What happens in Josephson junctions at high critical current densities

To cite this version:
D. Massarotti, D. Stornaiuolo, P. Lucignano, R. Caruso, L. Galletti, et al.. What happens in Josephson junctions at high critical current densities. Low Temperature Physics, American Institute of Physics, 2017, 43 (7), pp.816 - 823. 10.1063/1.4995630. hal-01643146

HAL Id: hal-01643146
https://hal.archives-ouvertes.fr/hal-01643146
Submitted on 8 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
What happens in Josephson junctions at high critical current densities

D. Massarotti, D. Stornaiuolo, P. Lucignano, and R. Caruso

Dipartimento di Fisica E. Pancini, Università di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli, Italy and CNR-SPIN UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli, Italy

L. Galletti and D. Montemurro

Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

B. Jouault

Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France

G. Campagnano

Dipartimento di Fisica E. Pancini, Università di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli, Italy and CNR-SPIN UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli, Italy

H. F. Arani

Dipartimento di Fisica E. Pancini, Università di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli, Italy and Department of Materials Engineering, Engineering Faculty, Imam Khomeini International University, Qazvin, Iran

L. Longobardi

American Physical Society, 1 Research Road, Ridge, New York 11961, USA

L. Parlato and G. P. Pepe

Dipartimento di Fisica E. Pancini, Università di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli, Italy and CNR-SPIN UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli, Italy

G. Rotoli

Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi della Campania Luigi Vanvitelli, I-81031 Aversa, CE, Italy

A. Tagliacozzo

Dipartimento di Fisica E. Pancini, Università di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli, Italy and CNR-SPIN UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli, Italy

F. Lombardi

Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

F. Tafuri

Dipartimento di Fisica E. Pancini, Università di Napoli Federico II, Monte S. Angelo via Cinthia, 80126 Napoli, Italy and CNR-SPIN UOS Napoli, Monte S. Angelo via Cinthia, 80126 Napoli, Italy

(Submitted March 4, 2017)

The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities J_c. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-J_c junctions. These notions are universal and apply to all kinds of junctions. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4995630]
1. Introduction

The novel opportunities offered by nanotechnologies and material science have enlarged the physical conditions of occurrence of the Josephson effect.1,2 Still obeying to the general rules given by proximity effect and Andreev reflection, the manner superconductivity propagates along the barrier acquires more and more specific features characteristic of the type of the junction. Specific effects might thus appear, depending on the peculiar geometry/topology or on the material of the devices. Nanotechnology applied to pattern bridges and wires, the ability to integrate nano-wires or almost two-dimensional flakes as barriers in between superconducting pads and grain boundary (GB) junctions have, for instance, favored the use of a coplanar geometry with more complicate layout of the whole device. The various transport channels are playing together and are often activated or filtered by external or intrinsic knobs, and more importantly can be traced through the study of current-voltage \((I-V) \) characteristics.

In this work we give a comparative analysis of different types of unconventional junctions ranging from high critical temperature superconductors (HTS) GB Josephson junctions (JJs) to hybrid junctions with ferromagnetic or semiconducting barriers, including InAs nanowires and flakes of topological insulators (TI) graphene. We focus on some lack of consistency between experimental measurements and standard models. In particular, we refer to the description of the \(I-V \) curves of junctions characterized by high values of the critical current density \(J_c \) in terms of the resistively shunted junction (RSJ) model.1–4 Unconventional junctions renew some inconsistencies, that were clearly detected in the past in traditional trilayer Nb technology,5,6 in a more subtle manner, probably due to the layout of the devices and their intrinsic complexity. We speculate on how higher \(J_c \), in extended nonuniform barriers or in filaments embedded in an insulating matrix may even promote the generation of a vortex flow, of phase slips events or of heating modes.7,8 When possible, this will be done through analysis of the switching distribution of the critical current in hysteretic \(I-V \) curves. This comparative investigation contributes to set some benchmarks to discriminate an “authentic” complete Josephson behavior from regimes spoilt by heating mechanisms in high voltage and current ranges.

2. \(I-V \) curves of unconventional junctions

Figure 1 presents a collection of \(I-V \) curves of various unconventional JJs trying to cover several significant regimes and layouts. We report \(I-V \) curves of junctions employing two-dimensional barriers as topological insulator flakes [Fig. 1, panels (a)9 and (b)10] or graphene [Fig. 1, panels (c)11,12 and (f)13] In Fig. 1, panels (e)14 and (d)15 \(I-V \) characteristics refer to junctions where the barrier is a nanowire. In all these cases we present curves with and without hysteresis to encompass nominally the relevant limits in the phase dynamics.

The basis for the understanding of \(I-V \) curves is obviously the RSJ model. This model, first introduced by McCumber and Stewart,3,4 and later implementations1,2 are the main tools to describe \(I-V \) phenomenology. Representing the displacement current by a capacitor \(C \) and the sum of the quasiparticle and insulator leakage current by a resistance \(R \), the well-known equivalent circuit for the junction gives the relation

\[
I = I_c \sin \phi + V/R + CDV/dt. \quad (1)
\]

A wide variety of \(I-V \) characteristics can be described through an opportune choice of the parameters. We can therefore pass from a tunnel-like behavior with high values of the capacitance, characterized by a hysteretic behavior and by the presence of switching currents, to a regime where capacitance plays a marginal role and no hysteretic behavior is present.

This equation can be transformed in

\[
\left(\Phi_0/2\pi \right)^2 C \left(\partial^2 \phi \over \partial t^2 \right) + \left(\Phi_0/2\pi \right)^2 1/R \left(\partial \phi \over \partial t \right) + 1/\partial \phi U = 0, \quad (2)
\]

where

\[
U = -\Phi_0/2\pi (I_c \cos \phi + I\phi), \quad (3)
\]

which is commonly the basis to study the nonlinear dynamics of the junction. This equation describes the motion of a ball moving on the “tilted washboard” potential \(U \).3,4 The term involving \(C \) represents the mass of the particle, the \(1/R \) term represents the damping of the motion, the average “tilt” of the washboard is proportional to the bias current \(I \) and \(\Phi_0 = h/2e \) is the flux quantum. Damping is however strongly influenced by the environment, i.e., the circuitry connected to the junction and some aspects will be discussed in the next sections.

For values of \(I < I_c \), the particle is confined to one of the potential wells, where it oscillates back and forth at the plasma frequency \(\omega_p = 2\pi I_c/\Phi_0 C \)12(1 - \(I/I_c \)^21/4).

The McCumber–Stewart damping parameter \(\beta_c = 2\pi I_c \) \(R^2/C/\Phi_0^2 \) determines the amount of damping.1,2 The strength of the friction can be also expressed through the junction quality factor \(Q = \omega_p RC \). In a more general approach, \(Q \) has a frequency dependence,1,6 which includes the effects of the external shunting impedance. Junctions are underdamped, with hysteretic \(I-V \) curves, and hence latching for \(\beta_c > 1 \). For \(\beta_c < 1 \) they are over-damped, with nonhysteretic \(I-V \), and nonlatching.

In Fig. 1(a) \(I-V \) curves of a Al–BiSe (flake) (TI)–Al junction as a function of the temperature clearly indicate an overdamped regime,9 which is retrieved in Fig. 1(c) for a Al–InAs (nanowire)–Al device.1,6 In these devices, the value of the critical current density \(J_c \) is strongly affected by the properties of the interface.17 In these systems a nominal value of the critical current density per unit length \(W \) (\(W \) being the width of the junction) \(J_{cw} = 10^{-3} \) A/cm for the Al–BiSe–Al junction and of the standard \(J_c = 10^{-3} \) A/cm\(^2\) (normalized to the cross section of the nanowire) for Al–InAs–Al junction can be estimated, respectively. In this case the InAs nanowire is placed on the top of Al banks, differently from the standard configuration where the Al is rather deposited on the nanowire.15 This design circumvents the compatibility problems stemming from the peculiar growth condition requirements of some materials, as for instance HTS, and its coupling with special barriers.18 In this layout, the integration of the barrier with the
super-conducting components takes place at room temperature, after suitable surface treatments assembling optimally pre-built blocks. The nanowire (NW) is suspended on the superconducting electrodes with Ti/Au contacts encapsulating the InAs-NW edges.19 The curves relative to the Al–graphene (sheet)–Al JJ, reported in Fig. 1(e) as a function of temperature, also point to overdamped behavior.11,12 Here \(J_{cw} = \frac{10}{C_0} \) A/cm. In the case of graphene barrier the supercurrent is superimposed on a small resistance, which has been correlated to an incipient Berezinskii–Kosterlitz–Thouless (BKT) transition.11 Vortex bundles break above the BKT temperature and move in the barrier adding a resistive channel. This is a direct consequence of the layout of the junction with an extremely large graphene sheet with an almost ideal two-dimensional behavior. The barrier can host very extended vortex bundles and give them space to move, which results in an additional intrinsic dissipation mechanism. This is an example of the generation of intrinsic dissipation mechanism not necessarily due to high \(J_c \) passing thorough the junction.

Hysteric \(I-V \) curves are reported for the following junctions: Nb–strained bulk HgTe (TI)–Nb [Fig. 1(b)],10 Al–InAs (nanowire)–Al [Fig. 1(d)],15 and Pbln–graphene–Pbln [Fig. 1(f)].13 The nominal values of \(J_{cw} \) and \(J_c \) are \(10^{-2} \) A/cm, \(5\times10^3 \) A/cm\(^2\) and \(10^{-3} \) A/cm, respectively. In literature there are several other examples with similar \(I-V \) curves. For most of these curves there is no exact fitting with RSJ predictions and no reliable values of the capacitance are extracted. These inconsistencies seem to raise doubts about a truly underdamped behavior, that one would naively expect on the basis of RSJ arguments in presence of hysteretic \(I-V \) curves. This cannot be even explained with the extension of the RSJ model,2 which includes other possible dissipation mechanisms occurring in the subgap region and manifesting themselves through characteristic leakage currents. These are identified as nonlinear resistive models. The term \(I_N = V/R \) is replaced by

\[
I_N(V) = \begin{cases}
1/R_L & \text{for } |V| < V_g \\
1/R_n & \text{for } |V| > V_g
\end{cases}
\]

or by a more reasonable approximation of the power-law

\[
I_N(V) = \frac{V}{R_n^{\alpha}} \left(\frac{V}{V_g} \right)^\alpha.
\]

In Eqs. (4) and (5), being \(V_g = |(\Delta_1 + \Delta_2)/e| \), \(\Delta_1 \) and \(\Delta_2 \) the gap of the two superconducting electrodes, while \(R_L \) and \(R_n \) are the subgap quasiparticle resistance and the normal state resistance, respectively. These versions of the RSJ model have the merit of modeling leakage currents for voltages lower than the sum of the gap values \(V_g \) of the superconductors composing the junction. \(V_g \) is commonly assumed about the sum of the gap values, but in general this

![Fig. 1. Measurements of \(I-V \) characteristics on different types of unconventional JJs. In panels (a) and (b) \(I-V \) curves refer to TI JJs, Al–BiSe (flake)–Al junctions8 in (a) and Nb–strained bulk HgTe–Nb (adapted from Ref. 10) in (b), respectively. In panels (c) and (d) \(I-V \) characteristics refer to on Al–InAs (nanowire)–Al are reported, adapted from Ref. 4 in (c) and from Ref. 15 in (d), respectively. Panels (e) and (f) show typical \(I-V \) curves of graphene-based JJs, in particular Al–graphene–Al JJ11,12 in (e) and Pbln–graphene–Pbln in (f) (adapted from Ref. 13). In all the three rows, the panel on the left reports the temperature dependence of nonhysteretic \(I-V \) characteristics, while the central panel shows the case of hysteretic \(I-V \) curves, respectively. In panel (g) the \(I-V \) curves refer to ferromagnetic NbN–GdN–NbN spin filter junctions with different values of \(J_c \),21 and finally panel (h) and panel (i) show the \(I-V \) characteristics of YBCO biepitaxial GB junctions with \(J_c \) of 65 A/cm\(^2\) and 5 A/cm\(^2\), respectively.25 The black line in panel (i) indicates the finite slope \(R_0 \) of the supercurrent branch (see the text).](image-url)
The small dimensions of these devices (width \(w \)) generate critical and retrapping currents up to 70% at 300 mK. A good correspondence between the switching voltage \(V_{sw} \) is expected to reduce the influence of micro-structural disorder, as opposed to all other ferromagnetic junctions falling in the overdamped regime. In the low-I \(_c\) case, the quantum regimes. Multiple escapes and retrapping events result in the appearance of a finite resistance \(R_0 \) at low voltage [see black line in Fig. 1(i)].

Table 1 condenses parameters for additional hybrid junctions taken from literature \(^{31–35} \) and from the examples above.

<table>
<thead>
<tr>
<th>Type of junction</th>
<th>(L), nm</th>
<th>(I_c), nA</th>
<th>(\mu V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-InN (NW)-Nb</td>
<td>(\approx 100)</td>
<td>5700 (800)</td>
<td>450</td>
</tr>
<tr>
<td>Al-InAs (NW)-Al</td>
<td>from 100 to 450</td>
<td>130 (40)</td>
<td>2–60</td>
</tr>
<tr>
<td>Al-InAs (NW)-Al</td>
<td>140</td>
<td>60 (300)</td>
<td>10</td>
</tr>
<tr>
<td>Al-GeSi-Al</td>
<td>(\approx 100)</td>
<td>120 (60)</td>
<td>200</td>
</tr>
<tr>
<td>Al-graphene-Al</td>
<td>(\approx 400)</td>
<td>35 (30)</td>
<td>120</td>
</tr>
<tr>
<td>Al-graphene-Al</td>
<td>(\approx 400)</td>
<td>500 (60)</td>
<td>50</td>
</tr>
<tr>
<td>Al-graphene-Al</td>
<td>(\approx 200)</td>
<td>50 (30)</td>
<td>15</td>
</tr>
<tr>
<td>PbIn-graphene-PbIn</td>
<td>(\approx 300)</td>
<td>1000 (50)</td>
<td>200</td>
</tr>
<tr>
<td>Nb-BiTe(_2)-Nb</td>
<td>(\approx 50)</td>
<td>18 (\mu A) (260)</td>
<td>20</td>
</tr>
<tr>
<td>Al-BiSe(_2)-Al</td>
<td>(\approx 300–400)</td>
<td>230–1700 (300)</td>
<td>10–90</td>
</tr>
<tr>
<td>Nb-HgTe-Nb</td>
<td>(\approx 200)</td>
<td>3.8 (\mu A) (25)</td>
<td>200</td>
</tr>
<tr>
<td>Nb-InN-Nb</td>
<td>3.0</td>
<td>30 (\mu A) (300)</td>
<td>100</td>
</tr>
<tr>
<td>Nb-InN-Nb</td>
<td>1.5</td>
<td>820 (\mu A) (300)</td>
<td>1000</td>
</tr>
<tr>
<td>YBCO GB</td>
<td>500</td>
<td>100 (300)</td>
<td>600</td>
</tr>
<tr>
<td>YBCO GB</td>
<td>600</td>
<td>5 (300)</td>
<td>60</td>
</tr>
</tbody>
</table>

3. Processes occurring in junctions with high \(J_c \)

In this section we describe two different effects occurring in high-\(J_c \) JJs. The former refers to the possible occurrence of vortex motion, with the appearance of a characteristic bending in the \(I–V \) curves at certain voltage values. The latter is more subtle and is related to the appearance of heating modes, manifesting in switching current distributions.

3.1. What might happen in the \(I–V \) curves

In Fig. 2 we show the \(I–V \) characteristics of a YBCO biepitaxial JJ characterized by high values of \(J_c \) \(\approx 10^5 \) A/\(\text{cm}^2 \) and relatively high values of \(I_c \), when compared to the values of the junctions reported in Fig. 1. The \(I–V \) curve is hysteretic but we are more interested in the high voltage behavior. After the switch from the superconducting to the normal state, the first upward (1st) bending in the \(I–V \) curve is consistent with a RSJ-like behavior. The second downward (2nd) bending is not consistent with RSJ behavior. We
propose an explanation in terms of vortex motion. Our analysis of this $I-V$ curve is based on the fact that the voltage across the junction at $I > I_c$ comes from two different mechanisms: $V = V_{RSJ} + V_{var}$, where the first contribution (dominant at low energies) comes from the conventional RSJ Josephson dynamics, whereas the second, dominating at high energies, comes from vortex dynamics. The latter does not carry any phase information, being completely unrelated to the Josephson component, but it is rather controlled by flux-line dynamical effects. It includes thermal effects, depinning, creep and flow contribution.6,30 This commonly applies to standard bridges without Josephson coupling.5,6 In Fig. 2 we report two measurements at $T \ll T_c$, namely $T=340\,\text{mK}$ and $3\,\text{K}$ (blue and red points, respectively). Here, neglecting the jump at I_c, the RSJ contribution can be approximated to

$$V_{RSJ} = I_{c1}R_o \sqrt{1-(I/I_{c1})^2},$$ \hspace{1cm} (6)

where I_{c1} is the Josephson critical current. When the current increases, vortex motion perpendicular to the current can give rise to

$$V_{var} = V_0 \exp\left(-U_0/(k_BT)\right) \sinh\left(U_0/(k_BT)I/I_{c2}\right),$$ \hspace{1cm} (7)

where I_{c2} is a second critical current regulating the vortex motion, as well as U_0 that is the classical activation barrier for vortices.5,6 According to the critical state model,6,37 one expects $U_0/(k_BT) \sim 4\pi \nu$ with $\nu = 1$ While the $I_{c1}R_o$ parameter ($\sim 0.9\,\text{mV}$ at $340\,\text{mK}$, $\sim 0.85\,\text{mV}$ at $3\,\text{K}$) is fixed by the energy scales, the substantial free parameters are $V_0 \sim 140\,\mu\text{V}$ and $I_{c2} \sim 20\% I_{c1}$. The results of the fits are reported in Fig. 2 (blue and red lines for $T=340\,\text{mK}$ and $T=3\,\text{K}$, respectively). The physical interpretation of this phenomenological approach is quite direct. The lack of uniformity is modeled through the presence of a nanochannel, some kind of filamentary structure. The condition $I_{c2} \sim 20\% I_{c1}$ implies that the nanochannel is much smaller that the total area of the junction, otherwise its contribution would be dominant. The nanochannel triggers vortex flow on the scale energy of U_0 inside the slab which contains the GB. No significant variations between $300\,\text{mK}$ and $3\,\text{K}$ are observed, since the energy scale of the activation vortex motion is much higher. This shape of the $I-V$ curves would naturally lead to an alternative explanation of the excess current I_{ex} as strongly influenced by the activated vortex motion. Similar bumps might be also induced by time dependent effects included in the Ginzburg–Landau equations, whose application would be less direct in this case.2 These $I-V$ curves are clearly different from those measured in simple nanowires (see for instance Ref. 38 and references therein).

3.2. Heating modes and nonequilibrium in switching current measurements

The washboard potential offers a very intuitive picture to understand thermally activated processes and macroscopic quantum phenomena.39 Measurements of switching current distributions (SCDs), along with their first and second momenta (the mean I and the width σ), codify the very general process of the escape of a particle (phase) from a potential well in a JJ.11,12 Roughly speaking, SCDs are obtained in JJs with hysteretic $I-V$ characteristics by measuring the current at which the transition from the zero voltage state to the finite voltage state occurs. The stochastic nature of this process can be studied by repeating the measurement many times, typically 10^4 times, and the collection of all the events provides the switching current distribution.

Thermally activated processes are well understood in JJs both in the underdamped40–42 and in the moderately damped16 regime. The transition to the macroscopic quantum tunneling (MQT) regime has been theoretically39,43 and experimentally44–46 widely investigated. In moderately damped junctions, since dissipation levels are larger, the phase particle after the escape event can be retrapped in one of the following wells of the washboard potential. This dynamics generates a diffusive motion of the phase particle, namely a phase diffusion process,47–51 whose fingerprint is the collapse of σ above a transition temperature T^\star. In panels (a) and (b) of Fig. 3 an example of the temperature behavior of the switching distributions and of $\sigma(T)$, respectively, typical of moderately damped junctions is shown.

The SCDs measured on high-I_c GB junction is reported in panel (c) of Fig. 3, along with the corresponding temperature behavior of σ in panel (d) of the same figure. The phase dynamics is radically different from what observed in standard junctions with low-I_c values. The rate of decrease of σ [panel (d) of Fig. 3] above the transition temperature T^\star turns to be a distinctive marker of the phase dynamics, since the slope is much smaller when compared to moderately damped JJs, and clearly indicates that the phase dynamics of high-I_c JJs cannot be described in terms of the intermediate dissipation regime.52

Therefore, hysteresis in $I-V$ curves15,53 does not necessarily indicate canonical Josephson phase dynamics, even in the presence of a Fraunhofer magnetic field pattern.8 It may rather arise as a result of local heating processes, possibly induced by intrinsic inhomogeneous composition unavoidable for high-I_c junctions. The absence of a set of self-consistent electrodynamics parameters to describe high-I_c JJ is a strong indication of the failure of the standard Josephson dynamics. This failure is of general relevance, applying both to conventional low-T_c superconductor (LTS) JJs7,8 and to the emergent class of hybrid nanoscale junctions.15,33,34
We have found that the numerical simulation of a transition driven by local heating events accounts well for devices in the J_c interval (10^4–10^5 A/cm2). For larger values of J_c, heating driven mechanisms become dominant with a transition to the normal state locally in the junction area. These events can be modeled as phase slips events (PSEs), in the sense that they are local processes, break the coherence of the phase information and are described by a heat diffusion-like equation. In particular, the probability for a single heating event can be still described in terms of the Langer–Ambegaokar–McCumber–Halperin (LAMH) theory and further extensions.

Following an approach proposed in Ref. 57 for LTS wires, our numerical simulation of the temperature jump induced by a PSE obeys the phenomenological diffusive equation for the relaxation of the temperature gradient

$$\frac{dT}{dt} + \alpha(T, T_b) \delta T = r(T_b, t) + \eta(T, I) \sum_{t_i} \delta(t - t_i). \quad (8)$$

Here $\delta T = T - T_b$ is the deviation from the bath temperature T_b. The relaxation coefficient $\alpha(T, T_b)$ depends on the thermal conductivity $K(T)$ and on T_b. $r(T_b, t)$ is the noise source due to the environment with an admittance $Y(\omega)$, while $\eta(T, I)$ is the temperature jump due to the PSEs, which occur at the stochastically distributed times t_i. After the heating event, the transition to the finite voltage state occurs if the local temperature of the junction overcomes a threshold temperature T_{th}. More details can be found in Ref. 50.

Two main effects discriminate between the low-temperature and the high-temperature behavior. At low temperatures the specific heat is quite low, thus with each PSE there is a considerable increase in the temperature. In addition, the thermal conductivity is quite low as the system is deeply into the superconducting phase. The junction is rather isolated from the environment and the temperature jump due to a single heating event is destructive for the superconducting state. A large local heating is produced which is difficult to dissipate. Therefore, the system is not at equilibrium with its environment, and we can define an effective temperature T_{eff} for the junction, which is higher than T_b.

At high temperatures we are in the opposite regime of small $\eta(T)$ per heating event, while the thermal conductivity $K(T)$ increases with increasing temperature as well. Thermal diffusion is more effective and multiple PSEs are required for switching. This occurs above T^*, where the derivative $d\alpha/dT$ is negative. It can be shown that T_{eff} and T_b coincide above T^*, since the system is able to thermalize during the time interval between well separated heating events. In this temperature range, the number of successive PSEs, which are responsible for the transition, can be estimated. A consistent set of the junction parameters (temperature jump η, number of heating events) can be extracted from these simulations.

The final result is that a Josephson junction cannot sustain an unlimited increase in the critical current I_c, and thus in the quality factor Q, through larger critical current density.

Fig. 3. (a) Measurements of SCDs on low-J_c moderately damped GB JJ. The corresponding $\sigma(T)$ is reported in panel (b). The transition temperature T^* indicates the onset of the phase diffusion regime. In panel (c) the measurements on high-J_c GB JJ are shown. The switching profiles present evident deviations from the typical temperature behavior of moderately damped JJs, as discussed in the text, signaling the emergence of different dissipation mechanisms in the switching dynamics. The temperature behavior of σ in panel (d) is a distinctive marker of local heating events occurring in high-J_c JJs.
4. Conclusions

We have analyzed the current-voltage characteristics of different types of unconventional JJs, including HTS GB junctions and hybrid JJs. Different dissipation sources may arise, thus distinctive criteria to distinguish the possible dissipation mechanisms provide the key tool to reconstruct the electrodynamics of such unconventional JJs. The case of high critical current density J_c junctions is quite relevant, since in this regime the standard Josephson phase dynamics of a hysteretic junction collapses. In these devices, characterized by intrinsic lack of homogeneity and by inline layout, at high-voltages (from 5 to 10 times V_m) I–V characteristics may present bumps signatures of activated vortex motion. The analysis of the escape dynamics through measurements of SCDs reveal that different switching profiles occur for high-J_c junctions, which can be modeled in terms of local heating events and nonequilibrium phenomena. These effects are of relevance for all the experiments using low-dimensional barriers, for which possible heating effects could lead to distorted phase information.

We acknowledge helpful discussions with T. Bauch, M. G. Blamire, S. Charpentier, A. Pal, and S. Roddaro.

Email: tafuri@na.infn.it