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Abstract

Several proof formalisms have been used, and in some cases even
introduced, in order to define proof systems for modal logic. Our
work falls within a more general project of establishing a common
specification language for checking proofs given in a wide range of
deductive formalisms. In this paper, we consider the case of labeled
proof systems for modal logics, i.e., in particular, Negri’s labeled se-
quent calculi, Fitting’s prefixed tableaux and free-variable prefixed
tableaux, and provide a framework for certifying proofs given in such
calculi. The method is based on the use of a translation from the
modal language into a first-order polarized language and on a checker
whose trusted kernel is a simple implementation of a classical focused
sequent calculus. The framework allows for a high flexibility in the
representation of proofs to be checked, in the sense that even partial
proofs can be verified by employing a process of proof reconstruction.
We describe the general method for modal logics characterized by ge-
ometric frame conditions, present its implementation in a Prolog-like
language, and provide several examples of proof certification in the
case of well-known normal modal logics, like K, S4 and S5.
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1 Introduction

Modal logics are very popular and feature in many areas of computer science,
including formal verification, knowledge representation, the field of logics of
programs, computational linguistics and agent-based systems. Two common
approaches for the automatic proving of modal theorems are the tableau
method [1] and the resolution principle [2]. Theorem provers based on such
approaches normally contain non-trivial optimizations and cores which might
compromise the amount of trust we can place in them. Nevertheless, only
few of these provers do actually return an evidence supporting their results
and even these evidences might not be checkable by a computer.

The main goal of this paper is to try and define a framework in which
arbitrary results obtained by modal theorem provers can be certified. Such
a framework can, therefore, bridge the gap between optimization and trust
- theorem provers need not be proven correct but must produce “sufficient”
proof evidence which can be then certified. A proposal for a definition of what
is considered as a sufficient proof evidence is one of the topics we address, as
well as a description of the framework, its implementation and its usage.

ProofCert [3] is a project targeting the certification of a wide range of
proof evidences. By using well-established concepts of proof theory, ProofCert
proposes foundational proof certificates (FPC) as a framework to specify
proof evidence formats. Describing a format in terms of an FPC allows soft-
ware to check proofs in this format, much like a context-free grammar allows
a parser to check the syntactical correctness of a program. The parser in this
case would be a kernel: a small and trusted component that checks a proof
evidence with respect to an FPC specification.

Checkers [4] is a generic proof certifier based on the ProofCert ideas. It
allows for the certification of arbitrary proof evidences using various trusted
kernels. The certification is carried out by using dedicated FPC specifications
which guide the construction of proofs in the target kernels. A particularly
trusted and low-level kernel is the focused classical sequent calculus LKF [5].
In [6], a translation from the language of the labeled sequent system G3K [7]
for propositional modal logic into the language of LKF was described. G3K
is of interest when trying to certify proofs of modal theorem provers due to
its close relationship with the refutational technique of prefixed tableaux, on
which many modal theorem provers are based.

In [8], we proposed two different FPC specifications for tableau and la-
beled sequent proofs for the modal logic K. The first one required quite a
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detailed proof evidence from the prover, while in the second one we only re-
quired the prover to provide some core information about the proof evidence
and we check that it is correct by reconstructing the rest of the proof.

By contrast, in this paper we extend the result in three directions.
First, we extend the required detail level of the proofs to the whole spec-

trum between the two mentioned above. Proofs can now omit any amount
of detail as long as the remaining information is enough for adequate certi-
fication, thus emphasizing a trade-off between proof checking adequacy and
proof search: while a high amount of details allows for an adequate and
precise certification of the original proof, a proof representation with holes
will require a certain degree of proof search in order to deduce the missing
components. This flexibility allows, for example, certification of proofs given
in the formalism of free variable tableaux, for which a step-by-step proof
checking by means of emulation in a sequent calculus would not be possible.

Second, we add support for proofs in both validation-style labeled sequent
systems and refutation-style prefixed tableau systems. While such a support
for the logic K was already existing in [8], it was based on a simple translation.
The current approach is based on two distinct FPC specifications. The first
supports the G3K calculus while the second supports tableau systems.

Last, we add support for proofs of any modal logic whose semantical
frames can be defined by geometric properties and not only for the logic K,
thus allowing the certification of proofs from modal logics such as S4 and S5.

Proof evidences arising from the labeled proof systems mentioned above,
when paired with the corresponding specification, can be automatically cer-
tified by Checkers over the LKF kernel. We show, by means of examples, that
using the ProofCert flexible notion of a proof evidence and Checkers modular
design, we are able to support proof checking for the different formalisms, by
making use of the same notion of translation.

To the best of our knowledge, the work presented here is the first attempt
to independently certify the proofs generated by propositional modal theorem
provers. The approach closest to ours is probably Dedukti’s [9] independent
certification for the classical first-order tableau prover Zenon modulo [10].

In the next section, we present some background on ProofCert, modal
logic and theorem proving. In Section 3, we describe the different FPC
specifications. Such specifications are then used in order to enhance the
capabilities of Checkers, as we demonstrate on some examples. In Section 4,
we conclude and discuss some possible future work.

3



2 Background

2.1 A general proof checker

There is no consensus about what shape should a formal proof evidence
take. The notion of structural proofs, which is based on derivations in some
calculus, is of no help as long as the calculus is not fixed. One of the ideas
of the ProofCert project is to try to amend this problem by defining the
notion of a foundational proof certificate (FPC) as a pair of an arbitrary proof
evidence and an executable specification which denotes its semantics in terms
of some well known target calculus, such as the Sequent Calculus. These two
elements of an FPC are then given to a universal proof checker which, by the
help of the FPC, is capable of deriving a proof in the target calculus. Since
the proof generated is over a well known and low-level calculus which is easy
to implement, one can obtain a high degree of trust in its correctness.

The proof certifier Checkers is a λProlog [11] implementation of this idea.
Its main components are the following:

• Kernel. The kernels are the implementations of several trusted proof
calculi. Currently, there are kernels over the classical and intuitionistic
focused sequent calculus. Section 2.2 is devoted to present LKF, i.e. the
classical focused sequent calculus that will be used in the paper.

• Proof evidence. The first component of an FPC, a proof evidence is
a λProlog description of a proof output of a theorem prover. Given the
high-level declarative form of λProlog, the structure and form of the
evidence are very similar to the original proof. We will see the precise
form of the different proof evidences we handle in Section 3.

• FPC specification. The basic idea of Checkers is to try and generate
a proof of the theorem of the evidence in the target kernel. In order
to achieve that, the different kernels have additional predicates which
take into account the information given in the evidence. Since the
form of this information is not known to the kernel, Checkers uses FPC
specifications in order to interpret it. These logical specifications are
written in λProlog and interface with the kernel in a sound way in
order to certify proofs. Writing these specifications is the main task
for supporting the different outputs of the modal theorem provers we
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consider in this paper and they are, therefore, explained in detail in
Section 3.

2.2 Classical Focused Sequent Calculus

Theorem provers usually employ efficient proof calculi with a lower degree of
trust. At the same time, traditional proof calculi like the sequent calculus
enjoy a high degree of trust but are very inefficient for proof search. In order
to use the sequent calculus as the basis of automated deduction, much more
structure within proofs needs to be established. Focused sequent calculi, first
introduced by Andreoli [12] for linear logic, combine the higher degree of trust
of sequent calculi with a more efficient proof search. They take advantage of
the fact that some of the rules are “invertible”, i.e. can be applied without
requiring backtracking, and that some other rules can “focus” on the same
formula for a batch of deduction steps. In this paper, we will make use of
the classical focused sequent calculus (LKF) system defined in [5]. Fig. 1
presents, in the black font, the rules of LKF.

Formulas in LKF can have either positive or negative polarity and are
constructed from atomic formulas, whose polarity has to be assigned, and
from logical connectives whose polarity is pre-assigned. The connectives
∧−,∨− and ∀ are of negative polarity, while ∧+,∨+ and ∃ are of positive
polarity.

Deductions in LKF are done during invertible or focused phases. In-
vertible phases correspond to the application of invertible rules to negative
formulas while a focused phase corresponds to the application of focused
rules to a specific, focused, positive formula. Phases can be changed by the
application of structural rules. A polarized formula A is a bipolar formula if
A is a positive formula and no positive subformula occurrence of A is in the
scope of a negative connective in A. A bipole is a pair of a negative phase
below a positive phase within LKF: thus, bipoles are macro inference rules
in which the conclusion and the premises are ⇑-sequents with no formulas to
the right of the up-arrow.

It might be useful sometimes to delay the application of invertible rules
(focused rules) on some negative formulas (positive formulas) A. In order to
achieve that, we define the following delaying operators ∂+(A) = true ∧+ A
and ∂−(A) = false ∨− A. Clearly, A, ∂+(A) and ∂−(A) are all logically
equivalent but ∂+(A) is always considered as a positive formula and ∂−(A)
as negative.
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In order to integrate the use of FPC into the calculus, we enrich each
rule of LKF with proof evidences and additional predicates, given in blue
font in Fig. 1. We call the resulted calculus LKF a. LKF a extends LKF
in the following way. Each sequent now contains additional information in
the form of the proof evidence Ξ. At the same time, each rule is associated
with a predicate (for example initiale(Ξ, l)) which, according to the proof
evidence, might prevent the rule from being called or guide it by supplying
such information as the cut formula to be used.

Note that adding the FPC definitions in Fig. 1 does not harm the sound-
ness of the system but only restricts the possible rules which can be applied
at each step. Therefore, a proof obtained using LKF a is also a proof in LKF.
Since the additional predicates do not compromise the soundness of LKF a,
we allow their definition to be external to the kernel and in fact these def-
initions, which are supplied by the user, are what allow Checkers to check
arbitrary proof formats. Section 3 is mainly devoted to the definitions of
these programs for the different proof formats of the modal theorem provers.

2.3 Labeled proof systems for modal logic

2.3.1 Modal logic

The language of (propositional) modal formulas consists of a functionally
complete set of classical propositional connectives, a modal operator � (here
we will also use explicitly its dual ♦) and a denumerable set P of propositional
symbols. Along this paper, we will work with formulas in negation normal
form, i.e., such that only atoms may possibly occur negated in them. Notice
that this is not a restriction, as it is always possible to convert a propositional
modal formula into an equivalent formula in negation normal form. The
grammar is specified as follows:

A ::= P | ¬P | A ∨A | A ∧A | �A | ♦A

where P ∈ P . We say that a formula is a �-formula (♦-formula) if its
main connective is � (♦). The semantics of the modal logic K is usually
defined by means of Kripke frames, i.e., pairs F = (W,R) where W is a
non-empty set of worlds and R is a binary relation on W . A Kripke model
is a triple M = (W,R, V ) where (W,R) is a Kripke frame and V : W → 2P

is a function that assigns to each world in W a (possibly empty) set of
propositional symbols.
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Axiom Condition First-Order Formula
T:�A ⊃ A Reflexivity ∀w.R(w,w)

4:�A ⊃ ��A Transitivity ∀w, v, u.(R(w, v) ∧R(v, u)) ⊃ R(w, u)
B:A ⊃ �♦A Symmetry ∀w, v.R(w, v) ⊃ R(v, w)
5:♦A ⊃ �♦A Euclideaness ∀w, v, u.(R(w, v) ∧R(w, u)) ⊃ R(v, u)

Table 1: Axioms and corresponding first-order conditions on R.

Truth of a modal formula at a point w in a Kripke structure M =
(W,R, V ) is the smallest relation |= satisfying:

M, w |= P iff P ∈ V (w)

M, w |= ¬P iff P 6∈ V (w)

M, w |= A ∨B iff M, w |= A or M, w |= B

M, w |= A ∧B iff M, w |= A and M, w |= B

M, w |= �A iff M, w′ |= A for all w′ s.t. wRw′

M, w |= ♦A iff there exists w′ s.t. wRw′ and M, w′ |= A.

By extension, we writeM |= A whenM, w |= A for all w ∈ W and we write
|= A when M |= A for every Kripke structure M.

The former definition characterizes the basic modal logic K. Several
further modal logics can be defined as extensions of K by simply restricting
the class of frames we consider. Many of the restrictions we are interested in
are definable as formulas of first-order logic where a binary predicate R(w,w′)
refers to the corresponding accessibility relation. Table 1 summarizes some of
the most common modal logics, describing the corresponding frame property,
together with the modal axiom capturing it [13]. We will refer to the logic
satisfying the axioms F1, . . . , Fn as KF1 . . . Fn. In the literature, some of
these modal logics are referred to with specific names, e.g., S4 denotes the
logic KT4 and S5 the logic KTB4 or, equivalently, KT5. We will sometimes
use these names in the following.

2.3.2 The standard translation from modal logic into classical
logic

The following standard translation (see, e.g., [14]) provides a bridge between
propositional modal logic and first-order classical logic:
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STx(P ) = P (x) STx(A ∧B) = STx(A) ∧ STx(B)

STx(¬P ) = ¬P (x) STx(�A) = ∀y(R(x, y) ⊃ STy(A))

STx(A ∨B) = STx(A) ∨ STx(B) STx(♦A) = ∃y(R(x, y) ∧ STy(A))

where x is a free variable denoting the world in which the formula is being
evaluated. The first-order language into which modal formulas are translated
is usually referred to as first-order correspondence language [14] and consists
of a binary predicate symbol R and a unary predicate symbol P for each P ∈
P . When a modal operator is translated, a new fresh variable is introduced.
It is easy to show that for any modal formula A, any modelM and any world
w, we have that M, w |= A if and only if M |= STx(A)[x← w].

2.3.3 Labeled sequent calculi

Several different deductive formalisms have been used for modal proof the-
ory and theorem proving. One of the most interesting approaches has been
presented in [15] with the name of labeled deduction. The basic idea behind
labeled proof systems for modal logic is to internalize elements of the cor-
responding Kripke semantics (namely, the worlds of a Kripke structure and
the accessibility relation between such worlds) into the syntax. A concrete
example of such a system is the sequent calculus G3K presented in [7] for
the modal logic K. In this paper will refer to it as LSK . LS formulas are
either labeled formulas of the form x : A or relational atoms of the form
xRy, where x, y range over a set of variables and A is a modal formula. In
the following, we will use ϕ, ψ to denote LS formulas. LS sequents have the
form Γ ` ∆, where Γ and ∆ are multisets containing labeled formulas and
relational atoms. In Fig. 2, we present the rules of LSK , which is proved to
be sound and complete for the basic modal logic K [7].

Then in Figure 3, we present the rules for reflexivity, symmetry and
transitivity. By adding, modularly, one or more of such rules one can ob-
tain a system for the modal logic defined by the corresponding axioms. We
will denote by LSKR1...Rn any system obtained by adding to LSK the rules
R1, . . . , Rn ∈ {TLS, BLS, 4LS}. For simplicity, we will also write LSS4 to de-
note the system LSKT4 and LSS5 for LSKTB4. Finally, we will write LS to
refer to a generic proof system in this class, when we do not need to specify
the specific logic we want to capture. From [7], we know that any proof
system LSKR1...Rn is sound and complete for the logic KF1 . . . Fn.

All along the paper, as a running example, we will use derivations of the
axiom 5 for the euclideaness property. In Figure 4, we present a derivation
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of such an axiom in the proof system LSS5.

2.3.4 Prefixed tableau systems

Prefixed tableaux can also be seen as a particular kind of labeled deductive
system. They have been introduced in [1]. The formulation that we use here
is closer to the one in [16] and it is given in terms of unsigned formulas.
A prefix is a finite sequence of positive integers (written by using dots as
separators). Intuitively, prefixes denote possible worlds and they are such
that if σ is a prefix, then σ.1 and σ.2 denote two worlds accessible from σ.
A prefixed formula is σ : A, where σ is a prefix and A is a modal formula in
negation normal form. A prefixed tableau proof of A starts with a root node
containing 1 : A, informally asserting that A is false in the world named
by the prefix 1. It continues by using the branch extension rules given in
Figure 5. We say that a branch of a tableau is a closed branch if it contains
σ : P and σ : ¬P for some σ and some P . The goal is to produce a closed
tableau, i.e., a tableau such that all its branches are closed. Classical rules
in Figure 5 are the prefixed version of the standard ones. For what concerns
the modal rules, the ♦ rule applied to a formula σ : A intuitively allows for
generating a new world, accessible from σ, where A holds, while the � rule
applied to a formula � : A allows for moving the formula A to an already
existing world accessible from σ. We say that a prefix is used on a branch if
it already occurs in the tableau branch and it is new otherwise.

The system of Figure 5, to which we give the name of PTK , is sound and
complete for the logic K. In Figure 6, we present rules [16] for capturing some
variants of K. As for labeled sequent systems, tableau systems for variants
of K can be defined modularly by adding one or more of such rules. There is
an exception though. We need a further rule, which reads as a combination
of symmetry and transitivity, in order to get a system for the logic S5. In
Table 2, we show how to use the rules of Figure 6 in order to generate the
tableau systems that will be used in the rest of the paper.

In Figure 7, we present a derivation of the axiom 5 in the system PTS5.

2.3.5 Free-variable prefixed tableau systems

Prefixed tableau systems have a deficiency that is also common in first-order
sequent calculi. Resolution methods [17], which introduce meta-variables
and unification may have an exponential speed-up in proof complexity over
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Logic System Special rules
KT PTKT TPT

K4 PTK4 4PT

KB PTKB BPT

S4 PTS4 TPT , 4PT

S5 PTS5 TPT , 4PT , 4rPT

Table 2: Prefixed tableau systems.

sequent calculi [18]. In a similar way, free-variable prefixed tableaux [19]
aim at improving prefixed tableaux by the introduction of meta variables
and simple unification. This construct allows for the delaying of the �PT

rule and might result with shorter proofs, as can be seen in Fig. 8 where
the free-variable tableau for the formula (♦¬p ∨ ♦¬q) ∧ �(p ∧ q) has 9 rule
applications versus the 12 of the standard tableau proof.

The addition of meta-variables comes with the cost that careful restric-
tions must be posed on the tableau proofs in order to preserve soundness. In
particular, the unification of these meta-variables must be restricted in order
to prevent such unsoundness. In this paper, we are not interested in proof
generation but in the structure of proofs only and will therefore omit further
discussion on this topic. The interested reader can refer to [20] for further
reading.

3 Certification of modal proofs

3.1 A translation from the modal language into a first-
order polarized language

In [6], it has been shown how it is possible to translate a modal formula A into
a polarized first-order formula A′ in such a way that a strict correspondence
between rule applications in an LS proof of A and bipoles in an LKF proof
of A′ holds. Such a correspondence has been used in order to prove an
adequacy theorem and to define a focused version of LS. Here we will further
exploit it for checking labeled sequent and prefixed tableaux derivations in
the augmented variant LKF a.

The translation is obtained from the standard translation of Section 2.3.2
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by adding some elements of polarization. First of all, when translating a
modal formula into a polarized one, we are often in a situation where we are
interested in putting a delay in front of the formula only in the case when it
is negative and not a literal. For that purpose, we define A∂+

, where A is a
modal formula in negation normal form, to be A if A is a literal or a positive
formula and ∂+(A) otherwise.

Given a world x, we define the translation [.]x from modal formulas in
negation normal form into polarized first-order formulas as:

[P ]x = P (x) [A ∧B]x = [A]x
∂+
∧− [B]x

∂+

[¬P ]x = ¬P (x) [A ∨B]x = [A]x
∂+
∨− [B]x

∂+

[�A]x = ∀y(¬R(x, y) ∨− [A]y
∂+

) [♦A]x = ∃y(R(x, y) ∧+ ∂−([A]y
∂+

))

In this translation, delays are used to ensure that only one connective is
processed along a given bipole, e.g., when we decide on (the translation of)
a ♦-formula [♦A]x, the (translation of the) formula A is delayed in such a
way that it gets necessarily stored at the end of the bipole. Based on that,
we define the translation [.] from labeled formulas and relational atoms into
polarized first-order formulas as [x : A] = [A]x and [xRy] = R(x, y). We will
sometimes use the extension of this notion to multisets of labeled formulas,
i.e., [Γ] = {[ϕ] | ϕ ∈ Γ}. Note that predicates of the form P (x) and R(x, y)
are considered as having positive polarity. Finally, we define a translation
from LS sequents into LKF sequents:

[(ϕ1, . . . , ϕn ` ψ1, . . . , ψm)] =` [¬ϕ1]
∂+

, . . . , [¬ϕn]∂
+

, [ψ1]
∂+

, . . . , [ψm]∂
+

⇑ ·

where [¬ϕ] is [(¬A)]x if ϕ = x : A and is ¬R(x, y) if ϕ = xRy.
Application of relational rules in extensions of LSK correspond to instan-

tiations of the corresponding axioms in LKF. We recall that a geometric
axiom has the form:

∀z(P1 ∧ . . . ∧ Pm ⊃ (∃x1(Q11 ∧ . . . ∧Q1k1) ∨ . . . ∨ ∃xn(Qn1 ∧ . . . ∧Qnkn)))

In LKF, we can proceed by adding such axioms in the left-side of the sequent
to be derived. We propose the following translation, involving polarization
of connectives, for an axiom having the form shown above1:

∃z((P1∧+. . .∧+Pm)∧+(∀x1(¬Q11∨−. . .∨−¬Q1k1)∧−. . .∧−∀xn(¬Qn1∨−. . .∨−¬Qnkn)))

1Note that in LKF we consider one-sided sequents and the one we propose is in fact a
polarization of the negation of the axiom.
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We have that each instantiation of such a polarized axiom corresponds to a
single bipole in LKF.

We recall here a result from [6], where a more formal statement and a
detailed proof can be found.

Theorem 1 Let Π be an LS derivation of a sequent S from the sequents
S1, . . . , Sn. Then there exists an LKF derivation Π′ of [S] from [S1], . . . , [Sn],
such that each rule application in Π corresponds to a bipole in Π′. The
viceversa, for first-order formulas that are translation of modal formulas,
also holds.

Such a result is easily extended to the case of prefixed tableaux, by relying
on the correspondence between prefixed tableaux and nested sequents [21],
which are a subclass of labeled sequents. In the case of some relational rules
for prefixed tableaux, i.e. transitivity, a proof of adequacy can sometimes
require a given number of intermediate steps in order to recover the corre-
spondence between the original proof and the one in LKF, similarly to what
has been done in [22]. We omit the details here.

3.2 Foundational proof certificate specifications

The translation presented in Section 3.1 can be used in order to check labeled
sequent and prefixed tableau proofs in LKF. In fact, given the correspon-
dence between rule applications in the original calculus and bipoles in LKF,
we can state an easy and faithful encoding of proofs, mainly based on speci-
fying on which formulas we decide every time we start a new bipole.

In this section we will first define our notion of a sufficient proof evidence
and will then describe the three extensions to the framework in [8] which
were discussed in the introduction.

3.2.1 The proof evidence

By observing LS and PT rules (Section 2.3), one can notice that a proof in
these formalisms is fully represented by specifying:

1. at each step, on which formula we apply a rule;

2. in the case of a ♦-formula for LS (or a �-formula for PT ), with respect
to which label (prefix) we apply the rule;

12



3. in the case of an initial (closure) rule, with respect to which comple-
mentary literal we apply it;

4. when using an axiom corresponding to a relational rule such as transi-
tivity, its specific instantiation.

For this reason, an adequate and detailed proof evidence of a labeled
sequent or prefixed tableau proof will consist in a tree describing the principal
formulas we apply rules to (we will call it a decide tree in the following) and
an additional data structure for specifying the referenced label (prefix) of
a ♦-formula (�-formula), the complementary literal for the initial (closure)
rule and the instantiations for the axioms used. The second data structure
will be called the essential map, where in our notation, maps extend functions
and refer to sets of pairs of values.

Formulas in the decide tree will drive the construction (bottom-up) of the
LKF derivation, in the sense that, by starting from the root, at each step,
the LKF kernel will decide on the given formula and proceed, constrained by
properly defined clerks and experts, along a positive and a negative phase.
Theorem 1 guarantees that at the end of a bipole, we will be in a situa-
tion which is equivalent to that of the corresponding LS or PT proof. As
described in item (2) above, if we are applying an ∃-rule in LKF, then we
need further information specifying with respect to which eigenvariable we
apply the rule. This is done by linking, in the proof evidence, the formula
under consideration to the corresponding new-world-generating formula (a
�-formula in the case of LS; a ♦-formula in the case of PT ). Similarly, in
the case of a closure (3), the additional information will specify the index
of the complementary literal. Axiom instantiation (4) is similar to (2) and
contain the indices of the formulas which generate the referred-to worlds.
The decide tree will contain the steps in item (1) while items (2), (3) and (4)
will be part of the essential map.

In order to provide an FPC specification for a particular format, we need
to define the specific items that are used to augment LKF. In particular, the
constructors for proof certificate terms and for indices must be provided: this
is done in λ-Prolog by declaring constructors of the types cert and index.
In Figure 9, we show a part of the type declaration for the LS FPC that
takes as input a decide tree and an essential map corresponding to a proof,
as specified above. In this declaration, we assume that term and atm are
already declared, with the obvious intended meaning.
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Several constructors are used to build indices denoting formulas. eind is
used to denote the root formula (ideally, the theorem to be proved). lind

and rind are used to denote, respectively, the left and right direct subfor-
mulas of a formula (in case of a formula whose main connective is unary,
we use lind to build the index of its only direct subformula). We have a
specific constructor bind for subformulas of a �-formula in a tableau proof
(or of a ♦-formula in an LS proof). This takes two arguments, the first
one being the index of the formula itself and the second one being the index
of the corresponding eigenvariable-generating formula, i.e., of the formula
that introduced the eigenvariable used in the current rule application. The
intuition behind this index is to account for contractions, which take a sim-
plified form in modal logic proofs - first they correspond to instantiations of
�-formulas in a tableau proof (♦-formulas in an LS proof) but at the same
time, these instantiations correspond to eigenvariables which are introduced
by ♦-formulas (�-formulas). Finally, relind is a general index which refers
to the relations appearing in the proof.

For instance, the root formula - x : �¬p ∨ �♦p - is denoted using the
root index eind. Since the top symbol of the root formula is ∨, we refer to
each disjunct using the left and right indices lind(eind) and rind(eind).
Subformulas of unary connectives like ¬,� and ♦ are denoted using the left
index.

Using this indexing mechanism and given the LSS5 proof from Fig. 4,
Fig. 10 shows the decide tree corresponding to the proof. As can be seen,
the decide tree just contains either the indices of the principle formulas of
the original proof or the actual rule names in the case of axioms. In the
later case, the rule names uniquely determine the axiom formulas we need to
decide on.

As mentioned before, the essential map contains information on how to
apply the ♦ rule and the axioms as well as the complementary literals for the
init rules. This information is essential for an adequate proof checking and
is part of any proof.

An interesting technical problem is how to denote the information about
which labels to choose when applying � rules (♦ in labeled proofs). These
labels correspond to new labels which were introduced earlier by ♦ (respec-
tively �) but, being fresh (referred to as eigenvariables later), are unknown
to the proof evidence. Our solution is to denote these labels by referring to
the indices of the ♦ (respectively �) formulas which introduced them.

14



Map name Index list
diabox (lind (rind eind)) , (lind eind)

closure (bind (lind (rind eind)) (lind eind)) , (lind (lind eind))

symmetry instantiation initial, (rind eind)

transitivity instantiation (rind eind), initial, (lind eind)

Table 3: The essential map of the certificate for the proof in Fig. 4.

The essential map corresponding to the above proof can be found in Table
3

The full certificate is given in Fig. 11.

3.2.2 The FPC specifications

As discussed in section 2.1, the general checker requires, in addition to a
certificate, a program which allows the kernel to interpret a certificate. This
program, called an FPC specification, contains logical definitions of the clerks
and expert predicates. Each of the connectives in the kernel is being guided
by such clerks and experts. Writing no specification for a given predicate
defines that predicate to hold for no list of arguments and therefore, prevents
the kernel from processing this connective. Similarly, writing a specification
for a certain list of arguments restricts the kernel to these arguments only.
In Figure 12, we define clerks and experts for the LS FPC specification.

According to this specification, each decide step is completely determined
by the proof evidence: in the decidee expert, the variable I denotes the index
of the formula on which to decide. For example, in orNegc, two indices (lind
I and rind I) are created and put inside some list. In the end of the bipole,
these indices will be used to store the subformulas with a proper index. It
is important to note, that this list is not part of the certificate and is used
just to manipulate and store intermediary information which is required for
the correct execution of checkers. We call this list and other such data
structures the state. Since the implementation of the state is a technical
detail which is not required for the understanding of how we certify proofs,
we will mention it only when necessary for the understanding of the rest of
the program.

orNegc is described by four cases. The first one corresponds to the case
when the ∨− rule is being applied on the formula on which we have just
decided; the rest correspond to the case when the ∨− connective arises from
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the translation of a �-formula. It might be that there is a relational atom
on the left side, in which case we need to tell the kernel to store it with the
generic index relind.

With regard to andPose, we remark that the connective ∧+ can only occur
in a formula that is the translation of a ♦-formula and for this reason we have
only two cases, similar to the three cases above.

releasec leaves things unchanged.
In the case of allc, we just need to link the index of the formula to the

generated eigenvariable. These links are also part of the program state.
The somee expert is among the most sophisticated ones. It takes into

account two components of the essential map, the correspondence between
modalities as well as the instantiations of the axioms. The former is be-
ing taken care of by the first case while the latter is being treated by the
other two. Part of the information necessary, the link between indices and
eigenvariables, is stored in the state.

The definition of this expert also demonstrates how we have chosen to
treat modalities other than K. A proof evidence which assumes a background
modal theory, such as S4, must include the axioms of the theory as part of
the certificate. The second change to the proof evidence is the addition of
an axiom instantiation list as part of the essential map.

checkers is responsible for using the first list for storing the axioms.
The application of an axiom is now stated in the decide list, and the specific
instantiation, in the essential map.

In the storec clerk, we use the index created so far to properly store the
formula under consideration; note that in the case of relational atoms, we
simply store the formula with the index relind. In between of the creation
of the index and the actual call for store, we keep the information in the
state.

Finally, in order to apply an initial rule, the expert initiale checks
that the complementary formula is chosen properly using information from
the essential map.

As already remarked, the above FPC specification allows for a very de-
tailed and completely faithful checking of an original proof in the LS sequent
calculus. The FPC specification for PT proofs contains many similarities to
the one for LS. In fact, at least as long as the logic K is considered, a proof
of a modal formula A in the first setting can be easily converted into a refu-
tation of ¬A in the second formalism, where: a given connective rule in LS
corresponds to the rule of the dual connective in a PT and an initial rule
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application corresponds to a closure of a branch2. When considering modal
logics other than K, the presence of axioms and their different treatment in
the different proof systems cause the two FPC specifications to diverge a
bit. The main difference lies in the instantiations of the axioms and requires
some more information to be stored in the state. More precisely, the FPC
specification for LS is closely related to classical sequent calculus while the
one for PT differs more significantly. This is most obvious in the way ax-
ioms are applied. E.g., in LS, the application of the rule 4LS corresponds
to instantiating the axiom for transitivity in the classical sequent calculus.
This is not the case in PT , where an application of the rule 4PT corresponds
to two rule applications: 4PT plus �PT . In order to capture this behavior,
we have chosen to use a tactic language. Using this language, such a step in
PT is being denoted by a term which contains the relevant information for
both rule applications in sequent calculus. We will not discuss further the
implementation of the PT FPC specification but point the interested reader
to the λProlog implementation3.

Further remarks on the implementation and on some experiments will be
given in Section 3.3.

Having such a faithful proof representation can appear in some cases
rather naive and space-consuming. It is quite common, in the context of
proof checking, to work with less precise proof evidences, that only contain
crucial information about a given proof, and let the checker perform some
proof reconstruction of the rest.

The approach we have chosen is to take advantage of one of Prolog fea-
tures in order to support an arbitrary level of abstraction in the proof ev-
idence - using anonymous variables, the proof evidence can choose to omit
any piece of information, letting the certifier reconstruct the missing parts.
One should note though, that abstracting over the essential map might result
in the certifier being fully used as a theorem prover, in which case, it is highly
probable that the process will never terminate. The proof evidence supports,
though, anonymous variables anywhere in the decide tree. One can also com-
pletely omit the decide tree, in which case the certifier reconstruct it while
certifying the proof, or decide to supply any amount of information, which

2Clearly, if one considers the two-sided sequent version of LS given here, it is also
necessary to take care of the different meaning of having a connective on the left or on the
right side of the sequent. This can be done by defining a translation from two-sided LS
sequents into one-sided sequents, as shown, e.g., in [6].

3/src/fpc/modal/tableaux.mod.
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will be used in order to execute a more adequate proof checking process.

3.3 Implementation and examples

In the previous section, we have presented key features of checkers and
demonstrated them on an example. In this section, we will discuss the im-
plementation in more details and explain how checkers can be used or ex-
tended.

checkers is implemented in λProlog and takes advantage of several of
its features. First, logic programming allows us to denote both kernel, proof
evidence and FPC specifications in the same language. This increases trust
as it allows us to execute the code without any additional translation. At the
same time, the kernel can be implemented in any programming language. In
addition, we can take advantage of having variables as part of the syntax in
order to abstract over arbitrary information in the proof evidence. Second,
λProlog, being based on logical predicates, is highly suitable for the defi-
nition of the trusted kernel. Unlike other programming languages, notions
such as substitution, unification and proof search are defined on the language
level and need not be implemented. This enables us both to have a faithful
translation of logical calculi into code as well as the ability to separate proof
search from calculus definitions. Technically, we support two different imple-
mentations of λProlog, Teyjus4 and ELPI5 and therefore checkers enjoys a
higher-level of trust since only the calculus definitions should be trusted and
not the proof search implementation. In practice, since checkers is using a
modular design which exploits several weaknesses of Teyjus, we recommend
to use ELPI6 for executing checkers. Due to some differences in their syn-
tax and logical structure (ELPI uses full type inference while Teyjus uses
type checking), we provide two different entry points. When using Teyjus,
checkers can be executed as follows:

./ prover-teyjus.sh <cert >

While the ELPI interpreter is called using:

./ prover-elpi.sh <cert > [--debug]

4http://teyjus.cs.umn.edu/
5http://lpcic.gforge.inria.fr/
6The ELPI version used can be downloaded from here http://lpcic.gforge.inria.

fr/elpi-LFMTP16.tar.gz
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The input to the program is the name of a λProlog module which is
already included in the program path. For example, in order to certify the
proof evidence named modlab − full − s5 in the file modlab-full-s5.mod,
one need to execute:

./ prover-elpi.sh modlab-full-s5

The optional debug flag tells the interpreter to output the whole proof
search executed. Using this flag, one can easily see the difference between the
deterministic application of rules on the fully verbose proof evidences versus
the required proof search employed in the minimal versions.

checkers is distributed with a set of 20 examples which are stored in
the src/test/modal folder. This folder is already included in the program
path so examples can be immediately executed. The examples are divided
into tableau (modtab) and labeled (modlab) examples as well as into fully
verbose (full) examples and those containing only the essential map (min).

Since none of the theorem provers we have experimented with produced
a proof as an output, we had to modify their source codes in order to ob-
tain some information about their execution states and then create the proof
evidences by hand. The prover we have chosen to produce this partial infor-
mation with is ModLeanTAP7, a free variable modal tableau prover written
in Prolog.

A typical proof evidence file can be seen in Fig. 13. The evidence starts
with the name of the module and then specify the kernel and then FPC
specifications required in order to certify it. Enhancing checkers with new
kernels as well as new FPC specification does not, therefore, require changing
the current code. The body of the evidence then contains the textual name,
the list of axioms used (indexed by a name), the decision tree and the essential
map. The last component is the state (whose store list is initialized with the
indices to use in order to store the axioms).

Since the example portraits a minimal proof evidence, with no informa-
tion about the tree of rules to be applied, we simply denote the decide tree
with dectree eind _. We explicitly name the index of the root node (for
easier debugging) but leave the rest of the tree implicit (using the Prolog
anonymous variable notation _). The remaining part of the evidence con-
sists of the essential map, which includes the maps for �-♦ applications,

7http://formal.iti.kit.edu/beckert/modlean/

19

http://formal.iti.kit.edu/beckert/modlean/


closure applications and axiom instantiations.
A more complex example is given in Figure 14. The example describes

a simple situation, in which a condition of fairness, usually analyzed in the
context of temporal logics, is verified in the logic S4. The formula proved is
the following:

�(req ⊃ ♦ena) ⊃ (�♦req ⊃ �♦ena)

Intuitively, it expresses the fact that if we are in a state such that whenever
a process makes a request then it is eventually enabled, then the condition
of fairness is verified. The notion of fairness used here says that if a re-
quest is made infinitely often, then the process is enabled infinitely often. In
Figure 14, we present a labeled derivation of the theorem (in an equivalent
formulation in negation normal form) in the system LSS4. The corresponding
full proof evidence is given in Figure 15.

The version of checkers used in the above examples can be obtained
from the gandalf2017 branch on its Github page8.

4 Concluding remarks and future work

In this paper, we have presented an approach for certifying labeled modal
proofs, given either in the form of labeled sequents or in the form of prefixed
tableaux. In both cases, we have considered a range of well-known modal
logics, going from the basic logic K to all those logics characterized by frames
that can be defined by combinations of the properties of reflexivity, symmetry
and transitivity, including in particular the logics S4 and S5. Moreover, we
have shown theoretically how the approach can be applied in general to all
the modal logics whose frames are defined by geometric properties. This
might require some small adjustments to the framework, according to the
nature of the axiom and of the corresponding sequent/tableau rules. E.g., in
the case of axioms/rules that allow for generating new worlds along a proof,
like seriality, which says that for each world there exists a reachable one, a
slight modification of the way labels are represented is required, since labels
are now introduced not necessarily by the application of �-rules.

Our framework could also be quite easily extended to consider modal log-
ics with more than one accessibility relation, like those used for reasoning on
multi-agent systems, by simply introducing in our translation one first-order

8https://github.com/proofcert/checkers/tree/gandalf2017
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binary predicate for each such an accessibility relation and by parameterizing
the application of modal rules with respect to a specific predicate.

In the spirit of generality pursued by the ProofCert project, we plan to
consider in the future proof systems for modal logics based on non-labeled
formalisms. In [22], a general focused framework for emulating modal proof
systems based on different formalisms, like sequent calculi and nested sequent
calculi, has been introduced. We believe that our approach, being based on
a focused sequent calculus as kernel, can be extended/adapted to implement
such a framework as well as to deal with further formalisms, like resolution.
Since many modal resolution provers are based on a translation into a first-
order language, in fact we expect to be able to reuse part of this work also
in that setting.

Technically speaking, supporting other proof evidences and calculi amounts
to writing new FPC specifications. The modular structure of checkers al-
lows for having flexible relationships between the different FPC specifications,
e.g., by composing and extending them, ideally by using a layered architec-
ture. Given the expressivity of labeled calculi in the context of modal logics,
and the numerous results of encoding of other proof systems into such calculi,
we believe that the FPC designed here can provide a basis on top of which
to build a modular architecture able to capture further proof formats and
formalisms.
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Invertible Rules

Ξ′ ` Θ ⇑A,Γ Ξ′′ ` Θ ⇑B,Γ andNegc(Ξ,Ξ
′,Ξ′′)

Ξ ` Θ ⇑A ∧− B,Γ

Ξ′ ` Θ ⇑A,B,Γ orNegc(Ξ,Ξ
′)

Ξ ` Θ ⇑A ∨− B,Γ
(Ξ′y) ` Θ ⇑ [y/x]B,Γ allc(Ξ,Ξ

′)

Ξ ` Θ ⇑ ∀x.B,Γ †

Focused Rules

Ξ′ ` Θ ⇓B1 Ξ′′ ` Θ ⇓B2 andPose(Ξ,Ξ
′,Ξ′′)

Ξ ` Θ ⇓B1 ∧+ B2

Ξ′ ` Θ ⇓Bi orPose(Ξ,Ξ
′, i)

Ξ ` Θ ⇓B1 ∨+ B2

Ξ′ ` Θ ⇓ [t/x]B somee(Ξ, t,Ξ
′)

Ξ ` Θ ⇓ ∃x.B

Identity rules

Ξ′ ` Θ ⇑B Ξ′′ ` Θ ⇑ ¬B cute(Ξ,Ξ
′,Ξ′′, B)

Ξ ` Θ ⇑ · cut
〈l,¬Pa〉 ∈ Θ initiale(Ξ, l)

Ξ ` Θ ⇓ Pa

Structural rules

Ξ′ ` Θ ⇑N releasee(Ξ,Ξ
′)

Ξ ` Θ ⇓N release
Ξ′ ` Θ, 〈l,C〉 ⇑ Γ storec(Ξ, C, l,Ξ

′)

Ξ ` Θ ⇑ C,Γ store

Ξ′ ` Θ ⇓ P 〈l,P 〉 ∈ Θ decidee(Ξ, l,Ξ
′)

Ξ ` Θ ⇑ · decide

Figure 1: The augmented LKF proof system LKF a. The proviso † requires
that y is not free in Ξ,Θ,Γ, B. The symbol Pa denotes a positive atomic
formula.
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Classical rules

x : P,Γ ` ∆, x : P
init

x : A, x : B,Γ ` ∆

x : A ∧B,Γ ` ∆
L∧

Γ ` ∆, x : A Γ ` ∆, x : B

Γ ` ∆, x : A ∧B R∧

x : A,Γ ` ∆ x : B,Γ ` ∆

x : A ∨B,Γ ` ∆
L∨

Γ ` ∆, x : A, x : B

Γ ` ∆, x : A ∨B R∨

Modal rules

y : A, x : �A, xRy,Γ ` ∆

x : �A, xRy,Γ ` ∆
L�

xRy,Γ ` ∆, y : A

Γ ` ∆, x : �A R�

xRy, y : A,Γ ` ∆

x : ♦A,Γ ` ∆
L♦

xRy,Γ ` ∆, x : ♦A, y : A

xRy,Γ ` ∆, x : ♦A
R♦

In R� and L♦, y does not occur in the conclusion.

Figure 2: LSK : a labeled sequent system for the modal logic K

xRx,Γ ` ∆

Γ ` ∆
TLS

xRz, xRy, yRz,Γ ` ∆

xRy, yRz,Γ ` ∆
4LS

yRx, xRy,Γ ` ∆

xRy,Γ ` ∆
BLS

Figure 3: Rules for capturing relational properties.

xRy, xRz, zRx, zRy ` y : ¬p, z : ♦p, y : p
init

xRy, xRz, zRx, zRy ` y : ¬p, z : ♦p
R♦

xRy, xRz, zRx ` y : ¬p, z : ♦p
4LS

xRy, xRz ` y : ¬p, z : ♦p
BLS

xRy ` y : ¬p, x : �♦p R�

` x : �¬p, x : �♦p R�

` x : �¬p ∨�♦p R∨

Figure 4: Derivation of the axiom for euclideaness in LSS5.
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Classical rules

σ : A ∧B
σ : A, σ : B

∧PT
σ : A ∨B

σ : A | σ : B
∨PT

Modal rules
σ : �A
σ.n : A

�PT
σ : ♦A
σ.n : A

♦PT

In �PT , σ.n is used. In ♦PT , σ.n is new.

Figure 5: PTK : a prefixed tableau system for the modal logic K

σ : �A
σ : A

TPT
σ.n : �A
σ : A

BPT
σ : �A
σ.n : �A

4PT
σ.n : �A
σ : �A

4rPT

In �PT , σ.n is used. In ♦PT , σ.n is new.

Figure 6: Prefixed tableau rules for modal logics extending K

1 : ♦p ∧ ♦�¬p

1 : ♦p

1 : ♦�¬p

1.1 : p

1.2 : �¬p

1 : �¬p

1.1 : ¬p

Figure 7: Prefixed tableau derivation for the axiom of euclideaness
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1 : ♦¬p ∨ ♦¬q

1 : �(p ∧ q)

1.x : p ∧ q

1.x : p

1.x : q

1 : ♦¬p

1.1 : ¬p

x 7→ 1

1 : ♦¬q

1.2 : ¬q

x 7→ 2

(a) Example of FV
tableau

1 : ♦¬p ∨ ♦¬q

1 : �(p ∧ q)

1 : ♦¬p

1.1 : ¬p

1.1 : p ∧ q

1.1 : p

1.1 : q

1 : ♦¬q

1.2 : ¬q

1.2 : p ∧ q

1.2 : p

1.2 : q

(b) Example of prefixed
tableau

Figure 8: Prefixed and free-variable prefixed tableau derivations

eind : index relind : index

lind : index -> index rind : index -> index

bind : index -> index -> index

rel : term -> term -> atm

dectree : dectree index -> list dectree -> dectree.

% a map between dia indices and box indices

diabox-entry index -> index -> diabox-entry.

diabox-map list diabox-entry -> diabox-map.

% a map between init indices and a complementary index

init-entry index -> index -> init-entry.

init-map list init-entry -> init-map.

% a map between axioms and the indices relating to their instantiations

axiom-entry index -> list index -> axiom-entry.

axiom-map list axiom-entry -> axiom-map.

modlab-cert dectree -> diabox-map -> init-map -> axiom-map -> cert.

Figure 9: Type declaration for the LS FPC specification.
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lind(lind(rind(eind)))

lind(rind(eind))
4LS
BLS

rind(eind)

lind(eind)
eind

Figure 10: The decide tree component of the certificate for the proof in Fig.
4.

(modlab-cert

(dectree eind [dectree (lind eind) [dectree (rind eind) [dectree symm-ind

[dectree trans-ind [dectree (lind (rind eind)) [dectree (bind (lind (

rind eind)) (lind eind)) []]]]]]])

(diabox-map [diabox-entry (lind (rind eind)) (lind eind)])

(init-map [init-entry (bind (lind (rind eind)) (lind eind)) (lind (lind

eind))]) (axiom-map [axiom-entry symm-ind [default-ind , rind eind],

axiom-entry trans-ind [rind eind , default-ind , lind eind ]]))

Figure 11: The full certificate for the proof in Fig. 4.
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decide_ke (modlab-cert (dectree I D) M1 M2 M5 Bnd (state _ M3 M4)) I (

modlab-cert (dectree I D) M1 M2 M5 Bnd (state [] M3 M4 ’)).

store_kc (modlab-cert DT M1 M2 M5 Bnd (state [H|T] M3 M4)) _ H (modlab-cert

DT M1 M2 M5 Bnd (state T M3 [decide-bound-entry H Bnd | M4])).

release_ke C C.

initial_ke (modlab-cert (dectree relind []) _ _ _ _ _) relind.

initial_ke (modlab-cert (dectree I _) _ (init-map M2) _ _ _) O :- member (

init-entry I O) M2.

orNeg_kc (modlab-cert (dectree I [D]) M1 M2 M5 Bnd (state [] M3 M4)) _ (

modlab-cert D M1 M2 M5 Bnd (state [lind I, rind I] M3 M4)).

orNeg_kc (modlab-cert D M1 M2 M5 Bnd (state [S] M3 M4)) ((n (rel _ _) !-! _)

) (modlab-cert D M1 M2 M5 Bnd (state [relind ,S] M3 M4)).

orNeg_kc (modlab-cert D M1 M2 M5 Bnd (state [S] M3 M4)) ((p (rel _ _) !-! _)

) (modlab-cert D M1 M2 M5 Bnd (state [relind ,S] M3 M4)).

orNeg_kc (modlab-cert D M1 M2 M5 Bnd (state S M3 M4)) _ (modlab-cert D M1 M2

M5 Bnd (state S M3 M4)).

andPos_k (modlab-cert (dectree I D) M1 M2 M5 Bnd S) (_ &+& (p (rel _ _)))

left-first

(modlab-cert (dectree relind []) _ _ _ _ (state [] _ _)) (modlab-cert (

dectree relind []) M1 M2 M5 Bnd S).

andPos_k (modlab-cert (dectree I D) M1 M2 M5 Bnd S) _ left-first

(modlab-cert (dectree relind []) M1 M2 M5 Bnd (state [] _ _)) (modlab-cert

(dectree I D) M1 M2 M5 Bnd S).

all_kc (modlab-cert (dectree I [S]) M1 M2 M5 Bnd (state [] M3 M4))

(Eigen\ modlab-cert S M1 M2 M5 Bnd (state [lind I] [eigen-entry I Eigen|M3

] M4)) :-

member (eigen-entry I _) M3.

all_kc (modlab-cert (dectree I [S]) M1 M2 M5 Bnd (state [] M3 M4))

(Eigen\ modlab-cert S M1 M2 M5 Bnd (state [lind I] [eigen-entry I Eigen|M3

] M4)).

some_ke (modlab-cert (dectree I [S]) (diabox-map M1) M2 M5 Bnd (state [] M3

M4)) Eigen

(modlab-cert S (diabox-map M1) M2 M5 Bnd (state [bind I O] M3 M4)) :-

(member (diabox-entry I O) M1, member (eigen-entry O Eigen) M3).

some_ke (modlab-cert (dectree I [S]) M1 M2 (axiom-map M5) Bnd (state _ M3 M4

)) Eigen

(modlab-cert S M1 M2 (axiom-map M5 ’) Bnd (state [relind] M3 M4)) :-

(memb_and_rest (axiom-entry I [O]) M5 M5’, member (eigen-entry O Eigen)

M3).

some_ke (modlab-cert (dectree I [S]) M1 M2 (axiom-map M5) Bnd (state _ M3 M4

)) Eigen

(modlab-cert (dectree I [S]) M1 M2 (axiom-map [axiom-entry I [Q|Ls] | M5

’]) Bnd (state [relind] M3 M4)) :-

(memb_and_rest (axiom-entry I [O,Q|Ls]) M5 M5’, member (eigen-entry O

Eigen) M3).

Figure 12: Definition of the LS FPC specification.
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module modtab-min-s5.

accumulate tableaux.

accumulate lkf-kernel.

modalProblem "Tableau Problem S5 - minimal proof evidence"

[(pr symm-ind (some (x\ some (y\ (p (rel x y) &+& n (rel y x)) ) ))), (pr

trans-ind (some (x\ some (y\ some z\ ((p (rel x y) &+& p (rel y z)) &+&

n (rel x z) ) ))))]

(box (-- p1) !! box (dia (++ p1)))

(modtab-cert

(dectree eind _)

(diabox-map [diabox-entry (lind (rind eind)) (lind eind)])

(init-map [init-entry (bind (lind (rind eind)) (lind eind)) (lind (lind

eind))])

(axiom-map [axiom-entry symm-ind [default-ind , rind eind], axiom-entry

trans-ind [rind eind , default-ind , lind eind ]])

(snum (snum znum))

(state [trans-ind , symm-ind] [eigen-entry default-ind zero] []) ).

Figure 13: A minimal tableau proof evidence of the proof in Fig. 7.
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module modlab-full-s4.

accumulate labeled.

accumulate lkf-kernel.

modalProblem "Modal problem S4 full proof evidence"

[(pr trans-ind (some (x\ some (y\ some z\ ((p (rel x y) &+& p (rel y z)) &+&

n (rel x z) ) ))))]

((dia (++ req && box (-- ena))) !! (dia (box (-- req)) !! box (dia (++ ena))

) )

(modlab-cert

(dectree eind [dectree (rind eind) [dectree (rind (rind eind)) [dectree (

lind (rind eind)) [dectree (bind (lind (rind eind)) (rind (rind eind)))

[dectree trans-ind [dectree (lind eind) [dectree (bind (lind eind) (bind

(lind (rind eind)) (rind (rind eind)))) [dectree (lind (bind (lind eind

) (bind (lind (rind eind)) (rind (rind eind)))))[], dectree (rind (bind

(lind eind) (bind (lind (rind eind)) (rind (rind eind))))) [dectree

trans-ind [dectree (lind (rind (rind eind))) [dectree (bind (lind (rind

(rind eind))) (rind (bind (lind eind) (bind (lind (rind eind)) (rind (

rind eind)))))) [] ]]]]]]]]]]])

(diabox-map [diabox-entry (lind (rind eind)) (rind (rind eind)),

diabox-entry (lind eind) (bind (lind (rind eind)) (rind (rind eind))),

diabox-entry (lind (rind (rind eind))) (rind (bind (lind eind) (bind (

lind (rind eind)) (rind (rind eind)))))])

(init-map [init-entry (lind (bind (lind eind) (bind (lind (rind eind)) (

rind (rind eind))))) (lind (bind (lind (rind eind)) (rind (rind eind))))

, init-entry (bind (lind (rind (rind eind))) (rind (bind (lind eind) (

bind (lind (rind eind)) (rind (rind eind)))))) (lind (rind (bind (lind

eind) (bind (lind (rind eind)) (rind (rind eind))))))])

(axiom-map [axiom-entry trans-ind [default-ind , rind (rind eind), bind (

lind (rind eind)) (rind (rind eind))], axiom-entry trans-ind [rind (rind

eind), bind (lind (rind eind)) (rind (rind eind)), rind (bind (lind

eind) (bind (lind (rind eind)) (rind (rind eind))))]])

(snum (snum znum))

(state [trans-ind] [eigen-entry default-ind zero] []) ).

Figure 15: A full labeled sequent proof evidence of the proof in Fig. 14.
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