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Abstract

Genome-wide analyses reveal that more than 90% of multi exonic

human genes produce at least two transcripts through alternative splic-

ing (AS). Various bioinformatics methods are available to analyze AS

from RNAseq data. Most methods start by mapping the reads to an

annotated reference genome, but some start by a de novo assembly

of the reads. In this paper, we present a systematic comparison of

a mapping-first approach (FaRLine) and an assembly-first approach

(KisSplice). These two approaches are event-based, as they focus

on the regions of the transcripts that vary in their exon content. We

applied these methods to an RNAseq dataset from a neuroblastoma

SK-N-SH cell line (ENCODE) differentiated or not using retinoic acid.

We found that the predictions of the two pipelines overlapped (70% of

exon skipping events were common), but with noticeable differences.

The assembly-first approach allowed to find more novel variants, in-

cluding novel unannotated exons and splice sites. It also predicted AS

in families of paralog genes. The mapping-first approach allowed to

find more lowly expressed splicing variants, and was better in predict-

ing exons overlapping repeated elements. This work demonstrates that

annotating AS with a single approach leads to missing a large num-

ber of candidates. We further show that these candidates cannot be

neglected, since many of them are differentially regulated across condi-

tions, and can be validated experimentally. We therefore advocate for

the combine use of both mapping-first and assembly-first approaches

for the annotation and differential analysis of AS from RNAseq data.
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1 Introduction

In the last 10 years, the prevalence of alternative splicing has been com-

pletely re-evaluated. Recent reports claim that more than 90% of multi-

exon genes produce at least two splicing variants [Pan et al., 2008, Wang

et al., 2008]. The depth at which we can sample transcriptomes with next

generation sequencing techniques opens the possibility not only to anno-

tate splicing variants in physiological conditions, but also to detect which

transcripts are differentially spliced across conditions.

This growing interest in splicing both as a fundamental process and

because of its implication in pathologies [Scotti and Swanson, 2016, Edery

et al., 2011, David and Manley, 2010] has been accompanied by an increasing

number of methods aiming at analyzing RNAseq datasets [Trapnell et al.,

2012, Wang et al., 2010, Robertson et al., 2010]. The ultimate goal of these

methods is to identify and quantify full-length transcripts from short se-

quencing reads. This task is particularly challenging and recent benchmarks

show that all methods still make a lot of mistakes [Steijger et al., 2013].

The difficulty of reconstructing full-length transcripts (isoform-centric ap-

proaches) also prompted a number of authors to focus on identifying exons

that are differentially included within transcripts (exon-centric approaches)

[Reyes et al., 2013, Katz et al., 2010, Shen et al., 2012, Sacomoto et al.,

2012].

Whether they are exon-centric or isoform-centric, methods to study splic-

ing from RNAseq data can further be divided in two main categories [Martin

and Wang, 2011]. The mapping-first approaches first map the reads to the

reference genome and the mapped reads are then assembled into exons and

eventually transcripts. In contrast, assembly-first approaches first assemble

the reads based on their overlaps. The assembled sequences (corresponding
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to sets of exons) are then aligned to the reference genome.

Mapping-first approaches have been the most used so far, essentially be-

cause they were the first to be developed and because they initially required

less computational resources. De novo assembly methods were also thought

to be restricted to non-model species, where no (good) reference genome is

available, and they seemed to be inadequate when an annotated reference

genome is available.

Recent progress in de novo transcriptome assembly is clearly changing

this view, and the argument of the heavier computational burden does not

hold anymore.

The application of de novo assembly to human RNAseq data however

still remains rare, although some studies have already shown its potential to

detect novel splicing variants which play a central role in the studied disease

[Dargahi et al., 2014, Freyermuth et al., 2016].

The generalization of de novo assembly approaches for studying splicing

in human seems to be mostly impeded by the lack of a clear evaluation of

its potential in comparison to more traditional mapping-based approaches.

This is the gap we aim at filling with the work presented here.

To achieve this goal, we performed a systematic evaluation of an assembly-

first and a mapping-first approach on the same publicly available RNAseq

dataset.

As a first step, we chose to compare pipelines that we developed in

parallel in two teams, namely KisSplice and FaRLine, because we could

easily control their parameters. Any difference between the predictions that

is solely due to a parameter setting could be fixed easily, which enabled us

to obtain a precise understanding of the irreducible differences between the

two approaches.

4

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/074807doi: bioRxiv preprint first posted online Sep. 12, 2016; 

http://dx.doi.org/10.1101/074807
http://creativecommons.org/licenses/by-nc-nd/4.0/


In a second step, we benchmarked our methods to other classically used

pipelines and were able to confirm the generality of our findings.

A significant part of our work has been to manually dissect a number of

cases found by only one of the two methods. This enabled us to go beyond

a simple qualitative description and provide the community with a precise

understanding of which cases are overlooked by each type of method, and

where new methods are needed.

From a general point of view, the combination of approaches we propose

will enable researchers to extend significantly their list of candidates.

2 Results

2.1 KisSplice and FaRLine

Figure 1 presents schematically the two pipelines that we developed and

compared. A detailed description of each step is given in the Methods

section. In the assembly-first approach, a De Bruijn graph is built from the

reads. Alternative splicing events, which correspond to bubbles in this graph

are enumerated and quantified by KisSplice. Each path is then mapped

on the reference genome using STAR and the event is annotated by Kis-

Splice2RefGenome using EnsEMBL r75 annotations. In the mapping-

first approach, reads are aligned to the reference genome using TopHat2.

Mapped reads are then analyzed by FaRLine, in the light of the EnsEMBL

r75 annotations.

We also tested STAR instead of TopHat2 for the mapping-first pipeline,

and found that our main results were essentially unchanged (see Methods).

Quantification of splicing variation is performed similarly in the two

pipelines where only junction reads are considered. For the inclusion isoform,
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there are two junctions to consider. We calculate the mean of the counts of

these two junctions.

The differential analysis is performed by a common method for the two

approaches: kissDE, which tests if the relative abundance of the inclusion

isoform has changed significantly across conditions.

Overall, we further developed and adapted jointly these two pipelines in

order to minimize the discrepancies that could unnecessarily complicate our

comparison.

2.2 The majority of frequent isoforms are found by both

approaches

Applying KisSplice and FaRLine to the same RNAseq dataset (SK-N-

SH cell lines treated or not with retinoic acid) generated by the ENCODE

consortium, we noticed that 68% of the alternatively skipped exons (ASE)

identified by KisSplice were also identified by FaRLine and that 24% of

ASEs identified by FaRLine were also identified by KisSplice (Figure 2 A).

This observation highlights that the mapping-first approach predicts a much

larger number of events. This difference in sensitivity is due to the fact that

while mapping-first approaches require that each exon junction is covered by

at least one read, assembly-first approaches require overlapping reads across

the full skipped exon. Therefore, it can be anticipated that low abundant

isoforms, that are covered by few reads, will be reported by mapping, but

not by the assembly-first approach. Supporting this prediction, we found

that for ASEs reported only by FaRLine, the number of reads supporting

the minor isoform is much lower than in the other categories (Figure 2 B).

In order to further compare the mapping and assembly-first approaches,

we decided to filter out candidates for which the minor isoform was sup-
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ported by less than 5 reads or whose relative abundance was lower than

10% compared to the major isoform.

As expected, the proportion of candidates reported by both methods

increased significantly. Approximately 70% of predicted skipped exons were

now found by both approaches. (Figure 2C).

Furthermore, the estimation of their inclusion levels were very consistent

across the two approaches (R2 > 0.9).

Beyond the overall concordance of the two approaches in detecting com-

mon splicing events, a number of candidates remained reported by only one

approach. Since many of them have a highly-expressed minor isoform (sup-

ported by more than 100 reads) (Figure 2D), the failure of one approach to

detect them is likely not due to a lack of coverage.

Moreover, events from each of these 3 categories were validated by RT-

PCR (Figure 3 and Supplementary Figure S1).

For all these cases, we patiently dissected the reasons why they could

have been missed out by one approach. This enabled us to define 4 main

categories (Figure 3A).

2.3 Some isoforms are systematically missed by one approach

The first category corresponds to cases that were missed out by the mapping-

first approach and corresponds to alternative splicing events involving novel

unannotated exons. The unannotated exon can be the skipped exon or one

of its flanking exons. It can also be a subpart of a larger annotated exon,

and hence be overseen (see Methods).

The reason why the mapping-first approach does not detect these events

is twofold. First, the mapper may map the reads to an incorrect location,

as junction discovery using short reads is a challenging task. This occurred
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in 17% of the 1436 cases. Second, in the case where the mapper succeeds

(83% of the cases), FaRLine failed to report the event because it relies on

annotations. Among these 1199 cases, we distinguished 3 sub-categories of

errors due to the annotation. Either the exon is unannotated (28%), one

of its flanking exon is unannotated (8%) or both exons are annotated but

no transcript combining them was annotated (45%). The assembly-first ap-

proach, KisSplice, does not consider annotations, and an interesting result-

ing advantage is that novel junctions have the same chance to be assembled

as known junctions. Mapping assembled novel junctions to the genome is

indeed less challenging than read mapping because the assembled sequences

are longer.

The downstream annotation of the events is then permissive, in the sense

that annotations are used as an evidence, not as a guide. Alternative splicing

events involving novel splice sites are clearly identified as such, and can

be individually tested and experimentally validated. HIRA gene contain

a novel exon, whose inclusion is supported by at least 20 reads on each

junction (Figure 3B). This case was overseen by the mapping-first approach,

FaRLine. The panel A of the supplementary figure S2 shows an example

of an ASE not reported by FaRLine because the inclusion was not present

in the transcripts.

The second category of splicing events identified by only one approach

corresponds to paralog genes. Untangling the relation between alternative

splicing and gene duplication is a difficult topic, subject to debate [Kopel-

man et al., 2005, Roux and Robinson-Rechavi, 2011]. It is indeed difficult

to assess the amount of alternative splicing that occurs within paralogous

genes. With the mapping-first approach, the reads stemming from recent

paralogs are classified as multi-mapping reads. FaRLine, like the vast ma-
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jority of mapping-first pipelines, discards these reads for further analysis, as

their precise location cannot be clearly established. This results in silently

underestimating alternative splicing in paralog genes. In opposition, de novo

assembly can faithfully state that a family of recent paralogs collectively pro-

duce two isoforms that vary in their sequence. However, whether the two

isoforms are produced from the same locus or from different loci remains un-

determined. KisSplice detects these cases of putative AS in paralog genes.

Figure 3C illustrates the case with genes RASA4 and RASA4B. Exon 18 in

RASA4 (denoted as exon 17 in RASA4B) was detected to be skipped. The

exclusion isoform is supported by 160 reads, while the inclusion isoform is

supported by 400 reads. The mapping-first approach did not detect either

of these isoforms at all.

The third category of splicing events identified by only one approach cor-

responds to cases that are missed out by the assembly-first approach. Out of

the 635 cases belonging to this category, a large fraction (40%) corresponds

to cases where the skipped exon overlaps a repeat, notably Alu elements.

Alu are transposable elements present in a very large number of copies in

the human genome [Batzer and Deininger, 2002]. Most of these copies are

located in introns and a number of them have been exonised [Lev-Maor

et al., 2003, Sorek et al., 2004]. The reason why the mapping-first approach

is able to identify these cases is because even though the read partially map

to repeated sequences, the boundaries of these exons are unique and anno-

tated. Hence the mapper, if set properly, can map these reads to unique

annotated exon junctions and is not confused by multiple mappings. Im-

portantly, if the annotations are not provided to the mapper, it will be

confused by multiple mappings and will not be able to map the read to

the correct location (Supplementary Figure S3). The assembly-based ap-
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proach fails to detect most of these events. The reason is that, although

they do form bubbles in the DBG generated by the reads, these bubbles are

highly branching (online supplementary figure http://kissplice.prabi.

fr/sknsh/graph_RAB5C_distance_3.html). Enumerating branching bub-

bles is computationally very challenging, and may take a prohibitive amount

of time. In practice, we restrict our search to the enumeration of bubbles

with at most 5 branches (Supplementary Figure S4). Increasing this thresh-

old would lead to an increase in the sensitivity at the expense of the running

time.

The fourth category of splicing events identified by only one approach

corresponds to the cases where more than two splicing isoforms locally co-

exist, and one of them is poorly expressed compared to the others. The

RPAIN gene is a good illustration of such cases (Figure 3E), as exons 5 and

6 of RPAIN may be skipped and the intron between exons 4 and 5 may be

retained. While both methods successfully reported the skipping of exon 6,

with exons 5 and 7 as flanking, FaRLine additionally reported the skipping

of the same exon, but with exons 4 and 7 as flanking exons. The reason why

KisSplice did not report this case is because the junction between exons

4 and 6 is relatively weakly supported. More specifically, this junction is

supported by only 55 reads, which accounts for less than 2% of the total

number of reads branching out from exon 4. Transcriptome assemblers, like

KisSplice, usually interpret such relatively weakly supported junctions as

sequencing errors or spurious junctions in highly-expressed genes, therefore

disregarding them in the assembly phase (see Methods).
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2.4 Comparison of the approaches after differential analysis

Beyond the tasks of identifying exon skipping events, a natural question

which arises when two conditions are compared is to assess if the inclusion

level of the exon significantly changed across conditions.

In order to test this, we took advantage of the availability of replicates

for both the SK-N-SH cell line and the same cell line treated retinoic acid.

For each detected event, we tested with kissDE [Lopez-Maestre et al., 2016],

whether we could detect a significant association between one isoform and

one condition. Focusing on those condition-specific events, we again parti-

tioned them in events reported by both methods, by FaRLine only and by

KisSplice only. As shown in Figure 4, we found again that the majority

of condition-specific events were detected by both approaches. This is the

case for instance of exon 22 of gene ADD3 which is clearly more included

upon retinoic acid treatment (Figure 4C), with a DeltaPSI of 27%. The

estimation of the DeltaPSI is overall very similar across the two approaches

(Figure 4B) with a correlation of 0.94. The outliers essentially correspond

to ASE with several alternative donor/acceptor sites. KisSplice considers

these events as different exons while FaRLine considers them as an unique

exon, and sums up all the incoming (resp. outgoing) junction counts. Hence,

the read counts will differ. Supplementary Figure S5 gives an example.

When compared to the splicing event annotated as reported in Figure 2,

we noticed that the proportion of condition-specific events detected by only

one method increased, for two main reasons. First, some ASE identified by

both approaches were found as differentially included only by one method.

This is again due to differences in the quantification of the inclusion levels,

especially for ASE with multiple 5’ and 3’ splice sites. Second, some of the

exons that were missed out by one method at the identification step hap-
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pened to be condition specific. This is the case of an exon in NINL intron 5

(Figure 4D), only found by KisSplice because it was not annotated. This is

also the case of SAR1B exon 3 (Figure 4E), only found by FaRLine because

it overlaps with an Alu element.

The observation that many of the exons detected only by one method

are differentially included across conditions confirms that these exons should

not be discarded from the analysis. Focusing only on exons predicted by one

approach may lead to miss splicing events which are central in the response

to treatment.

2.5 Overlap with other methods

In a first step, we picked FaRLine and KisSplice as examples of a mapping-

first and an assembly-first approach respectively. Clearly, there are other

published methods in both categories. MISO is probably the most widely

used to annotate AS events. We therefore ran it on the same dataset to

check how its predictions overlapped with ours. As shown in Figure 5, 72%

of predictions made by MISO were common to both FaRLine and Kis-

Splice, 23% were only common with FaRLine, 2% were only common to

KisSplice and the remaining 3% were specific to MISO. Overall, almost

all candidates predicted by MISO were also predicted by FaRLine. This

large overlap with FaRLine was expected, because both are mapping-first

approaches. This also shows that the differences between mapping- and

assembly-first approaches reported above are not limited to one mapping-

first approach.

Beside exon-centric approaches, which aim at finding the differentially

spliced exons, there is also a number of published methods which are isoform-

centric and have the more ambitious goal to reconstruct full-length tran-
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scripts.

The most widely used mapping-first and isoform-centric approach is Cuf-

flinks [Trapnell et al., 2012] that we compared to FaRLine using the same

dataset. As shown in Figure 5D, we found that the vast majority of ASE

were predicted by both approaches.

Finally, we compared KisSplice to one of the most widely used de-novo

transcriptome assembler, Trinity[Grabherr et al., 2011]. As shown in Figure

5B, most ASE found by Trinity were also found by KisSplice. However,

KisSplice was significantly more sensitive. The goal of Trinity is to assem-

ble the major isoforms for each gene, it therefore largely under-estimates

alternative splicing, especially inclusion/exclusion of short sequences.

2.6 Discussion

De novo assembly is usually applied to non-model species where no (good)

reference genome is available. We show here that its usage, even when the

annotated reference genome is available, offers a number of advantages. We

name this approach ”assembly-first” because it does use a reference genome,

but as late as possible in the process, in order to minimize the a priori about

which exons should be found.

Using this strategy, we discovered many novel alternatively skipped ex-

ons, which were not found by traditional read mapping approaches (Fig-

ure 3). While it is believed that the human genome is fully annotated, it

is important to underline that we have not yet established a final map of

the parts of the genome that can be expressed. It can be anticipated that

sequencing of single-cells from different parts of the body will lead to the

discovery of a huge diversity and that a substantial number of new exons

will be discovered. An example is the case of unannotated skipped exons
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which overlaps repeat elements. We cannot exclude that this category is

currently largely under-annotated.

We also showed that assembly-first approach has the ability to detect

splicing variants from paralogous genes (Figure 3). This is because mapping

approaches discard reads mapping to multiple genomic locations. Identifica-

tion of such splicing variants produced from different genomic regions shar-

ing sequence similarities (e.g. paralog genes, pseudogenes) is however very

important, since splicing variants generated from paralogous genes but also

from pseudogenes may have different biological functions [Poursani et al.,

2016].

Conversely, we showed that some ASE were detected only by the mapping-

first approach. As shown in Figure 2, we observed that the mapping-first

approach has a better ability to detect lowly-expressed splicing variants. Al-

though such lowly-expressed splicing variants are often considered as “noise”

or biologically non relevant, caution must be taken with such assumptions

for several reasons. First, mRNA expression level is not necessarily cor-

related with protein expression level. Second, as observed from single-cell

transcriptome analyses, some mRNAs can be expressed in few cells, within a

cell population (e.g. they are expressed at a specific cell cycle step) and may

therefore appear to be expressed at a low level in total RNAs extracted from

a mixed cell population [Bacher and Kendziorski, 2016]. Therefore, compu-

tational analysis should not systematically discard lowly-expressed splicing

variants and filtering these events should depend on the biological questions

to address.

We also observed that the mapping-first approach better detects ex-

ons corresponding to annotated-repeat elements (Figure 3). While it has
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been assumed for a long time that repeat elements are “junk”, increasing

evidences support important biological functions for such elements. For ex-

ample, repeat elements like Alu can evolve as exons and the presence of Alu

exons in transcripts has been shown to play important regulatory functions

[Sorek et al., 2004, Shen et al., 2011].

When two methods have non-overlapping predictions, the temptation

could be to focus on exons found by both approaches and discard the others.

We argue that this would be a mistake, because these cases can be validated

experimentally, and many of them correspond to regulated events, where

the inclusion isoform is significantly up or down regulated in presence of a

treatment.

In conclusion, combining mapping- and assembly-first approaches allows

to detect a larger diversity of splicing variants. This is very important

towards the in depth characterization of cellular transcriptome although

other approaches are further required to analyze their biological functions.

From a computational perspective, a number of challenges are still ahead

of us. The co-development of two approaches enabled us to narrow down

the list of difficult instances not properly dealt with by at least one ap-

proach, but we cannot exclude that some categories are still missed by both

approaches. The categories of challenging cases that we defined in Figure 3:

lowly-expressed variants, exonised Alu, complex splicing variants, paralogs

have been overlooked up to now. Possibly because they are much harder to

detect, they had been assumed to play a minor role in transcriptomes. A

number of recent work however argues in the opposite direction.

For exonised ALUs, paralog genes and genes with complex splicing, the

possibility to sequence longer reads with third generation techniques [Tilgner
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et al., 2014, Bolisetty et al., 2015] should prove very helpful. The number

of reads obtained with these techniques is however currently much lower

than with Illumina, thereby preventing their widespread use for differential

splicing, for which the sequencing depth, and not so much the length of the

reads, is the critical parameter which conditions the statistical power of the

tests. In the coming years, methods combining second and third generation

sequencing should enable to obtain significant advances in splicing.

3 Material and Methods

3.1 FaRLINE and KisSplice

Figure 1 shows the two pipelines that we are comparing. While STAR

and TopHat are third-party softwares, we developed the other methods our-

selves. KisSplice was introduced in [Sacomoto et al., 2012], kissDE was

introduced in [Lopez-Maestre et al., 2016]. KisSplice2RefGenome and

FaRLine are methods we introduce in this paper.

For the sake of self-containment, we explain all methods here.

3.1.1 KisSplice

KisSplice is a local transcriptome assembler. As most short reads tran-

scriptome assemblers [Grabherr et al., 2011, Schulz et al., 2012, Robertson

et al., 2010], it relies on a De Bruijn graph (DBG). Its originality lies in

the fact that it does not try to assemble full-length transcripts. Instead, it

assembles the parts of the transcripts where there is a variation in the exon

content. By aiming at a simpler goal, it can afford to be more exhaustive

and identify more splicing events. The key concept on which KisSplice is

built is that variations in the nucleotide content of the transcripts will cor-
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respond to specific patterns in the DBG called bubbles. KisSplice’s main

algorithmic step therefore consists in enumerating all the bubbles in the

graph built from the reads. The sequences corresponding to the two paths

of each bubble are then aligned to the reference genome using STAR, and

the result of the alignment is analysed using KisSplice2RefGenome to

annotate the event.

3.1.2 Alternative splicing events are bubbles in the DBG

Supplementary figure S6 gives a schematic example of two alternative tran-

scripts which differ by the inclusion of one exon. For the sake of simplicity,

the example is given for words of length 3, but the reasoning holds for any

word length. Each distinct word of length k is called a k-mer and corre-

sponds to a node of the DBG. There is a directed edge from a node u to

a node v if the last k − 1 nucleotides of u are identical to the first k − 1

nucleotides of v. Each transcript will therefore correspond to a path in the

DBG. A pair of internally node-disjoint paths with a common source and

target is called a bubble. The smaller path of the bubble corresponds to the

exclusion isoform and is composed of all k-mers which overlap the junction

between the exons flanking the skipped exon. It is therefore usually com-

posed of k − 1 k-mers. In the special case where the skipped exon shares a

prefix with its 3’ flanking exon, or a suffix with its 5’ flanking exon, then

the lower path is composed of less than k−1 k-mers and the k-mer which is

the source (resp. target) does not correspond anymore to an exonic k-mer,

but to a junction k-mer.

In practice, the DBG is built from the reads, not from the transcripts.

The reads stem from possibly all genes expressed in the studied conditions.

Two difficulties arise: reads contain sequencing errors, and repeats may
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be shared across genes.

3.1.3 Dealing with sequencing errors

As originally described in [Pevzner et al., 2004] and later in [Zerbino and Bir-

ney, 2008], sequencing errors generate recognisable structures in De Bruijn

graphs, which can be identified and removed. Their systematic removal

however prevents assemblers from studying SNPs. A compromise consists

in discarding rare k-mers from the graph. This is the strategy we use in Kis-

Splice, where we remove all k-mers seen only once. This idea is however

not sufficient in the context of transcriptome assembly, where the coverage

is very uneven and mostly reflects expression levels. For highly expressed

genes, several reads may have errors at the same site, generating k-mers

with a coverage larger than an absolute threshold. We therefore also use a

relative cut-off, which we set to 2%. These cut-offs we introduce to remove

sequencing errors have an impact on the running time and on the sensitivity.

Decreasing them allows to discover rarer isoforms, at the expense of a longer

running time.

3.1.4 Dealing with repeats

Repeats are notoriously difficult to assemble in DNAseq data, and were ini-

tially thought to be much less problematic in RNAseq, since they are mostly

located in introns and intergenic regions. In practice, mRNA extraction pro-

tocols are not perfect, and a fraction of pre-mRNA remains (typically 5%

for total polyA+ RNA [Tilgner et al., 2012]). Each intron is covered by

few reads, but if a repeat is present in many introns, then this repeat will

obtain a high coverage and will correspond to very dense subgraphs in the

De Bruijn graph built from the reads. The traversal of such subgraphs to
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enumerate all the bubbles they contain is long and mostly fruitless. We

showed in [Sacomoto et al., 2014] that an effective strategy to deal with

this issue is to enumerate only bubbles which have at most b branches. In

practice, we set b to 5. Increasing b will increase the running time, but allow

to find more repeat-associated alternative splicing events. Bubbles which do

not correspond to true AS events can be filtered out at the mapping step.

3.1.5 Annotating the events with KisSplice2RefGenome

Bubbles found by KisSplice are mapped to the reference genome using

STAR, with its default settings, which means that in case of multi-mappings,

STAR reports all equally best matches. The mapping results are then anal-

ysed by KisSplice2RefGenome. At this stage, bubbles are classified in

sub-types depending on the number of blocks obtained when mapping each

path of the bubble to the genome (Supplementary Figure S7). For exon skip-

pings, the longer path of the bubble corresponds to 3 blocks, while the lower

path corresponds to 2 blocks. The splice sites are located and compared to

the annotations. Events with novel splice sites are reported explicitly in the

output of the program.

In the case where the bubble corresponds to a genomic insertion or dele-

tion, it exhibits a specific pattern in terms of block numbers and is reported

separately.

In the case where the bubble maps to two locations on the genome, a

distinction is made between the case of exact repeats where both paths map

to both locations and inexact repeats where each path maps to a distinct

location (Supplementary Figure S8). The cases of exact repeats corresponds

to recent paralogs.
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3.1.6 FaRLine

FasterDB EnsEMBL r75 annotation

FasterDB RNAseq Pipeline, FaRLine, use the FasterDB-based EnsEMBL

r75 annotation database. FasterDB is a database containing all annotated

human splicing variants [Mallinjoud et al., 2014].

The genomic exons are defined by projecting the transcript exons (Supple-

mentary Figure S9). First, the transcript exons are grouped by position.

Then each group of exons define a projected exon with the following rules:

• The start is the smallest start of the non-first-exon of the group.

• The end is the highest end of the non-last-exon of the group that ends

before the start of the next group of exons.

When the most frequent event annotated in the transcrits is an intron

retention, the projected genomic exon is defined as a combination of the two

exons the intron retained. In supplementary figure S9, the exons 5 and 6

and the intron 5 are considered as one unique exon. As events included in

an exon are overseen, this results in some events being missed.

Mapping

The first step of FaRLine is to map the reads to a reference genome.

This step is done using Tophat-2.0.11 [Trapnell et al., 2012].

tophat --min-intron-length 30 --max-intron-length 1200000 \

-p 8 [--solexa1.3-quals for Sknsh_rep1 and Sknsh_rep2] \

--transcriptome-index

A transcriptome index has been built by TopHat using EnsEMBL r75 an-

notations in gtf format. When a transcriptome index is used, the mapping

steps are modified: instead of aligning first to the genome, which is the
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default behavior, TopHat uses Bowtie to align the reads to the transcript

sequences first, then align the remaining unmapped reads to the genome.

Minimal and maximal intron lengths have been modified (default 70 and

500000) to maximize the number of junctions detected, according to the

statistics provided by FasterDB EnsEMBL r75 annotations.

The resulting alignment files have been filtered using samtools 0.1.19 [Li

et al., 2009].

samtools view -F 260 -f 1 -q 10 -b

With this step, only the primary alignments are kept. The minimum read

alignment quality was set up so that multi-mapping reads were removed

from the alignment file.

Annotation and quantification of alternative splicing events

We wrote custom perl scripts, based on the FasterDB-based EnsEMBL r75

annotation database. For each gene, all the reads with at least one base

overlapping the gene from the start to the end coordinates are retrieved.

CIGAR strings are then used to retrieve the alignments blocks. Junction

reads are identified by the presence of at least one ’N’ letter in the CIGAR.

Junction reads were filtered if:

• More than 10% of soft-clipping was detected in the alignment (it

should not be the case with TopHat)

• An indel was close to the junction site, as it would make the junction

position uncertain

Junction read alignments are then processed block by block sequentially

from left to right. Alignment blocks under 4bp on read extremities are

removed from the reads as we considered it is not sufficient to identify cor-
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rectly the mapping localization. Then each block is compared to FasterDB

annotations to check if the block boundaries correspond to known exons

annotated in FasterDB, or to a putative new acceptor or donor site. First

and last alignment blocks for each read must overlap one and only one exon

for a read to be considered. For the inner blocks, if alignment blocks map

to a succession of exons and introns, it is considered as an intron retention.

However, as the read size is only 76bp, this should not happen often. For

the acceptors and donors, we also added a supplementary filter. If a new

donor is identified within a junction, we check if the junction also has an

acceptor identified of the same length +/-1bp on the other side of the junc-

tion, showing most probably a problem of mapping. Once all the blocks are

identified, the block annotations are used to annotate putative alternative

splicing events: alternative skipped exon, multiple exon skipping, acceptor,

or donor sites.

Once all the junction reads are processed, the alternative splicing events

identified are pooled and the read participating to each event are quanti-

fied, as well as the known exon-exon junction. If an exon-exon junction is

annotated with multiple known acceptors and/or donors, all the possible

junction reads are quantified and summed up. To fasten the quantification

step, a junction coordinate file with the corresponding read numbers is pro-

duced from the read alignment using the same filters than described above

and will be used for all the quantification tools: junction, exon skipping,

acceptor and donor.

A challenge in defining the alternative skipped exon events is to identify

the flanking exons. In the first version of FaRLine, these flankings exons
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were defined as the closest annotated genomic exons. This rule led to miss

a lot of ASE events. So to define the flanking exons, we use the informa-

tion contained in the transcripts and in the reads. We list each junction

skipping an exon covered by at least one read. If this junction is annotated

in the transcripts, we extract all annotated events containing this junction.

Else, we annotate the event with the longest covered inclusion isoform. It

allows FaRLine to be more robust to the incompleteness of the annotation

compared to other methods, like MISO. Panel B of supplementary figure S2

gives an example of an ASE reported by FaRLine but not by MISO because

the inclusion isoform is not annotated in the transcripts.

Comparison with STAR

We also mapped the reads with STAR, ran FaRLine on this alignments and

compared the predicted skipped exon with KisSplice. The main results

are similar to what we found with TopHat. Indeed, without any filter, 69%

of ASE annotated by KisSplice are also found by FaRLine and 24% of

FaRLine’s event by KisSplice (compared to 68% and 24% respectively

for the mapping with TopHat). When we filter out the events with an

unfrequent variant, we show that approximately 70% of predicted ASE are

found by both approaches.

3.1.7 Differential analysis

Both pipelines perform ASE detection and quantification. The last step

of the pipelines is the differential analysis of the expression levels of the

variants. This task is performed using the kissDE [Lopez-Maestre et al.,

2016] R package, which takes as input a table of read counts as in Figure

S10, and outputs a p-value and a DeltaPSI (Percent Spliced In).
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Our statistical analysis adopted the framework of count regression with

Negative Binomial distribution. We considered a 2-way design with interac-

tion, with isoforms and experimental conditions as main effects. Following

the Generalized Linear Model framework, the expected intensity of the sig-

nal was denoted by λijk and was decomposed as:

log λijk = µ+ αi + βj + (αβ)ij

where µ is the local mean expression of the gene, αi the contribution of

splicing variant i on the expression, βj the contribution of condition j to

the total expression, and (αβ)ij the interaction term. The target hypothesis

was H0 : {(αβ)ij = 0} i.e. no interaction between the variant and the

condition. If this interaction term is not null, a differential usage of a variant

across conditions occurred. The test was performed using a Likelihood Ratio

Test with one degree of freedom. To account for multiple testing, p-values

were adjusted with a 5% false discovery rate (FDR) following a Benjamini-

Hochberg procedure [Benjamini and Hochberg, 1995].

In addition to adjusted p-values, we report a measure of the magnitude

of the effect. The measure we provide is based on the Percent Spliced In

(PSI) calculated for a pair of variants:

PSIcondition =
countsvariant1

countsvariant1 + countsvariant2

If counts for a variant are below a threshold, then the PSI is not calcu-

lated. This prevents from over-interpreting large magnitudes derived from

low counts. When several replicates are available for a condition, then a PSI

is computed for each replicate, and then we calculate their mean.

Finally, we output the DeltaPSI:
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DeltaPSI = PSIcondition1 − PSIcondition2

unless one of the mean PSI of a condition could not be estimated. The

higher the DeltaPSI, the stronger the effect. In practice, we consider only

DeltaPSI larger than 0.1, a threshold below which it is extremely difficult

to perform any experimental validation.

3.2 SKNSH dataset

We downloaded a total of 959M reads from http://genome.crg.es/encode_

RNA_dashboard/hg19/. They correspond to long polyA+ RNAs generated

by the Gingeras lab, and are also accessible with the following accession num-

bers (ENCSR000CPN - SRA: SRR315315, SRR315316 and ENCSR000CTT

-SRA : SRR534309, SRR534310). For cell lines treated by retinoic acid, the

reads were 76nt long, while they were 100nt long for the non treated cells.

Hence we trimmed all reads to 76nt.

3.3 Computational requirements

FaRLine took 45 hours and 10 Go of RAM. The time-limiting step was

TopHat2, which took 41 hours, even parallelised on 8 cores. When STAR

was tested instead of TopHat2, it took 4 hours, but 30 Go of RAM. Kis-

Splice took 30 hours and 10Go RAM. The RAM-limiting step was STAR

which took 30Go of RAM. All the steps of the pipelines can be reproduced

using the following tutorial: http://kissplice.prabi.fr/sknsh/.

3.4 Experimental Validation

SK-N-SH cells were purchased from the American Type Culture Collection

(ATCC) and cultured using EMEM medium (ATCC) complemented with
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10% FBS (Thermo Fisher Scientific). Cells were differentiated for 48h using

6µM of all-trans retinoic acid (Sigma-Aldrich).

After harvesting, total RNA were extracted using Tripure isolation reagent

(Sigma-Aldrich), treated with DNase I (DNAfree, Ambion) for 30 min at

37◦C and reverse-transcribed (RT) using M-MLV reverse transcriptase and

random primers (Invitrogen). Before PCR, all RT reaction mixtures were

diluted at 2.5 ngµL of initial RNA. PCR reactions were performed using

GoTaq polymerase (Promega).
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F., Hubbard, T. J., Guigó, R., Harrow, J., Bertone, P., Consortium, R.,

et al. (2013). Assessment of transcript reconstruction methods for rna-seq.

Nature methods, 10(12):1177–1184.

[Tilgner et al., 2014] Tilgner, H., Grubert, F., Sharon, D., and Snyder,

M. P. (2014). Defining a personal, allele-specific, and single-molecule long-

read transcriptome. Proceedings of the National Academy of Sciences of

the United States of America, 111(27):9869–74.

[Tilgner et al., 2012] Tilgner, H., Knowles, D. G., Johnson, R., Davis, C. A.,

Chakrabortty, S., Djebali, S., Curado, J., Snyder, M., Gingeras, T. R.,
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Figure 1: The two pipelines compared in this study: KisSplice and FaR-
Line. The first step of KisSplice is to assemble the reads and extract
the splicing events. These events are then mapped back to the reference
genome and classified by event type. The annotated and quantified events
are then used for the differential analysis between the biological conditions.
In contrast, the first step of FaRLine is to map the reads on the ref-
erence genome. From this mapping, annotated and quantified events are
extracted. Finally, the differential analysis is done with the same method as
in the KisSplice pipeline.
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Figure 2: Comparison of the annotated ASE between assembly-first and
mapping-first pipelines. A) Venn diagram of ASEs annotated by the two
pipelines. FaRLine detected many more events than KisSplice. 68% of
ASE annotated by KisSplice were also found by FaRLine and 24% of
ASE annotated by FaRLine were also found by KisSplice. B) Boxplot
of the expression of the minor isoform in the 3 categories defined in the
Venn diagram of panel A: ASE found only by FaRLine, ASE found by
both pipelines and ASE found only by KisSplice. The number of reads
supporting the minor isoform of the ASE found by FaRLine is globally
much lower. C) Venn diagram of ASEs annotated by the two pipelines after
filtering out the poorly expressed isoforms. The common events represent a
larger proportion of the annotated events than previously: 87% of the ASE
annotated by FaRLine and 75% of the ASE annotated by KisSplice. D)
Boxplot of the expression of the minor isoform in the 3 categories defined in
the Venn diagram of panel C: ASE found only by FaRLine, ASE found by
both pipelines and ASE found only by KisSplice. The distribution of the
number of reads supporting the minor isoform is similar for the 3 categories
with highly expressed variants in each category.
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Figure 3: A) Categories identified explaining why some exons are detected
by only one method. B) The new exon in intron 8 of the gene HIRA is an
example of an exon not annotated in EnsEMBL r75. This event was found
by KisSplice but not by FaRLine. C) RASA4 and RASA4B are 2 paralog
genes. KisSplice detected 2 isoforms that could be produced by these 2
genes. FaRLine did not find any event in either of these genes. The exon
skipped is exon 18 in RASA4 (corresponding to exon 17 in RASA4B). The
third band on the RT-PCR is the inclusion of another exon in the intron 18
of RASA4. C) Exon 2 of the gene RAB5C is an example of exon skipping
overlapping an Alu found only by FaRLine. The events in panel A to C
were validated by RT-PCR. E) RPAIN contains a complex event with a
lowly expressed isoform. This weakly expressed isoform was not found by
KisSplice, while the other isoforms were found by both approaches.
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Figure 4: A) Condition-specific variants found by FaRLine, KisSplice or
both methods. Within dashed lines are events identified by both approaches
but detected as condition-specific by only one approach. B) DeltaPSI as
estimated by KisSplice and FaRLine, for events found by both. The
red points represent complex events (events for which KisSplice found at
least 2 ’bubbles’). C) Exon 22 of ADD3 is an example of regulated ASE
found by both approaches. D) A new exon in intron 5 of NINL gene is
found by KisSplice only. The inclusion is differentially regulated between
the 2 conditions. E) Because exon 3 of SAR1B is an exonised Alu, only
FaRLine finds this ASE. Moreover this exon is significantly more included
in the treated cells (SK-N-SH RA).
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Figure 5: A) 72% of ASE found by MISO are also annotated by FaR-
Line and KisSplice. 23% of MISO’s ASE are also annotated by FaR-
Line while only 3% of MISO’s ASE are also annotated by KisSplice. Fi-
nally, only 2% of these ASEs are only annotated by MISO. B) Most of the
events annotated by Cufflinks are found by FaRLine. C) GTF2I exon 13 is
an example of an ASE annotated by FaRLine but not by Cufflinks. Indeed,
Cufflinks only found the inclusion isoform. D) Most of the events annotated
by Trinity are also found by KisSplice. But half of the ASE annotated by
KisSplice are not found by the global assembler Trinity. E) KisSplice an-
notate an ASE in the gene RFWD2, while Trinity only found the inclusion
variant. The events in panels C and E have been validated by RT-PCR.
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Figure S1: rt-PCR validations of events found by both approaches (A), only
by KisSplice (B) and only by FaRLine (C).
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Figure S2: Examples of exon skipping inside a complex event. A) The exon
5 of SMUG1 gene is reported as skipped by KisSplice with exons 4 and 7 as
flanking exons. This event is not found by FaRLine because the inclusion
isoform is not annotated in the transcrits. B) Exon 12 of CEP104 gene is
reported as skipped by FaRLine even if the exclusion isoform is not present
in the annotation. However, MISO does not find this exon skipping.
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Figure S3: Comparison of the mapping-first approach FaRLine with or
without an annotation provided to the mapper (i.e. with/without reference
transcriptome). A) More ASE are annotated when an annotation available.
Panels B to D show examples of events only found by the mapping-first
method when an annotation is provided to the mapper. B) The first cat-
egory, represented by the gene SNHG17, includes exons containing repeats
like ALU elements. C) Genes with a retrotransposed pseudogene, as UPF3A,
represent the second category and are more difficult to find when no anno-
tation is available. D) Short exons (less than 20bp), like exon 5 of the gene
ABI1, compose the third category.
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Figure S4: Example of a bubble containing an Alu. Repeated events such
as Alu are expected to be present in several copies in the reads. Thus,
when the graph is constructed, edges link different copies of Alu. Because
a bubble with more than 5 edges within one of its paths is not enumerated
by KisSplice, this case is not annotated by the assembly-first approach.

Figure S5: Example of an exon skipping with two alternative donor sites. It
is reported as one event by FaRLine and two events by KisSplice.
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Figure S6: A schematic gene with three exons producing two alternative
transcripts. The De Bruijn graph built from the sequences of the transcripts
corresponds to a bubble. The upper path spells the skipped exon and its
flanking junctions while the lower path spells the junction of the exclusion
isoform and has a predictable length.
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Figure S7: Classification of KisSplice events according to the number
of blocks in which they map to the reference genome. Paths representing
variants of an event are mapped on the reference. Spliced mapping results
in blocks, events are then classified by KisSplice2RefGenome according
to the block mapping patterns. (Putative) splice sites are noted by SS in
red. In addition to alternative splicing, some indels are filtered through this
step as they correspond to specific block patterns too.
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Figure S8: Dealing with repeats in KisSplice2RefGenome. If the two
variants (i.e. paths) both map on different copies (exact repeat), we classify
it as a recent paralog. On the contrary if each variant maps on a different
locus, we consider the event as coming from an inexact repeat. This category
represents mostly paralogs that have diverged.

Figure S9: FasterDB exons are defined as the projection of the longer or
most frequent exon in the transcripts (except for alternative first or last
exons). The whole analysis done with FaRLine is based on these exons.

Figure S10: Input and output of the differential analysis. Counts for each
replicate of each condition are computed by FaRLine or KisSplice. These
counts together with the experimental plan are the input of kissDE. In
the example, we show counts for one single event, in practice kissDE tests
all events discovered by one method to spot the differential splicing events.
Provided at least two replicates are available per condition, kissDE com-
putes p-values and DeltaPSI per event, and results are ranked using these
two metrics.
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