P. F. Vassar and C. S. Culling, Fluorescent stains, with special reference to amyloid and connective tissues, Arch. Pathol, vol.68, pp.487-498, 1959.

T. Ban, D. Hamada, K. Hasegawall, H. Naiki, and Y. Goto, Direct Observation of Amyloid Fibril Growth Monitored by Thioflavin T Fluorescence, Journal of Biological Chemistry, vol.11, issue.19, pp.16462-16465, 2003.
DOI : 10.1073/pnas.96.15.8669

C. B. Andersen, Branching in Amyloid Fibril Growth, Biophysical Journal, vol.96, issue.4, pp.1529-1536, 2009.
DOI : 10.1016/j.bpj.2008.11.024

URL : https://doi.org/10.1016/j.bpj.2008.11.024

W. E. Klunk, Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain, Life Sciences, vol.69, issue.13, pp.1471-1484, 2001.
DOI : 10.1016/S0024-3205(01)01232-2

D. E. Ehrnhoefer, EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nature Structural & Molecular Biology, vol.266, issue.6, pp.558-66, 2008.
DOI : 10.1006/jmbi.2001.4538

R. Sabaté and S. J. Saupe, Thioflavin T fluorescence anisotropy: An alternative technique for the study of amyloid aggregation, Biochemical and Biophysical Research Communications, vol.360, issue.1, pp.135-143, 2007.
DOI : 10.1016/j.bbrc.2007.06.063

M. R. Krebs, E. H. Bromley, and A. M. Donald, The binding of thioflavin-T to amyloid fibrils: localisation and implications, Journal of Structural Biology, vol.149, issue.1, pp.30-37, 2005.
DOI : 10.1016/j.jsb.2004.08.002

J. Duboisset, Thioflavine-T and Congo Red Reveal the Polymorphism of Insulin Amyloid Fibrils When Probed by Polarization-Resolved Fluorescence Microscopy, The Journal of Physical Chemistry B, vol.117, issue.3, pp.784-788, 2013.
DOI : 10.1021/jp309528f

URL : https://hal.archives-ouvertes.fr/hal-00803617

J. L. Jiménez, The protofilament structure of insulin amyloid fibrils, Proc. Natl. Acad. Sci. USA 99, pp.9196-9201, 2002.
DOI : 10.1021/bi0105983

R. Khurana, A General Model for Amyloid Fibril Assembly Based on Morphological Studies Using Atomic Force Microscopy, Biophysical Journal, vol.85, issue.2, pp.1135-1179, 2003.
DOI : 10.1016/S0006-3495(03)74550-0

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nature Methods, vol.127, issue.10, pp.793-795, 2006.
DOI : 10.1038/nmeth929

URL : http://europepmc.org/articles/pmc2700296?pdf=render

E. Betzig, Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, Science, vol.313, issue.5793, pp.1642-1645, 2006.
DOI : 10.1126/science.1127344

URL : http://science.sciencemag.org/content/sci/313/5793/1642.full.pdf

M. Heilemann, Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chemie -Int, pp.6172-6176, 2008.
DOI : 10.1002/anie.200802376

G. S. Kaminski-schierle, In Situ Measurements of the Formation and Morphology of Intracellular ??-Amyloid Fibrils by Super-Resolution Fluorescence Imaging, Journal of the American Chemical Society, vol.133, issue.33, pp.12902-12905, 2011.
DOI : 10.1021/ja201651w

E. K. Esbjorner, Direct Observations of Amyloid ?? Self-Assembly in Live Cells Provide Insights into Differences in the Kinetics of A??(1???40) and A??(1???42) Aggregation, Chemistry & Biology, vol.21, issue.6, pp.732-742, 2014.
DOI : 10.1016/j.chembiol.2014.03.014

D. Pinotsi, Direct Observation of Heterogeneous Amyloid Fibril Growth Kinetics via Two-Color Super-Resolution Microscopy, Nano Letters, vol.14, issue.1, pp.339-345, 2014.
DOI : 10.1021/nl4041093

M. J. Roberti, Imaging Nanometer-Sized ??-Synuclein Aggregates by Superresolution Fluorescence Localization Microscopy, Biophysical Journal, vol.102, issue.7, pp.1598-1607, 2012.
DOI : 10.1016/j.bpj.2012.03.010

URL : https://doi.org/10.1016/j.bpj.2012.03.010

M. M. Apetri, Direct Observation of ??-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells, PLOS ONE, vol.25, issue.9???10, 2016.
DOI : 10.1371/journal.pone.0153020.s006

W. C. Duim, B. Chen, J. Frydman, and W. Moerner, Sub-Diffraction Imaging of Huntingtin Protein Aggregates by Fluorescence Blink-Microscopy and Atomic Force Microscopy, ChemPhysChem, vol.5, issue.13, pp.2387-2390, 2011.
DOI : 10.1002/smll.200900494

S. J. Sahl, L. E. Weiss, W. C. Duim, J. Frydman, and W. Moerner, Cellular Inclusion Bodies of Mutant Huntingtin Exon 1 Obscure Small Fibrillar Aggregate Species, Scientific Reports, vol.100, issue.1, p.895, 2012.
DOI : 10.1063/1.3700446

W. C. Duim, Y. Jiang, K. Shen, J. Frydman, and W. Moerner, Super-Resolution Fluorescence of Huntingtin Reveals Growth of Globular Species into Short Fibers and Coexistence of Distinct Aggregates, ACS Chemical Biology, vol.9, issue.12, pp.2767-2778, 2014.
DOI : 10.1021/cb500335w

J. Ries, Superresolution Imaging of Amyloid Fibrils with Binding-Activated Probes, ACS Chemical Neuroscience, vol.4, issue.7, pp.1057-1061, 2013.
DOI : 10.1021/cn400091m

L. S. Wolfe, Protein-induced photophysical changes to the amyloid indicator dye thioflavin T, Proc. Natl. Acad. Sci. USA, pp.16863-16871, 2010.
DOI : 10.1063/1.1747632

A. I. Sulatskaya, . Maskevich, . Aa, I. M. Kuznetsova, V. N. Uversky et al., Fluorescence Quantum Yield of Thioflavin T in Rigid Isotropic Solution and Incorporated into the Amyloid Fibrils, PLoS ONE, vol.11, issue.10, p.15385, 2010.
DOI : 10.1371/journal.pone.0015385.t002

V. Cruz and C. A. , Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy, Proc. Natl. Acad. Sci, pp.820-828, 2016.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. Moerner, The Role of Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Implications for Super-Resolution Imaging, ChemPhysChem, vol.101, issue.4, pp.587-599, 2014.
DOI : 10.1016/j.bpj.2011.07.008

A. S. Backer, M. Y. Lee, and W. Moerner, Enhanced DNA imaging using super-resolution microscopy and simultaneous singlemolecule orientation measurements, pp.659-666, 2016.
DOI : 10.1364/cleo_at.2016.jth4b.4

URL : http://europepmc.org/articles/pmc5050005?pdf=render

M. Groenning, Study on the binding of Thioflavin T to ??-sheet-rich and non-??-sheet cavities, Journal of Structural Biology, vol.158, issue.3, pp.358-69, 2007.
DOI : 10.1016/j.jsb.2006.12.010

A. Loksztejn and W. Dzwolak, Chiral Bifurcation in Aggregating Insulin: An Induced Circular Dichroism Study, Journal of Molecular Biology, vol.379, issue.1, pp.9-16, 2008.
DOI : 10.1016/j.jmb.2008.03.057

M. Groenning, Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils???current status, Journal of Chemical Biology, vol.426, issue.6968, pp.1-18, 2010.
DOI : 10.1016/S0002-9440(10)63050-7

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging, Nature Methods, vol.91, issue.12, pp.1027-1036, 2011.
DOI : 10.1038/nmeth0510-338

R. E. Thompson, D. R. Larson, and W. W. Webb, Precise Nanometer Localization Analysis for Individual Fluorescent Probes, Biophysical Journal, vol.82, issue.5, pp.2775-2783, 2002.
DOI : 10.1016/S0006-3495(02)75618-X

A. Yildiz, Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization, Science, vol.300, issue.5628, pp.2061-2065, 2003.
DOI : 10.1126/science.1084398

B. Huang, H. Babcock, and X. Zhuang, Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells, Cell, vol.143, issue.7, pp.1047-1058, 2010.
DOI : 10.1016/j.cell.2010.12.002

M. Bates, B. Huang, and X. Zhuang, Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes, Current Opinion in Chemical Biology, vol.12, issue.5, pp.505-514, 2008.
DOI : 10.1016/j.cbpa.2008.08.008

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy, Biophysical Journal, vol.68, issue.6, pp.2588-2600, 1995.
DOI : 10.1016/S0006-3495(95)80442-X

C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, Superresolution Microscopy on the Basis of Engineered Dark States, Journal of the American Chemical Society, vol.130, issue.50, pp.16840-16841, 2008.
DOI : 10.1021/ja806590m

S. Van-de-linde, Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging, Photochem. Photobiol. Sci., vol.7, issue.4, pp.499-506, 2011.
DOI : 10.1038/nmeth.1489

J. C. Vaughan, G. T. Dempsey, E. Sun, and X. Zhuang, Phosphine Quenching of Cyanine Dyes as a Versatile Tool for Fluorescence Microscopy, Journal of the American Chemical Society, vol.135, issue.4, pp.1197-1200, 2013.
DOI : 10.1021/ja3105279

N. Amdursky, Y. Erez, and D. Huppert, Molecular Rotors: What Lies Behind the High Sensitivity of the Thioflavin-T Fluorescent Marker, Accounts of Chemical Research, vol.45, issue.9, pp.1548-1557, 2012.
DOI : 10.1021/ar300053p

S. Freire, M. H. De-araujo, W. Al-soufi, and M. Novo, Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils, Dyes and Pigments, vol.110, pp.97-105, 2014.
DOI : 10.1016/j.dyepig.2014.05.004

M. Mac, J. Najbar, and J. Wirz, Fluorescence and intersystem crossing from the twisted intramolecular charge transfer (TICT) state of bianthryl in the presence of inorganic ions in polar solvents, Journal of Photochemistry and Photobiology A: Chemistry, vol.88, issue.2-3, pp.93-104, 1995.
DOI : 10.1016/1010-6030(94)04008-P

A. A. Maskevich, Spectral Properties of Thioflavin T in Solvents with Different Dielectric Properties and in a Fibril-Incorporated Form, Journal of Proteome Research, vol.6, issue.4, pp.1392-401, 2007.
DOI : 10.1021/pr0605567

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes, Nature Methods, vol.84, issue.8, pp.687-694, 2008.
DOI : 10.1038/nmeth.1176

A. W. Fitzpatrick, Atomic structure and hierarchical assembly of a cross-?? amyloid fibril, Proc. Natl. Acad. Sci. USA, pp.5468-73, 2013.
DOI : 10.1093/emboj/cdf573

L. C. Serpell, The protofilament substructure of amyloid fibrils11Edited by F. E. Cohen, Journal of Molecular Biology, vol.300, issue.5, pp.1033-1039, 2000.
DOI : 10.1006/jmbi.2000.3908

E. Toprak, Defocused orientation and position imaging (DOPI) of myosin V, Proc. Natl. Acad. Sci. USA 103, pp.6495-6499, 2006.
DOI : 10.1006/bbrc.2000.2819

A. S. Backer and W. Moerner, Determining the rotational mobility of a single molecule from a single image: a numerical study, Optics Express, vol.23, issue.4, pp.4255-76, 2015.
DOI : 10.1364/OE.23.004255

M. P. Backlund, Simultaneous, accurate measurement of the 3D position and orientation of single molecules, Proc. Natl. Acad. Sci. USA, pp.19087-92, 2012.
DOI : 10.1038/nature09163

S. A. Rosenberg, M. E. Quinlan, J. N. Forkey, and Y. Goldman, Rotational Motions of Macro- molecules by Single-Molecule Fluorescence Microscopy, Accounts of Chemical Research, vol.38, issue.7, pp.583-593, 2005.
DOI : 10.1021/ar040137k

M. Ohmachi, Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V, Proceedings of the National Academy of Sciences, vol.6, issue.11, pp.5294-5298, 2012.
DOI : 10.1039/c0mb00056f

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. Moerner, The Role of Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Implications for Super-Resolution Imaging, ChemPhysChem, vol.101, issue.4, pp.587-599, 2014.
DOI : 10.1016/j.bpj.2011.07.008

C. Wu, The Binding of Thioflavin T and Its Neutral Analog BTA-1 to Protofibrils of the Alzheimer???s Disease A??16???22 Peptide Probed by Molecular Dynamics Simulations, Journal of Molecular Biology, vol.384, issue.3, pp.718-729, 2008.
DOI : 10.1016/j.jmb.2008.09.062

M. Biancalana and S. Koide, Molecular mechanism of Thioflavin-T binding to amyloid fibrils, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.7, pp.1405-1417, 2010.
DOI : 10.1016/j.bbapap.2010.04.001

V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, K. K. Turoverov, and I. M. Kuznetsova, Computational Study of Thioflavin T Torsional Relaxation in the Excited State, The Journal of Physical Chemistry A, vol.111, issue.22, pp.4829-4835, 2007.
DOI : 10.1021/jp070590o

P. K. Singh, A. K. Mora, and S. Nath, Ultrafast fluorescence spectroscopy reveals a dominant weakly-emissive population of fibril bound thioflavin-T, Chemical Communications, vol.110, issue.74, pp.14042-14045, 2015.
DOI : 10.1016/j.dyepig.2014.05.004

C. Ortiz, D. Zhang, A. E. Ribbe, Y. Xie, and D. Ben-amotz, Analysis of insulin amyloid fibrils by Raman spectroscopy, Biophysical Chemistry, vol.128, issue.2-3, pp.150-155, 2007.
DOI : 10.1016/j.bpc.2007.03.012