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Abstract 

The nature of mental illness remains a conundrum. Traditional disease categories are increasingly 
suspected to misrepresent the causes underlying mental disturbance. Yet, psychiatrists and 
investigators now have an unprecedented opportunity to benefit from complex patterns in brain, 
behavior, and genes using methods from machine learning (e.g., support vector machines, modern 
neural-network algorithms, cross-validation procedures). Combining these analysis techniques with a 
wealth of data from consortia and repositories has the potential to advance a biologically grounded 
redefinition of major psychiatric disorders. Increasing evidence suggests that data-derived subgroups 
of psychiatric patient can better predict treatment outcomes than DSM/ICD diagnoses. In a new era 
of evidence-based psychiatry tailored to single patients, objectively measurable endophenotypes 
could allow for early disease detection, individualized treatment selection and dosage adjustment to 
reduce the burden of disease. This primer aims to introduce clinicians and researchers to the 
opportunities and challenges in bringing machine intelligence into psychiatric practice. 

Keywords: personalized medicine, machine learning, endophenotypes, single-subject prediction, 
artificial intelligence, predictive analytics, null-hypothesis testing, Research Domain Criteria (RDoC) 
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Introduction 
 
Current scientific research, evaluation, and treatment in psychiatry are based on a diagnostic system 
solely conceived on human experiential terms, rather than objective markers of illness. These 
pervasively adopted diagnostic categories have been constructed from expert opinion and enshrined 
in the DSM-5 and ICD-10 manuals. Yet, it is becoming increasingly clear that the pathophysiology 
underlying such disease definitions is rather heterogeneous (1, 2). A clinically distinct mental disease 
is often not underpinned by an identical biology insofar as we can detect by available neuroscientific 
instruments. This frustration can potentially be alleviated by identifying subgroups that exhibit 
predictable response to treatment. The aspiration to automatically segregate brain disorders into 
natural kinds will however necessitate new statistical and scientific approaches. 

For decades, the dominant research paradigm to alleviate symptoms of psychiatric patients has 
followed an ideal chain of events: 1) initially neuroscience studies should identify new disease 
mechanisms (e.g., neurotransmitter pathways in animal models), 2) then innovative treatments 
should be explored to target the discovered disease mechanisms (e.g., design and test candidate 
molecular compounds), and 3) finally the new treatment should be validated by clinical trials in large 
cohorts (e.g., randomized clinical drug trials). Each of these three steps has frequently encountered 
considerable difficulties. Modern machine learning approaches may have a natural potential to 
improve the well-being of psychiatric patients (see here for excellent surveys of machine learning 
applications in mental health: 3, 4-6). 

One way to distinguish the diversity of quantitative analysis tools is by placing them on a continuum 
between classical statistics (e.g., null-hypothesis testing, t-tests, ANOVA) and machine learning (e.g., 
cross-validation, support vector machines, neural network algorithms). Machine learning aims to 
uncover general principles underlying a series of observations without explicit instructions (7-9). Such 
algorithmic methods are characterized by 1) making few formal assumptions, 2) allowing the data to 
“speak for themselves”, and 3) the ability to mine structured knowledge from extensive data. Its 
members include supervised methods, such as support vector machines and neural-network 
algorithms, specialized for best-possible outcome prediction as well as unsupervised methods, such 
as algorithms for data clustering and dimensionality reduction, effective at discovering unknown 
statistical configurations in data (see Table 1 for technical terms). So-called "features" (traditionally 
called “independent variables”) are fed into quantitative modeling and possibly used to predict 
“target variables” (traditionally called “dependent variables”) (10). The recent coincidence of 
increasing data availability, improving computing power, and cheaper data storage has encouraged 
an ongoing surge in research and applications of machine learning technologies roughly since the 
turn of the century (11, 12). As a distinctive property, new knowledge is inferred by testing whether a 
predictive model can extrapolate patterns from one set of data to another set of data by making 
useful predictions in new observations (i.e., cross-validation procedures) (13). Complementing the 
established benefits of classical null-hypothesis testing in medicine, we will argue that machine 
learning is predisposed to address many challenges in the upcoming era of precision psychiatry. 

 

Opportunities 

Current drug treatment choices are only successful in roughly every second patient (14), and similar 
considerations apply to psychotherapy (15). In fact, the psychiatrist's choice of the best-possible 
treatment option often does not depend on knowledge of what has caused or maintains the mental 
disease of a given patient. A research and treatment strategy that does not depend on full 
understanding of complex disease mechanisms may be cheaper and incur shorter delays between 
bench and bedside (16). Systematically benchmarking the predictability of clinical quantities in single 
patients could faster improve clinical symptoms and reduce subjective suffering in many mental 
diseases. Even moderately successful predictive models can be highly useful in clinical practice (3). 
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This is because of the unfortunate normal case of trial-and-error treatment with psychotropic drugs 
and other types of treatment for many mental diseases (17). While the traditional research goal was 
to introduce novel treatment options that benefits some majority of a particular clinical group, an 
attractive alternative research goal is to improve the choice of existing treatment options by 
predicting their effectiveness in single patients. More and more studies now indicate that a specific 
drug or psychotherapy treatment can be successful in a certain patient subgroup and unsuccessful in 
another patient subgroup labeled with the identical diagnosis (see here for an overview: 18). In a 
successful example of using machine learning in psychiatry, the discovered patient subgroups could 
indeed predict which patient would profit from brain-stimulation treatment (19). This questions the 
primacy of drawing conclusions on the group-level and opens the possibility of building objective 
algorithmic frameworks with individual treatment-response prediction across a diversity of 
psychiatric conditions. 

 
Machine learning offers a set of tools that are partially suited to achieve individual-level clinical 
predictions. Predictive models are conceptually positioned between genetic risk variants as an 
individual’s blueprint at the one extreme and clinical symptoms as an individual’s behavioral 
manifestations at the other extreme. Benefitting from a variety of intermediate phenotypes has the 
translational potential to refine clinical management by early diagnosis and disease stratification, 
selection between drug treatments, treatment adjustment, and prognosis for psychiatric care 
tailored to each individual (19). Learning algorithms can be directly applied in single patients to 
predict inherently valid and immediately useful clinical objects (5), such as choosing drug dosage. 
There are a number of reasons why many machine learning methods are naturally applicable for 
prospective clinical predictions on the single-subject level, whereas the currently most widespread 
statistical methods may be more tuned to group-level analysis: 

i) Focus on prediction: Machine learning methods have always had a strong focus on prediction as a 
metric of statistical quality (10). Support vector machines, neural-network algorithms, and many 
other trained predictive models are readily able to estimate an outcome from only one observation, 
such as when querying answers from behavioral, neural, or genetic measurements of a single patient 
(3, 4). In contrast, classical statistical methods are often used in medical research to explain variance 
of and formally test for group effects. ANOVA, t-test, and many other commonly used tools grounded 
in the notion of statistical significance have a less obvious ability for judgements on one specific 
individual in a group. Thus, common routines of machine learning and classical statistics serve rather 
distinct statistical purposes. The two statistical cultures perform different types of principled 
assessment for successful extrapolation of an effect beyond the data at hand that are rooted in 
different mathematical contexts. As an important practical consequence, machine learning and 
classical statistics do not judge data on the same aspects of evidence: An observed effect assessed to 
be statistically significant by a p-value does not in all cases yield a high prediction accuracy in new, 
independent data, and vice versa (4, 8, 20, 21). 
 
ii) Empirical model evaluation: By quantifying the prediction success in new individuals (so-called out-
of-sample estimates) many machine learning approaches naturally adopt a prospective viewpoint 
and can directly yield a notion of clinical relevance. Instead, classical approaches based on null-
hypothesis testing often take a retrospective flavor as they usually revolve around finding statistical 
effects in the dataset at hand (so-called in-sample estimates) based on a prespecified modeling 
assumptions, typically without explicitly evaluating some fitted models on unseen or future data 
points (20). Hence, techniques for out-of-sample generalization ubiquitous in machine learning are 
likely candidates for enabling a future of personalized psychiatry. This is because predictive models 
can be applied to and obtain answers from a single patient. 
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iii) Two-step procedures: Traditional null-hypothesis testing takes the form of a one-step procedure. 
That is, the whole dataset is routinely used to produce a p-value or effect size measure in a single 
process. An obtained p-value or effect size can itself not be used to judge other data in some later 
step. In contrast, machine learning models are typically evaluated by cross-validation procedures as a 
gold standard to quantify the ability of a learning algorithm to extrapolate beyond the dataset at 
hand (10). In a two-step procedure, a learning algorithm is fitted on a bigger amount of available data 
(so-called "training data") and the ensuing "trained" learning model is empirically evaluated by 
application to a smaller amount of new data (so-called "test data"). This two-step nature of machine 
learning workflows lends itself particularly well to, in a first step, extract structured knowledge in 
large openly available or hospital-provided datasets. In a second step, the ensuing trained predictive 
models can be shared collaboratively as a research product (6) and be applied with little effort in a 
possibly large number of individual patients in various mental health contexts. 

 

iv) Suited to observational data: Many methods from classical statistics have probably been devised 
for experimental data that are acquired in a context where a set of target variables has been 
systematically manipulated by the investigator (e.g., randomized clinical trials with placebo group 
and active treatment group). Precision medicine in psychiatry is however likely to exploit especially 
observational data (e.g., blood and metabolic samples, movement and sleeping patterns, EEG, brain 
scans, and genetic variants) that were acquired without a carefully controlled influence in an 
experimental setup and to which machine learning tools may be more closely tuned (e.g., 19, 22, 23). 

 

v) Handle many outcomes at once: Machine learning is also a pertinent choice for comparisons 
between many, potentially hundreds of possible diagnoses and other multioutcome settings. 
Classical significance testing is probably most often used to decide between two possible outcomes, 
expressed in the null and alternative hypothesis, by considering the probability of obtaining an equal 
or more extreme effect in the data under the null hypothesis (24). This is often used in group analysis 
to formally determine a scientifically relevant difference between healthy subjects (i.e., typically 
corresponding to the null hypothesis) and psychiatric patients as defined by a DSM or ICD category 
(i.e., typically the alternative hypothesis), or when comparing a placebo treatment (i.e., null 
hypothesis) against a new treatment (i.e., alternative hypothesis). In everyday practice in psychiatry, 
the more challenging question is typically not whether a patient has a mental disease or not but the 
differential diagnosis between a number of likely disease categories --- the transdiagnostic setting. 
Analogously, whether a patient needs treatment or not is routinely an easier clinical decision than 
choosing between numerous competing treatment options. Treatment response prediction is rarely 
a binary yes-or-no decision and requires consideration of several treatment options in the same 
statistical analysis. 

Machine learning is well suited to this goal in the form of multiclass prediction and multitask learning 
(23, 25, 26), unlike many approaches for statistical significance assessment and tests of group 
differences. Most machine learning approaches that are applicable when aiming to distinguish two 
groups or two treatment options can be naturally extended to considering a wide range of possible 
outcomes. For instance, quantitative brain measurements from one patient can be fed into 
prediction models to simultaneously infer a probabilistic stratification over several differential 
diagnoses, many candidate treatment options, risk outcomes, and possible long-term clinical 
prognoses (e.g., full recovery versus partial residuals versus severe chronic illness). Additionally, 
applying learning algorithms to compare patients versus controls does not allow evaluating how 
specific an achieved prediction is for the given psychiatric group (6). Besides the advantage of 
replacing artificial, mutually exclusive dichotomies by predicting several outputs in concert, the 
prediction accuracy often improves when statistical strength can be shared between the variation in 
the data associated with the respective outcomes (27). That is, statistical estimation of different 
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predictions can paradoxically become easier when considered in parallel by one model instead of 
answering isolated statistical questions. In sum, there are clear incentives and readily applicable 
statistical tools to go beyond group-level comparisons à la normal versus diseased (28, 29). 
Importantly, machine learning is naturally suited for choosing between a potentially massive number 
of possible options in a single patient and ranking the possibilities according to pertinence. This is the 
case in the transdiagnostic setting where the pertinence of several psychiatric diagnoses needs to be 
predicted hand-in-hand by one statistical model. 
 

vi) Explore manifolds in complex data: Besides the intricacies of considering several diagnostic 
categories at once, the diagnostic categories themselves have repeatedly been called into question 
due to their lack of neurobiological validity and clinical predictability (1, 2). The disease definitions 
cataloged in the DSM and ICD manuals do not always align well with new behavioral, neuroscientific, 
and genetic evidence (Fig. 1). Psychiatric disorders have been defined in the DSM and ICD with a 
focus on ensuring effective communication of diagnoses between clinicians (i.e., inter-rater 
reliability) rather than the goal to capture natural kinds in biological reality (1). Autism, 
schizophrenia, and an increasing number of other psychiatric diseases are suspected to be spectrum 
disorders --- heterogeneous etiological and pathophysiological factors being summarized under the 
same umbrella term (30, 31). This conceptualization is also more compatible with a smooth transition 
between healthy and psychiatrically diagnosed individuals. Machine learning offers a rich variety of 
tools that lend themselves to endophenotype modeling. 

Among many clinicians and researchers, there is hence a growing wish to supplement discrete 
disease definitions in form of categories with a continuous, dimensional symptom system. To satisfy 
the need to cut across diagnostic boundaries, the Research Domain Criteria (RDoC) initiative (32) has 
been launched as a translational program to elucidate the hidden structure underlying 
psychopathology. By synergistic integration of self-reports, neuropsychological tests, brain 
measurements, and genetic profiles, RDoC wants to "better understand basic dimensions of 
functioning [...] from normal to abnormal" (National Institute of Mental Health, USA) without relying 
on presupposed disease definitions. The discovered fundamental dimensions of behavior and its 
disturbances are expected to motivate new research approaches aimed at reformating psychiatric 
nosology. RDoC thus recommends going from scientific evidence to organically deriving new disease 
factors. This framework thus contrasts the dominant agenda in psychiatric research that goes from 
disease categories defined based on the DSM and ICD to generating scientific evidence. The RDoC 
approach is conceptually compatible with the fact that psychiatric patients exhibit clusters of 
psychopathological symptoms and that many symptoms are shared among, rather than unique to 
different psychiatric disorders. RDoC is also naturally compatible with the accumulating evidence 
that risk alleles are partly shared between psychiatric disorders (33), while different sets of risk 
alleles can lead to an identical psychiatric phenotype (34). 

Of note, this renewed focus on fundamental building blocks of mental disturbance finds a direct 
correspondence in the long-standing focus of the machine learning community on representation 
learning for discovering hidden structure in complex data (35). In particular, the multidimensional 
conception underlying the RDoC initiative is reminiscent of the notion of manifolds that is common in 
the machine learning field (7). In a setting with possibly many high-resolution measurements (brain 
scans, sequenced genome, etc.), a manifold describes coherent low-dimensional directions of 
relevant variation in the data. Here, members of a coherent class would be expressed as "a set of 
points associated with a neighborhood around each point" (7). In psychiatry, the manifold notion 
corresponds to the hope that the nature of psychiatric disorders and their complex relationships 
could be described effectively in a small number of hidden dimensions: each a distinct direction of 
variation in heterogeneous data sources. Variation captured across behavioral, experiential, neural, 
and genetic measurements with tens of thousands of input variables can hopefully be effectively 
expressed along a manifold that concerns only a much smaller number of yet-to-be-discovered 
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disease dimensions. 
 
Indeed, supplementing traditional null-hypothesis testing, machine learning has a rich legacy of 
algorithm developments that can now be repurposed to automatically extract manifolds from data 
describing behavior, life experience, brain, or genetics. Representation learning algorithms operate 
on the assumption that the measured data have been generated by a set of underlying constituent 
factors. Unfortunately, however, many traditional clustering algorithms, such as hierarchical and k-
means clustering, assign each individual exclusively to one group (so-called "winner-takes-all" 
assumption). This biologically and clinically implausible statistical assumptions can be relaxed by 
recourse to latent factor models (7, ch. 13), including latent Dirichlet allocation (22), autoencoders 
(36), and many other dictionary learning procedures. Latent factor models can uncover an underlying 
manifold of hidden directions of variation by assigning each individual to each of the groups to 
different degrees. Technically, the same manifold dimension, reflecting a distinct disease process, is 
thus allowed to contribute in sophisticated and nuanced ways to several psychiatric disorders with 
clinical pictures as diverse as schizophrenia, autism, and bipolar disorder. Thus, given the prevailing 
lack of objective markers in psychiatry, there is merit in revealing, formalizing, and clinically 
exploiting currently unknown interindividual variation. 
 

Challenges 

There are many good reasons that speak for extending machine learning techniques to psychiatric 
research and practice. The various pitfalls in their everyday application have been previously outlined 
in machine learning in general (e.g., 37, 38) and in neuroscience in particular (e.g., 5, 39, 40, 41). 
Here, we will therefore focus on more general obstacles that we need to overcome: 

i) Reproducibility: Prototyping, iteratively improving, and benchmarking machine learning pipelines 
involves many complicated, interdependent choices. Such multistep workflows are becoming 
challenging to fine-tune manually. The increasing flexibility of analysis pipelines is raising the concern 
that obtained findings might less reliably replicate in later studies (42, p. 185). Successful deployment 
of predictive models on the clinical ward may profit from seamless exchange of predictive models in 
the research community. The final predictive models should pass the prospective test of new 
subjects in other research laboratories, persist across data-acquisition means (e.g., 
Siemens/Philips/GE brain scanners), across geographic locations (e.g., USA, Europe, and Asia) and 
across populations (e.g., same mental disorder with different comorbidity profiles), as well as for 
different success metrics (e.g., sensitivity and specificity) and clinical settings (e.g., rural practitioner 
versus university hospital) (6). Moreover, clinical biomarkers derived from genetics or neuroimaging 
will potentially be accredited through randomized clinical trials. 

ii) Data availability: The primary limitation for deploying state-of-the-art algorithms to personalize 
psychiatric care is probably the size of today’s datasets (i.e., number of subjects) and their 
insufficient phenotypic detail (e.g., medical history, comorbidities, progression in symptoms, 
treatment and response). In fact, "mental health captures arguably the largest amount of data of any 
medical specialty" (43). However, compared to some non-medical domains, psychiatric research is 
still far from the > 1,000,000 subjects where the predictive power of highly successful, data-
demanding models has been showcased (7). Small sample sizes exacerbate the tendency of adaptive 
models learning noise in the data - overfitting (44). Besides limited data quantity, exploiting emerging 
machine learning technologies is hindered by the insufficient specificity and granularity of the 
participants' behavioral information. First, many phenotypes of interest do not vary enough across 
subjects in general-purpose datasets. Second, deploying emerging predictive algorithms for 
successful subject-level prediction of practically useful clinical endpoints will probably depend on 
datasets with rich and meticulously acquired patient documentation. 
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iii) Data management: Over the last 10 years, growing sample sizes were enabled by national and 
international consortia that accumulate, curate, and distribute data across research groups, including  
Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
An important prerequisite is the willingness to embrace the values and habits of the open-science 
movement (45). While some investigators deem restricted access to research data unethical, data 
sharing also invokes privacy concerns (46), such as recognizing a participant’s face in anatomical 
brain scans. In general, agreement on machine-readable data structures will become increasingly 
useful for machine learning applications (47). 
 

iv) Heterogeneous and incomplete data: A first generation of data initiatives (e.g., ABIDE, ADNI, 
ENIGMA) were retrospective collections of independently acquired data from different clinical 
centers. Such data repositories frequently vary in data quality, acquisition parameters, hardware and 
software versions, preprocessing, artifacts, used psychological assessments, and missing data. 
Across-site heterogeneity may explain why, counterintuitively, predictive model performance have 
been repeatedly reported to decrease as the available data increase (6). A second generation of data 
initiatives (e.g., Human Connectome Project and UK Biobank) realized prospective collections that 
early convened on how to standardize data acquisition. Ensuing repositories offer higher data 
comparability due to efforts including calibrated acquisition conditions, staff training, or traveling 
experts. Of note, homogenizing data acquisition and analysis can maximize group differences and 
alleviate confound problems, whereas homogenizing population samples may not be optimal in all 
cases. A balance must be found between conservative manual selection of samples with convincing 
model performance and liberal samples more representative of clinical reality. 
 

v) Longitudinal data: Many mental disorders have a characteristic time-varying nature. Retrospective 
data collections typically lend themselves more to cross-sectional analysis, while prospectively 
collected data are often more suitable for longitudinal analysis. Most machine learning approaches 
and their clinical applications currently focus on cross-sectional findings. Computational psychiatry 
research may bear a blind spot regarding disease trajectories and longer-term health outcomes (18). 
A promising avenue to accumulate massive longitudinal data may be offered by technical devices 
carried by subjects (48). For instance, voice data from smartphones could enable early detection of 
healthcare events, like thought disorders, depressive episodes, or suicide attempts. More generally, 
digital sensors are entering everyday life ("Internet of Things", 48) and can continuously monitor 
diverse behaviors, including sleep patterns, communication habits, gait and geographical movement. 
This may enable continuously improving machine learning models. 
 

vi) Confounding: Accumulating observational human data is often cheaper and easier, while lack of 
experimental protocols exacerbates control of confounding influences (49, 50). Essentially, the 
prediction performance becomes inflated if the training data used for model fitting and the testing 
data are somehow statistically dependent, even if contaminated in subtle ways. Researchers are 
challenged to identify and account for influences unintentionally contributing to high prediction 
accuracies, including age, gender, culture, smoking, caffeine, drug use, and physiological noise (e.g., 
respiration and heart beat). Sociologically, bias may inadvertently arise because clinical research 
typically recruits subjects with exposure to psychiatric institutions, rather than never-diagnosed 
individuals with mental problems. For instance, high-functioning, subclinical individuals with 
schizophrenia, never in contact with a psychiatrist, may systematically evade research efforts. 

 

Conclusion 

The soaring costs of psychiatric disease prompt a global challenge for our societies (51). Whether 
personalized medicine can be realized to enhance psychiatric care is largely a statistical question at 
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its heart. For many decades, the group has served mental health investigators as the primary working 
unit. Facilitated acquisition of always more detailed and diverse information on psychiatric patients is 
now bringing another working unit within reach --- the single patient. Rather than preassuming 
existence of disease categories and formally verifying prespecified neurobiological hypotheses, an 
increasingly attractive alternative goal is to let the data guide the investigation. Following the 
growing data richness and changing research questions, some long-trusted statistical methods may 
be superseded as the best tool in the box. The statistical properties of learning algorithms could thus 
enable clinical translation of empirically justified single-patient prediction in a fast, cost-effective, and 
pragmatic manner. 

For a long time, knowledge generation in basic neuroscience and clinical decision-making in 
psychiatry have been grounded in classical statistics with formal tests for group differences in 
frequently small samples. Machine learning methods may however be particularly tuned to the 
ambitions of precision psychiatry because they can directly translate complex pattern discovery in 
“big data” into clinical relevance. For most learning algorithms, it is standard practice to estimate the 
generalization performance to other samples by empirically cross-validating the trained algorithms 
on fresh data; in this case, individual subjects. This stands in stark contrast to classical statistical 
inference that seeks to reject the null hypothesis by considering the entirety of a data sample (24); in 
this case, all available subjects. In the hypothesis-testing framework, the desired relevance of a 
statistical relationship in the general population is ensured by formal mathematical proofs and is not 
commonly ascertained by explicit model evaluation on independent data (8, 24). 
 
From a larger perspective, it is particularly challenging to verbalize mechanistic hypotheses for 
psychiatric disorders at the most pertinent abstraction level, ranging from molecular histone-tail 
methylation in the cell nucleus to urbanization trends in society as a whole. This epistemological 
challenge highlights more human-independent pattern learning algorithms as an underexploited 
research avenue. Learning algorithms can automatically identify disease-specific biological aspects 
that achieve intrinsically valid and immediately useful clinical predictions. Ultimately, by allying with 
recent statistical technologies we may more likely impact mental disease that arises at the interplay 
between genetic endowment and life experience --- both of which are unique to each individual. 
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Figure 1: Current challenges for precision medicine in psychiatry and possible solutions from 

machine learning 

A) Basic and clinical psychiatric research frequently investigates a given patient population by group 
comparison against the healthy population, possibly creating artificial dichotomies. Many machine learning 
approaches can naturally compare observations from a number of groups in the same statistical estimation 
(i.e., multiclass prediction; see also Table 1). B) The diagnostic categories in the ICD and DSM manuals were 
designed to reliably describe symptom phenomenology and are frequently incongruent with new behavioral, 
neural, and genetic research evidence. Machine learning methods can automatically extract currently unknown 
patterns of variation in individuals simultaneously from heterogeneous data that cut across traditional 
diagnoses (i.e., manifolds). C) Assigning a patient to only one diagnostic category ignores that different 
pathophysiological mechanisms (i.e., endophenotypes) can contribute to the same clinical picture. Instead of 
relying on categorical assignments, biologically defined subgroups can be described by continuous 
contributions of several disease processes in graded degrees (i.e., latent factor models). D) Psychiatric care 
often resorts to trial and error. Predictive models can improve patient care by earlier detection, treatment 
selection and adjustment, and inference of disease trajectory. After a machine learning algorithm has been 
trained in extensive data (i.e., in-sample), the trained predictive model can be used for personalized prediction 
without database access (i.e., out-of-sample). Reprinted with permission and modified from (2). 
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Table 1: Classes of machine learning techniques with their statistical purpose (in order of appearance) 
 

Notion Purpose 
Supervised learning Models that predict a discrete outcome (e.g., healthy group versus control group) or continuous outcome 

(e.g., disease severity degrees) from measures of behavior (e.g., questionnaire), brain (e.g., neural activity), 
or genetics (e.g., single nucleotide polymorphisms) 
Data have the form: features   (  subjects x   variables) and target variable   (one entry for each subject) 
Example: Estimate patient prognosis based on genetic profile.  

Unsupervised learning Models that discover structure that is coherently present in the   variables across subjects. 
Data have the form: features   (  subjects x   variables), but no target variable  . 
Example: Reveal biological disease subgroups in patients based on genetic profile. Ascertaining the clinical 
usefulness of discovered clusters and dimensions will often require combination with supervised 
predictions. 

Clustering A class of unsupervised methods that uses a certain criterion to segregate a set of elements into a number 
of groups according to their measured similarity. Many clustering models perform hard assignments: the 
groups are non-overlapping, with each element associated with only one group (i.e., ‘winner-takes-all’ 
assumption). 
Example: k-means clustering, hierarchical clustering, spectral clustering, density-based spatial clustering 
(DBSCAN) 

Dimensionality reduction Reexpressing observations, each quantified by many variables, in a smaller number of quintessential 
variables. 

Support vector machines A supervised model that performs prediction based on identifying observations in the data that are typical 
for the categories to be distinguished. 

Neural-network algorithms A supervised model that performs prediction based on a non-linear, multilayer variant of linear regression. 
“Deep” neural-network are a modern version with a higher number of non-linear processing layers. 

Cross validation A two-step procedure used as the de-facto standard to estimate the capacity of a pattern learning model to 
extrapolate to future data samples. First, the predictive model is fitted on training data and, second, its 
generalization performance is evaluated on test data (out-of-sample). The process is repeated for different 
splits of the data (often 5 or 10 times). 

In-sample estimate Prediction performance measured in the same data that was also used to fit the model. 
Example: Most applications of linear regression in biomedical research exclusively compute in-sample 
estimates, without considering out-of-sample estimates. 

Out-of-sample estimate Prediction performance measured in new data that was not used to fit a model. 
Example: In machine learning, it is the core metric of how successful extrapolation of a derived pattern to 
new, independent data is quantified. 

Training data A model is fitted to identify a certain pattern from a larger part of the available data. 
Test data An already fitted model is used for prediction in a smaller part of the available data. 
Multiclass learning Applying a supervised model to predict an outcome   that denotes more than two (possibly hundreds of) 

categories. 
Example: Model predicts best among (many) more than two drug treatment options. 

Multitask learning Applying a supervised model to simultaneously predict several outcomes  1  2, …,   m. 
Example: Model uses the same brain scans to conjointly predict drug treatment options, candidate 
diagnoses, and disease trajectories. 

Manifolds Effective reexpression of data by revealing distinct factors that collectively underlie a set of observations. 
Example: Everyday objects are manifolds in a 3D space (e.g., a flower), although there is a variety of 
perspectives from which humans can gather and contemplate information about an object, including 
vision, audition, touch, smell, taste, and many others. 

Representation learning Applying models that can automatically extract hidden manifolds from data. 
Latent factor modelling A class of unsupervised methods that use a certain criterion to stratify a set of elements with their 

respective relationship to a number of hidden components of variation so as to maximize between-
component dissimilarity. Many latent factor models perform soft assignments: component of variations are 
overlapping, with each element associated to each component to a certain extent (i.e., no ‘winner-takes-
all’ assumption). 
Example: latent Dirichlet allocation, autoencoders, nonnegative matrix factorization (NMF), isomap, t-
distributed stochastic neighbor embedding (t-SNE) 

K-means clustering A popular clustering model that partitions the   variables of   into   non-overlapping groups. 
Example: Use genetic information to group mammels into human and non-human primates (   ). 

Hierarchical clustering A popular clustering model that builds a nested tree by successively paritioning the   variables of   into   
always more fine-grained non-overlapping groups. All clustering solutions from     group to     
groups are often computed. 
Example: Use genetic information to group mammels (   ) into human and non-human primates (  
 ), which are then grouped into humans, apes, and monkeys (   ), and so forth. 

Latent Dirichlet allocation A latent factor model that stratifies count-like data into overlapping components of variation. 
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Example: Extract coherent combinations of number of times (positive discrete numbers) words occurred 
during an unstructured clinical interview. 

Autoencoders A latent factor model that stratifies continuous data into overlapping components of variation. 
Example: Extract coherent combinations of item scores from a structured clinical questionnaire 
(positive/negative non-discrete numbers). 

Dictionary learning Super-class of many clustering models and latent factor models that try to extract a set of atomic 
representations (i.e., the dictionary) from a a set of observations that variably add up to each specific 
observation. 

Overfitting The model fits the data overly well, at the expense of generalization performance. Intuitively, the model 
“hallucinates” relevant patterns in the data. The more complex the patterns that can be learned by a 
model, the bigger the danger of overfitting. 
 

 
Application examples for using machine learning in mental health are available elsewhere (3-6). 
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