensors’ battery levels. Accordingly, the monitoring and
control infrastructure will measure and adapt taking into account
battery level variables. These variables are thus used to trigger
adaptations within the adaptation feedback loop. Battery level
monitors must consequently be implemented in the monitoring
feedback loop.

The second interaction (ii) describes the communication between
the monitoring feedback loop and the control objectives feedback
loop. In an asynchronous hybrid context, this interaction is
triggered when the monitoring feedback loop detects the necessity
of a change in the control objectives. For instance, if a battery-
operated sensor becomes unresponsive because of an emptied
battery, an eventual control strategy should be applied to infer the
health status of the monitored patient from environmental sensors.

The third interaction (iii) holds between the monitoring feedback
loop and the adaptation feedback loop and is used when abnormal
monitoring events occur without mandating changes in the control
objectives. This interaction typically performs predictive
adaptation, where preemptive adaptation actions are taken in order
to avoid later adaptation of critical situations. For instance, in our
medical IoT use-case, this interaction is active when a monitor
detects a higher than usual long-term battery drain[YB2]. In order
to keep the system in a quasi-optimal non-functional state, the
triggering of the low-battery failsoft mode occurs at a higher battery
percentage, in order to prevent the sensor undergo critical battery
failure.

The last interaction (iv) takes place between the adaptation
feedback loop and the monitoring feedback loop. It represents
streams of captured events from the internal context of the
monitoring feedback loop. It also verifies the monitoring system
consistency after an adaptation occurred. For example, it checks if
sensors subsided to a failed sensor are in a functional state, to
guarantee constant QoS across the whole adaptation process.

The articulation of these components through feedback loops is
straightforward: the asynchronous rule-engine triggers both
adaptive behavior or controller resynthesis if a control objective,
and thus a control rule, changes. The newly synthesized controller
is then deployed to the appropriate gateways at runtime. The system
thus self-adapts without any execution interruption.

As described in Figure 2, the controller synthesis self-adaptation
process relies on three ontologies, namely the SLA ontology, the
failure ontology and the expert knowledge ontology. In this figure,
the objectives analyzer, objectives controller and adaptation
analyzer denotes elements of the objectives MAPE-K feedback
loop and the adaptation MAPE-K feedback loop. These elements
are embedded in the global MAPE-K loops described in Figure 1,
and can be seen as standard adaptation-enabling elements.

Figure 2. Controller synthesis process

The integration of the DYNAMICO-based self-adaptation
reference architecture with an asynchronous rule-based
specification of control objectives and synchronous discrete
controller synthesis enables safe control of critical IoT-systems. In
the following sub-sections, we introduce every component from a
top-down perspective using layered SLAs. We also introduce the
QoS ontology and the cardiac sensor failure ontology and
demonstrate how the discrete synchronous specification can be
formally validated with respect to the contracted QoS requirements.

The hybrid nature of our self-adaptation framework comes into
play when considering the global system: the asynchronous rule-
engine, because of the mass of system-generated event, are queued
upon arrival and are processed using a first-in-first-out strategy.
Once the buffered events are processed asynchronously by the rule
engine, synchronous action can be sent to the controlled sub-
systems. The subsystem monitoring occurs synchronously, because
of the small size of the considered sub-systems.

4.2 Multi-Level SLA Adaptation
The complexity and the distributed nature of IoT systems mandate
a hierarchical separation of SLAs to accurately represent functional
and non-functional guarantees at different granularity levels. Since
our use-case describes human centric IoT applications, an SLA is
required to capture expected level of services by patients and
medical staffs. We describe how the SLAs are scattered throughout
the IoT-based system.

System-level SLAs designate contracts between end-users and
services providers at the system level. Indeed, end-users do not
need finer granularity to specify their requirements at sensors and
actuators levels. Instead, they express system-level objectives and
specify global functional and non-functional requirements. System-
level SLA are then rewritten into fine-grained SLAs at the device
level for further analysis.

Device-level SLAs represent guarantees provided by
manufacturers about their devices’ functional and non-functional

Discrete controller
synthesis

DYNAMICO: Adaptation analyzer

DYNAMICO: Discrete controller

Non-functional LTS
for each sensor

Sensor
non-functional

states

Non-functional
transitional rules

SLA ontologyFailure
ontology

Control
objectives

+ functional LTS

Expert
knowledge

DYNAMICO: Objectives analyzer and controller

DYNANMICO: (ii) DYNANMICO: (ii)

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

properties. These SLAs are closely related to physical and
operational device characteristics.

It is worth noting the difference between smart devices and simpler
devices when considering device SLAs. Indeed, smart devices
exhibit capabilities to interact with their environments and adjust
their configuration parameters. As a result, smart devices can be
reconfigured even if their SLAs change over time. However, SLAs
of simple devices remain static and their SLAs can only be slightly
modified. Simple devices are thus black-boxes designed by
manufacturers to have predefined functional and non-functional
properties that cannot be reconfigured over time. The finer
granularity of device-level SLAs enables optimization and
reasoning at the system scale by providing precise system
descriptions.

Human-level SLAs specify personal characteristics differentiating
users (i.e., patients) in human-centric IoT systems. The presence of
human in the control loop justifies the accurate description of the
system properties (i.e., biological properties) being controlled or
monitored. These system properties can greatly vary from one
individual to another in terms of various pathologies that can
impact physiological parameters.

Expressions in each of these SLAs can be mapped to QoS factors,
as described in the ontology in Figure 3. For instance, the resource
awareness QoS factor is typically a device-level SLA because of
resources variability between devices (e.g. continuously powered
sensors do not have the need for a low battery SLO obligations,
while battery operated sensors do). The resilience QoS factor is
typically a system level SLA, where resiliency is specified at the
system level. For example, if a sensor is failing, it is then subsided
by other sensors in order to compensate for the loss of information
caused by sensor malfunction. However, the health-awareness QoS
factor is a human-level SLA. In our use-case, the cardiac activity is
monitored in order to detect and prevent cardiac malfunctions.
However, cardiac malfunction is associated with different diseases
producing different effects on heart activities. In order to accurately
detect a specific heart malfunction, a corresponding QoS factor
must thus be adapted for each monitored patient, leading to the
establishment of a human-level SLA.

Figure 3. QoS ontology

From the self-adaptation perspective, we use the SLA as a system
input. Rules and requirements specified in SLAs, especially, the set
of rules provided as service level objectives (SLO) will be used to
generate controllers, guaranteeing that the system behaves
according to the SLA and adapts itself with respect to
environmental changes.

In order to express system-wide requirements to be included in
SLAs, we propose a rule-based language to specify control
objectives. In the following sub-section, we present the rule
grammar and it semantic. We then explain the generation of
discrete synchronous controllers and their coordination with
asynchronous controllers.

4.3 Modeling Rule-Based Control Objectives
Rules to specify control objectives follow the Event-Condition-
Action (ECA) pattern. They are defined as a set of asynchronous
rules each of which is activated in response to the evaluation of a
condition (or a set of conditions) by executing the corresponding
action. Rules describe adaptation strategies based on events
generated by sensors and captured by monitors, related to QoS
factors and predefined SLOs. Because rules describe adaptation
strategies with respect to device-related monitored variable, they
can be considered as control input and objectives. A rule has the
following syntax:

 Rule name

ON event

IF conjunctions of condition are found to be true

 DO actions are executed

 End

The basic structure is a list of conditions and actions. A condition
denotes a constraint or a filter, acting on data and events in a
specific domain of interest. Data and events are generated by
sensors, actuators or object instances (i.e., complex data structures).
Once the condition holds, its corresponding action is executed,
taking the matching data or events as parameters.

Action refers to the execution of device services, taking as
parameters events and data specified in the control strategy. The
example below illustrates a rule. Its syntax follows the rule
language grammar as illustrated in Figure 4.

 SENSOR ecgSensor TYPE ECGSensorType
 SENSOR posSensor TYPE PositionSensorType
 Rule "Sensor-Low Battery"
 ON batteryLevelLow
 IF

 $e: ECGSensorType(batteryLevel < 20%)
$s: posSensor(batteryLevel < 10%)

 DO
$e.setFailSoftMode();

 End

The first line declares an instance of a device, called ecgSensor,
of type ECGSensorType. Similar to objects and classes in the
object-oriented paradigm, the device type is a common data
structure of similar devices. Each device is described by a set
attribute value pairs. Attributes may hold information about devices
such as characteristics, contextual information, configuration
parameters, and their sensing data from the physical environment.

As illustrated in the example, the rule starts with the keyword Rule
followed by a string, denoting the rule’s name. The line in the left-
hand side of the rule is the conjunction of logical predicates, each
of which is written on a separate line. The predicate can be applied
on individual device instances or on all instances of a given device
type, defined with the keyword TYPE in the rue-based language (see
Figure 4). The predicate works as a function with a condition
(called also filter condition) as its input parameter. The filter
condition is a logical expression on device attributes. The logical
operator “And” between predicates is explicitly omitted. In the
before mentioned example, there are two predicates:

• The ECGsensorType(filter-condition) predicate applies the
filter_condition on all device instances, having the ECG
sensor as their type. The filter condition is not more than a
logical expression on ECG senor attributes. All ECG sensors
that have their batteryLevel attributes less than 20% are
selected, making the rule’s condition a non-empty set of
device instances (i.e., true). As a result, the corresponding
rule’s action is thus executed. In the first rule, the service,
setFailSoftMode(), for example, is executed to set the

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

sensor performance into the failsoft mode. The predicate here
is applied on all instances of a given device type.

• The posSensor(filter-condition) predicate applies the
filter_condition, batteryLevel < 20%, on the posSensor
instance of the posSensor’s type. The predicate here is
applied on an individual device instance.

In the first rule, the $ prefix is called the bind operator, which binds
a variable to a device type (i.e., $s: posSensor() binds the s
variable to the posSensor instance) or to a device instance (i.e.,
$e: posSensor() binds the e variable to the posSensor instance).

In order to trigger the rule, we need simultaneously all available
device instances of ECGSensorType and the posSensor
instance. Between ECGsensorType() and posSensor()
predicates, an implicit AND operator is used to create the
conjunction of predicates. Therefore, the rule’s condition is
activated when there is at least one ECGSensor instance with an
attribute batteryLevel less than 20% AND the posSensor
sensor batteryLevel attribute that is less than 10%. The rule’s
action is then triggered to adapt the ECGsensor sensors in response
to low level of battery power.

In sum, predicates on device types are particularly useful to specify
adaptation strategies at the system level while the adaptation must
only be triggered in relevant situations. Predicates on device
instances allow a fined grained control of adaptation at the device
level.

Global variables

In order to interact with contextual data that is not in device
attributes, we introduce the keyword GLOBAL to declare a variable
and bind it to the environment surrounding devices. Global
variables can refer to external services, cached data in memory or
parameter values for setting up the rule engine at runtime. For
example, the following statement declares the global variable
BobHome of type Home, which is declare as an Object.

 GLOBAL BobHome Home;

In our context, global variable can be used to save configured
device states so that, if a controller resynthesis occurs, the newly
synthesized controller can be deployed and starts its execution with
the right sensor state.

Rule based language

Figure 4. The Grammar of the Rule-based Language

In Figure 4, we present the rule based language grammar. It allows
declaring system objectives, adaptation strategies, devices (sensors,
actuators and gateways) each of which is defined as a generic
object, containing a data structure (a set of attribute value pairs),
services and generated events. The language is not limited to rule
description but it also allows the complete description of the
feedback loops and the feedback loop interactions as defined in
previous section. Indeed, if we consider the resource-aware battery-
derived adaptation, the set of rules describing the adaptation can be
written as follows:

The control objective describes the objectives feedback loop, where
the reference control objectives are provided after the IF statement
and the QUALITY statement is used to feed the monitoring
feedback loop and the adaptation feedback loop.

The control rule describes the interaction between the adaptation
feedback loop and the monitoring feedback loop. The statement
after the IF describes the monitor that must be implemented in the
control feedback loop, and the quality is the reference context input
of this feedback loop. The statement after the DO describes the
adaptation mechanism that occur in the adaptation feedback loop,
and more specifically in the adaptation feedback loop controller. In
the context of discrete controller syntheses, the rule-based language
defined in this section will be used to provide the control objectives
to the controller synthesizer. This rule based definition of the
objectives allows for greater expressiveness, which allow external
users to easily specify their desired control objectives.

<ECA-system> ::= <variables> <objectives> <adaptation> <devices>
<variables> ::= <variable> | <variable> <variables>
<variable> ::= GLOBAL <variable_name> | GLOBAL <object_name>

<objectives> ::= <objective> | <objective> <objectives>
<objective> ::= QUALITY <quality_name> ON <SLA_expression>

<rules> ::= <rule> | <rule> <rules>
<rule> ::= RULE <rule_name> ON < quality_name> IF < predicates>
 DO <adaptations>
<adaptations> ::= <action_name> | <action_name> <adaptations>
 |<action_name> ALTERNATE(<action_name>)

<predicates> ::= <predicate> | < predicate > [AND] < predicates >]
<predicate> ::= <device_Type>(<filter>)
 |<sensor_name>(<filter>)
 |<actuator_name>(<filter>)
 |<event_name>(<filter>)

<filter> ::= <sensor_name>.<attribute_name> <operator> <value>
 | <actuator_name>.<attribute_name> <operator> <value>
 | <deviceType>.<attribute_name> <operator> <value>

<action_name> ::= <sensor_name>.<service_name>(<parameters>)
 | <actuator_name>.<service_name>(<parameters>)
 | <gateway_name>.<service_name>(<parameters>)

<devices> ::= <device> | <device> <devices>
<device> ::= <sensor> | <actuator> | <gateway>
<sensor> ::= SENSOR <sensor_name> TYPE <object_name> <events>
<actuator> ::= ACTUATOR <actuator_name>] TYPE <object_name> <events>
<gateway>::= GATEWAY <gateway _name>] TYPE <object_name> <events>

<events> ::= <event> | <event>,<events>
<event> ::= Event <event_name> <attributes>
<object> ::= OBJECT <object_name> ATTRIBUTES <attributes>
 [SERVICES <services> END]
<attributes> ::= <attribute>| <attribute> <attributes>]
<attribute> ::= VAR <attribute_name> [= <attribute_value>]

<services> ::= <service> | <service> <services>
<service::=SERVICE <service_name>(<parameters>) [RETURN(<parameters>) END]

<operator>::= > | < | >=|<=| == | != | in
<parameters>::=<parameter>|<parameter>, <parameters>
<parameter>::= <object_name>.<attribute_name>
<SLA_expression> ::= <object_name>.<attribute_name> <operator> <value>

//Control objective
QUALITY LowBattery ON BatterySaving

//Control rule1

ON LowBattery IF ECGSensorType(BatteryLevel < 20%) DO
TRY ECGSensorType.setMode(LowBatteryAdaptation)

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

The main advantages of using rules in the context of IoT does not
only come from a small group of rules, but from a large, ever-
changing group of rules that define the behavior of a complex
system that requires studious development to maintain it
operational when using imperative programming languages.

The rule-based language also enables the formulation of control
objectives and strategies with respect to desired service-level
objectives. Objectives are later used to synthesize synchronous
controllers and deploy them in the gateways in order to control a
specific sub-set of devices.

4.4 Synchronous Sub-Systems Modelization
The prime modeling framework for discrete controller synthesis
relies on labeled transition systems (LTS) to model to-be-controlled
sub-systems. Discrete controller synthesis typically uses
synchronous programming languages embedded with control
contract specifications to build correct-by-construction controllers.
The strength of discrete controller synthesis stems from the
produced code that is assumed to be correct. In fact, the code
generation will fail if inconsistencies are detected, either in the
control rules or in the models of the controlled sub-systems. The
discrete controller synthesis thus makes possible to avoid further
formal analysis, and thus saves development time.

Commonly speaking, labeled transition systems are defined as a

tuple (S, L, ®, sin), with S a set of states, L a set of transition labels,

® ⊆ S × L × S a transition relation between states, and sin an initial
state. The set of transition labels is defined as L = (events, actions,

\), where \ ⊆ events × actions.

In our context, we use two LTS to represent a sensor: a functional
LTS, describing the relationship between the different functional
states, and a non-functional LTS which describes the relationship
between the objects non-functional states. The two LTS are
synchronized using the following syntax: the statement “e \ a” can
be interpreted as the control of event e by service a when event e
during the firing of the transition.

As specified earlier, variables in the context of discrete controller
synthesis are divided into two distinct sets: the controllable
variables and the non-controllable variables. In our context, we
chose to model controllability using the ‘$’ character. Particular
attention to this variable separation problems must be paid when
modeling the various devices included into the adaptation
framework, because the correctness of the synthesized controller
directly depends on what is defined as controllable and non-
controllable.

Figure 5 introduces the LTS model of the cardiac and reparatory
sensor used in our case-study. The model captures both the
functional and non-functional evolution of the sensor. In this
example, local and remote service calls, modeled under the form
“$e.service_call(),” are considered to be controllable. However,
model inputs such as battery level (abbreviated as ‘batt’ in Figure
5), or the unattached flag (abbreviated as ‘unatt,’ and is true when
the sensor auto-detects that it is unattached from the monitored
patient) are defined as non-controllable. This is because these
variables are related to the physical domain, and the physical world
typically behave unpredictably. As a rule of thumb, all the external
and physical monitored variables should be considered as
uncontrollable because of the unpredictable nature of the physical
world.

On the left side of the model, we introduce the model inputs, which
are used in contract-based discrete controller synthesis as variables
to be monitored. In our context, every model input must thus be
assigned to a dedicated monitor in the monitoring feedback loop.

The model outputs are presented on the right side (see Figure 5).
For conciseness purposes, outputs are abbreviated as functional and
non-functional states, meaning that all states of the model are
exposed to the controller synthesizer in terms of a set of mutually
exclusive Boolean flags. Output are set to be true when the sensor
is in the corresponding functional or non-functional state. Such
outputs are used in control contracts, which are specified as first
order logic rules in most of the synchronous languages enabled with
discrete controller synthesis capabilities.

Figure 5. Cardiac sensor LTS model

In order to assist end-users with the specification of devices in IoT-
based systems, we propose a failure ontology detailing non-
functional failure states than can typically occur in sensors. As
illustrated in Figure 6, the ontology is divided into four main
symptoms of failure.

The first symptom of failure is the detection of abnormal values
being measured or streamed to the gateway. Such abnormal values
can either be caused by an analog malfunction of the sensor, as the
measurements are converted into numerical values using analog-to-
digital converters. Such incorrect values can also be caused by a
failing digital section. Indeed, if signal processing is embedded into
the sensor, a signal processor malfunction could cause incorrect
calculations, resulting in incorrect values. These are the two failure
symptoms. However, because of the critical nature of a cardiac
malfunction event, it was included into this failure symptom
section, to illustrate the fact that controllers need to distinguish
between critical incorrect (i.e. resulting from heart malfunction)
values and expected incorrect values (i.e. resulting from sensor
malfunction). The definition of what is considered incorrect values
is defined by expert knowledge about the monitored biomedical
process. Incorrect values are typically specified using thresholds.

The second symptom of failure is sensor unattachment. Indeed,
because we consider wearable biomedical sensors, which users
typically wear on their body using wet electrodes that are subject to
decay over time, sensors can become unattached, resulting in
incorrect biomedical process measurement. However, sensors can
be equipped with self-diagnostics capabilities and be able to detect
unattachment. This event however mandates external intervention,

$e.setMode(_)

$e.shutdown()

$e.reboot()

$e.startup

unatt

batt

unattTimeout

anFailTimeout

anormalValue

func. states

non-func. states

Non-functional LTS

Functional LTS

Sensor

operating

normally

Unattached

sensor

Low battery

Sensor

stopped

Analog

malfuntion
unatt.

¬ unatt.

unattTimeout \ $e.shutdown()

batt < 20% \ $e.setMode(fail.)

¬(batt < 20%) \ $e.setMode(norm.)

anormalValue

¬ anormalValue

batt < 1% \ $e.shutdown()

1 \ $s.reboot()

anFailTimeout
\
$
e.shutdown()

Startup

sequence

Normal

cardiac

acquisition

Shutdown

Low-battery

fail.

acquisition

$e.startup.Done()

$e.setMode(fail.)

$e.setMode(norm.)

$e.shutdown()

$e.shutdown()

$e.reboot()

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

as sensors must be reattached either by the monitored patient or an
external medical worker.

A low battery is the third symptom of failure, and two situations
can result from such event. Either the sensor is equipped with a
battery-saving failsoft mode (where the sensor typically streams
less precise values, or where the stream occurs at a lower rate), or
the battery is drained until total battery failure, where the sensor is
stopped internally in order to protect the battery. This last case
mandates external intervention, so it must be delayed as late as
possible. Because of the loss of data quality causes, the battery
failsoft mode must not occur too early during the battery discharge
process, and a compromise must be found between lower data
quality and battery life. Such compromise can be determined using
externally provided expert knowledge.

Finally, the last symptom of failure is the interruption of the
communication between the sensor and the gateway. This failure
can have three causes. The first possible cause is that the sensor is
out of range. Such failure can easily occur, especially if fixed
gateways are used. Indeed, because low-power wireless
communication protocols feature limited range (usually up to a few
tens of meters), if a fixed gateway is used, the monitored patient
can easily get out of the communication range. The next source of
failure is a radio-dedicated component malfunction. As radio
communication of connected objects is typically implemented onto
specific radio integrated circuits, a malfunction of such chip can
cause a loss of connectivity. The last source of failure is a gateway
malfunction, which can also cause loss of connectivity between
sensors and the gateway.

Figure 6. Cardiac sensor failure ontology

Using this ontology, models can be developed accounting for all
the identified failure symptoms, and adaptations strategies can be
derived for all the failure causes. This enables comprehensive
adaptation process with guarantees that is accounts for all identified
failure sources, thus providing robust global system behavior.
Implementation of all the elements (from the rule engine to the
discrete controller synthesis) of our hybrid self-adaptation
framework for the IoT is detailed in the following section.

5. IMPLEMENTATION
In order to validate our hybrid self-adaptation framework and self-
adaptation strategies, we developed a prototype using existing
languages, controller synthesis and rule engines. The asynchronous
rule engine is implemented using the asynchronous capabilities of
the Drools rule engine [22]. This rule engine was developed as a
business rule engine with a web-based control interface, along with
an Eclipse plugin for further development. Rule evaluation is based
on the Rete algorithm, and is distributed with an open-source
license. We have developed a domain specific language compiler
based on our language using Xtext, which provides us with a fully-
featured and statically-typed programming language. The compiler
outcome produces rules as expected by the Drools rule engine. By
such, Drools support enable our self-adaptation rule-based
language to be easily managed and monitor a massive and
potentially changing set of rules. Such characteristic is suitable for
scalable IoT purposes. The only limitation being the resources

available for rule evaluation. Since this tool is implemented on
external servers, the resources available are virtually unlimited
when compared with devices’ resources.

The discrete controller synthesis is implemented using the
Heptagon/BZR synchronous language for controller synthesis [6].
In this language, objects are modeled using a textual representation
of labelled transition systems. The discrete controller synthesis is
realized with respect to control contracts specified by using a
simple grammar. Three contract keywords are defined: with,
assume and enforce. The keyword with is used to specify the set of
controllable variables that can be used by the controller for self-
adaptive behavior, while the keyword assume describes a set of
initial assumption to assist the controller synthesizer and to avoid
certain locking behaviors and the keyword enforce is used to
provide the controller synthesizer with a set of rules that the global
synchronous system must observe. Such rules are provided as first
order logic statements, and such statement is determined using a
first logic translation of the business process rules specified in
Drools. It is worth noting that it is not necessary to translate all rules
specified in Drools, but only lower level rules that are relevant to a
specific monitoring context. These rules are enabled in gateways to
support adaptive behaviors.

6. CONCLUSION
In this paper, we present a hybrid controller synthesis framework
for critical IoT systems. Our system presents self-adaptive behavior
with respect to changing control objectives, evolving monitoring
infrastructure and dynamic internal and external context by
adopting separation of concerns and defining three distinct but
communicating control loops: the objective feedback control loop,
the monitoring feedback control loop and eventually the adaptation
feedback control loops. This framework is equipped with an
asynchronous rule engine and synchronous discrete controller
synthesis capabilities in order to provide a hybrid self-adaptation
framework for the IoT. The presence of discrete controller
synthesis enables automatic controller generation from formally
correct synchronous programming languages, providing functional
and non-functional guarantees for critical IoT-based systems.

7. REFERENCES
[1] Abid, R. et al. 2017. Asynchronous synthesis techniques for

coordinating autonomic managers in the cloud. Science of
Computer Programming. 146, (Oct. 2017), 87–103.

[2] Augusto, J.C. et al. 2007. Enhanced healthcare provision
through assisted decision-making in a smart home
environment. 2nd Workshop on Artificial Inteligence
Techniques for Ambient Inteligence (2007).

[3] Bonino, D. and Corno, F. 2010. Rule-based intelligence for
domotic environments. Automation in Construction. 19, 2
(Mar. 2010), 183–196.

[4] Cano, J. et al. A case study in safe design of ECA rules for
IoT.

[5] Cano, J. et al. 2014. Coordination of ECA Rules by
Verification and Control. Coordination Models and
Languages. E. Kühn and R. Pugliese, eds. Springer Berlin
Heidelberg. 33–48.

[6] Delaval, G. et al. 2010. Contracts for modular discrete
controller synthesis. ACM Sigplan Notices (2010), 57–66.

[7] Delaval, G. et al. 2013. Integrating discrete controller
synthesis into a reactive programming language compiler.
Discrete Event Dynamic Systems. 23, 4 (Dec. 2013), 385–418.

[8] Eliasson, J. et al. 2015. Towards industrial Internet of Things:
An efficient and interoperable communication framework.
(Mar. 2015), 2198–2204.

© ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in: Arthur Gatouillat, Youakim Badr, and Bertrand Massot. 2018. Hybrid controller

synthesis for the IoT. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC '18).
ACM, New York, NY, USA, 783-790, https://doi.org/10.1145/3167132.3167219

[9] Gamatié, A. 2010. Synchronous Programming: Overview.
Designing Embedded Systems with the SIGNAL
Programming Language. Springer New York. 21–39.

[10] Iftikhar, M.U. and Weyns, D. 2014. Activforms: Active
formal models for self-adaptation. Proceedings of the 9th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (2014), 125–134.

[11] Kephart, J.O. and Chess, D.M. 2003. The vision of autonomic
computing. Computer. 36, 1 (Jan. 2003), 41–50.

[12] Malik, A. et al. 2010. SystemJ: A GALS language for system
level design. Computer Languages, Systems & Structures. 36,
4 (Dec. 2010), 317–344.

[13] Marchand, H. et al. 2000. Synthesis of Discrete-Event
Controllers based on the Signal Environment. Discrete Event
Dynamic Systems. 10, 4 (2000), 325–346.

[14] Muttersbach, J. et al. 2000. Practical design of globally-
asynchronous locally-synchronous systems. (2000), 52–59.

[15] Tamura, G. et al. 2013. Improving context-awareness in self-
adaptation using the DYNAMICO reference model.
Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (2013),
153–162.

[16] Villegas, N.M. et al. 2011. A framework for evaluating
quality-driven self-adaptive software systems. Proceedings of

the 6th international symposium on Software engineering for
adaptive and self-managing systems (2011), 80–89.

[17] Villegas, N.M. et al. 2013. DYNAMICO: A reference model
for governing control objectives and context relevance in self-
adaptive software systems. Software Engineering for Self-
Adaptive Systems II. Springer. 265–293.

[18] Weyns, D. et al. 2010. FORMS: a formal reference model for
self-adaptation. (2010), 205.

[19] Yuan, B. and Herbert, J. 2014. Context-aware hybrid
reasoning framework for pervasive healthcare. Personal and
Ubiquitous Computing. 18, 4 (Apr. 2014), 865–881.

[20] Zhao, M. et al. 2014. Discrete Control for Smart
Environments Through a Generic Finite-State-Models-Based
Infrastructure. Ambient Intelligence. E. Aarts et al., eds.
Springer International Publishing. 174–190.

[21] Zhao, M. et al. 2013. Discrete Control for the Internet of
Things and Smart Environments. 8th International Workshop
on Feedback Computing, San Jose, CA, USA, June 25, 2013
(2013).

[22] https://www.drools.org/. Accessed on Sept. 10th 2017.

