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 

Abstract— The objective of this paper is to share Kernix’s 

approach to build flexible recommender systems based on graph 

oriented databases. The integration of entities, and relationships 

between them, into a unique graph structure allows to design 

recommendations as graph traversals. This approach offers a 

flexible framework allowing to handle the variety of entities of 

interest and enabling to design rich strategies in order to 

compute recommendations for various use cases. 

 
Index Terms—Graph database, Recommender systems, Data 

Management  

 

I. INTRODUCTION 

 

ernix is a company of forty-five people whose activity 

rely on a digital factory, crafting custom websites, and a 

data lab, providing data oriented solutions for business use 

cases. These solutions span from predictive maintenance to 

credit risk scoring but also fraud detection and recommender 

systems. In the latter context, Kernix has designed and built 

several custom recommender engines aiming at fulfilling its 

customers’ needs. In order to cope with the variety of these 

needs and with the data available, Kernix has decided to adopt 

a flexible approach essentially based on the use of a graph 

oriented database. 

Basic approaches to recommendation [1] consist in building 

separate models for content-based (CB) and collaborative 

filtering (CF) strategies, respectively relying on the 

exploitation of items-items similarities and users-items 

interactions. In general, these approaches lack some kind of 

flexibility in the integration of complex interactions between 

entities. As an illustration, in the case of movie 

recommendation, it is not easy to merge in one approach the 

explicit taste of a user about its favorite actors and genres with 

its ratings for specific movies.  

A flexible approach would ease the exploitation of the 

multiple kinds of possible interactions between different 

entities (users, actors, genres and movies in our example). 

Graphs are natural mathematical structures allowing to encode 

these interactions, and, as we will show in what follows, 

recommendations can be computed thanks to graph traversals. 

In the following, we present how Kernix is leveraging on a 

graph oriented database technology in order to build different 

so-called flexible recommendation engines. Part II briefly 

 
 

describes the use of a graph oriented database, allowing us to 

introduce the vocabulary further used. Part III deals with a toy 

example of a CF recommendation based on the MovieLens 

dataset. Part 2 refers to a hybrid recommender engine that 

Kernix has built for one of its client. Part IV summarizes the 

stack of technologies on which our solutions are based, and 

the workflow associated to it. In the conclusion, we share 

some advantages and caveats of our approach and draw some 

perspectives. 

II. BRIEF DESCRIPTION OF THE USE OF A GRAPH DATABASE 

 

A graph database models and stores data as nodes and edges 

of a graph structure [2]. These elements can bear types 

allowing their categorization and can embed additional 

information specifying their properties. For instance, in the 

case of movie recommendation, node types could be User, 

Actor, Genre and Movie and edge types could be Has_rated, 

Has_actor, Has_genre for edges respectively linking users to 

movies, movies to actors and movies to genres; while 

properties of a User node could be the name, age and sex of 

the user and a property of the Has_rated edge could be the 

rating itself. 

Graph databases allow efficient and fast retrieval of 

complex hierarchical structures that are difficult to model in 

relational systems. Information retrieval is performed thanks 

to specific query languages [3] based on the semantic of graph 

traversals, generally proposing optimized routines for 

computing shortest paths for instance. 

Within this graph framework, for a given dataset, several 

kinds of recommendations can be elaborated by combining 

and scoring paths between entities. In our example, similarity 

between users can be evaluated through the paths that connect 

one user to movies, actors and genres, that are themselves 

connected to other users, each type of path being potentially 

weighted by different coefficients. The two following parts 

will concretely illustrate the way these concepts can be 

implemented. 

III. EXAMPLE OF A CF RECOMMENDER SYSTEM  

 

To illustrate the case of a graph-based CF recommender 

system, we have built a movie recommender engine based on 

the ML-100k dataset [12]. This dataset has been gathered by 

GroupLens Research on the MovieLens website and consists 

in 100,000 ratings (1-5) from 943 users on 1682 movies. The 
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dataset has been cleaned up such that each user has rated at 

least 20 movies. The model chosen for the graph consists in: 

• two kinds of nodes: User and Movie. 

• one kind of edge: Has_rated, relating users to 

movies. The rating r(mj,ui) given by user ui to movie 

mj is recorded as a property of the edge.  

 

For a given user u1, we have chosen to recommend movies 

that are mostly appreciated by users giving similar ratings as 

u1. For reasoning, this strategy implies the following 

conceptual steps. 

 

Step 1: Selection of the users who are the most “similar” to u1.  

The similarity between u1 and ui is here defined as: 

𝑠𝑖𝑚(𝑢1, 𝑢𝑖) =  𝑐𝑎𝑟𝑑(𝑆𝑢1,𝑢𝑖
)/𝑐𝑎𝑟𝑑(𝑅𝑢1

) 

 

where 𝑆𝑢1,𝑢2
=  ⋃ 𝑚𝑗|𝑟(𝑚𝑗,𝑚2)−𝑟(𝑚𝑗,𝑚1)|≤1 , is the set of movies 

commonly rated by u1 and u2 with a difference of rating less 

are equal to 1; and Ru1 is the set of all movie rated by u1. 

Thanks to this similarity measure, we form the subset Usim 

of users ui with similarity with u1 above a certain threshold t 

(here arbitrarily set to 0.5). 

 

 

Step 2: Ranking of movies seen by these users. 

The recommendation score of each movie mj rated by the 

users belonging to Usim is then computed as the mean rating. 

In this case, movies will be ranked from « most appreciated by 

similar users » to « least appreciated by similar users ». If Vm 

is the subset of users who have rated movie m, and Wm its 

intersection with Usim, then the score of movie m can be 

expressed as: 

𝑠(𝑚) =  
∑ 𝑟(𝑚, 𝑢𝑖)𝑢𝑖∈𝑊𝑚

𝑐𝑎𝑟𝑑(𝑊𝑚)
 

 

Despite the fact that the above description of the method is 

mainly set-theoretical, the approach is in fact really natural in 

terms of graph traversal as illustrated by Fig.1 and can be 

easily implemented as a request to the graph database. 

 

Although this toy recommender system shows reasonable 

performances for this case, an assessment on a more 

significant set of users must performed to draw any solid 

performance metrics. One has to mention that this model 

doesn’t involve any training phase as machine-learning based 

approaches requires so it is really well suited for cases of fast 

addition/deletion of entities and evolution of their connections. 

The following part extends the approach to a richer use case.  

IV. EXAMPLE OF A HYBRID RECOMMENDER SYSTEM 

 

In this part, we will share the design of the approach we 

took for building a recommender system for one of our client. 

This company proposes to ease interactions between 

individuals and professionals through “do it yourself” 

workshops. Our goal was to integrate to the website of this 

company an engine recommending workshops to users. The 

recommendation has been built on connections between 

different “entities”, namely User, Craftsman, Workshop, 

Session and Category. The types of these entities and the 

relationships we decided to implement in the graph database 

are summarized in the Fig.2. 

 

In order to compute the recommendation of workshops, we 

decided to combine the three following strategies based on the 

same graph structure. 

 

Strategy 1: Scoring through categories 

For a given user, the ranking of workshops to recommend is 

based on the number of times they are linked to categories for 

which the user has shown an interest. This mark of interest, as 

illustrated in Fig.3, take into account several paths between the 

user and the categories: 

• direct edges of type “follow” from the user to the 

categories 

• paths through workshops followed by the user 

• paths through workshops to which the user attend a 

session 

 

 

 
 

Fig. 1.  Schematic representation of the method 
 

Fig. 2. Types of data and edges defined for the recommender system 

 
 

Fig. 3. Example of paths taken into account for the scoring through 

categories (deeper paths passing by sessions are not shown for compactness) 
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Strategy 2: Scoring through users similarity 

This strategy is analogous to the CF recommendation 

example of the previous part, except that paths taken into 

account between users can be deeper than just one node. 

Indeed, to select the subset Usim of users similar to the target 

user, we exploit the paths through workshops for which the 

user has shown a mark of interest by: 

• following the workshop 

• participating to a session of the workshop 

• following the craftsman that proposes the workshop 

 

 

 

The users defined as similar to the target user are those 

counting a sufficient number of workshops in common with 

him. Finally, workshops are ranked based on the number of 

times they are linked to the subset Usim, through the same 

kinds of paths as described above. 

 

Startegy3: Scoring through workshops similarity 

This last strategy leverages on the computation of semantic 

similarity between the descriptions of the workshops. In order 

to compute these similarities, we have implemented a NLP 

pipeline performing the vectorization of the descriptions 

(through tokenization, stemming and tf-idf weighting) and the 

fit of these data points by LSI model (in order to merge 

frequently co-occurring terms into main concepts). The 

similarity between descriptions is obtained by the cosine of the 

angle formed by their corresponding vectors. The similarity 

scores are then materialized in the graph database as the 

property of “similarity” edges drawn between corresponding 

workshops as illustrated in Fig.5: 

 

 

 

Recommended workshops are defined as the most similar to 

the workshops for which the target user has shown an interest, 

as described in the previous strategy. 

 

Analogously to the above toy example, these three 

strategies are implemented as requests to the graph database. 

Their results are subsequently combined to give a list of 

workshops that is further filtered by the geographical region of 

interest of the user and sorted by remaining days before 

available session. 

 

One advantage of this approach is that it is very flexible 

schemes of computation and combination of recommendation 

based on the same graph structure. Another subtle advantage 

is that a small amount of data is sufficient to start serving 

reasonably adapted recommendations. This rely on the fact 

that recommendations are based on local request to the graph 

structure such that they can start making sense as soon as 

portions of the graph are sufficiently well connected. 

 

V. TECHNOLOGICAL STACK AND WORKFLOW 

 

This part draws the main lines of the architecture we use in 

order to build an engine serving the kind of flexible 

recommendation described above.  

Basically, the engine lies on the synchronized exploitation of a 

Neo4j database [4] and a MongoDB database [7]. The Neo4j 

technology is made for storing data structured as graph and 

requesting it with the Cypher language. MongoDB, a 

document oriented database, is used in order to store 

potentially large content associated with each entity (the 
descriptions of the workshops in the previous use case for 

instance), whereas the graph database is not really suited for 

this functionality. 

The overall application is built with the Node.js [9] 

framework. Packages of this framework (mainly async.js) 

allow to design asynchronous workflows that are useful for 

handling real-time addition/deletion of entities and 

relationships, and managing complex execution schemes. 

Other packages (mainly express.js) allow to expose web 

services useful if the engine has to communicate with websites 

(as needed by a majority of our use cases). Finally, connectors 

to Neo4j and MongoDB are also available. All these features 

allow the application to orchestrate data collection and 

processing, writing to the databases and requesting them to 

serve recommendations. 

NLP and machine-learning tools we are using for 

computing similarity between texts for instance, mainly 

belong to the python library Gensim [6]. Python processes are 

integrated to the overall Javascript platform thanks to 

communication via a RabbitMQ queuing system [8]. 

Finally, to ease the deployment of the whole application, 

each of its micro-services is containerize thanks to the Docker 

technology [10] . 

 

VI. CONCLUSION AND PERSPECTIVE 

We have presented in this paper the way Kernix is building 

recommender engine based on a graph database. To conclude, 

we share some advantages and caveats of this kind of flexible 

recommender system.  

We have mainly adopted the approach described above 

because of the ease of addition/deletion of entities and their 

connections and the adaptability of the recommendation 

Fig. 4.  Example of paths taken into account for the scoring through users 

similarity (deeper paths passing by sessions and craftsmen are not shown for 

compactness)  

Fig. 5. Example of paths taken into account for the scoring through 

workshops similarity (deeper paths passing by sessions and craftsmen are not 

shown for compactness) 
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computation to the various client’s use cases we have 

encountered over time. This flexibility of the system also 

relies on the possible enrichment of the graph of entities 

thanks to data processing as mentioned above concerning 

semantic similarity. Beside these motivating points, two other 

points remain challenging. Firstly, we are still investigating 

ways to assess recommendations quality either by in 

production A/B testing and by offline evaluation. Secondly, 

we are studying the potential scalability of these techniques to 

high data volume and denser stream of information. 

REFERENCES 

[1] Francesco Ricci and Lior Rokach and Bracha Shapira, Introduction to 

Recommender Systems Handbook, Recommender Systems Handbook, 

Springer, 2011, pp. 1-35 

[2] Angles, Renzo; Gutierrez, Claudio, "Survey of graph database models" 
ACM Computing Surveys. Association for Computing Machinery. 40 (1) 

[3] https://developer.ibm.com/dwblog/2017/overview-graph-database-

query-languages/ 

[4] https://neo4j.com/ 

[5] https://neo4j.com/developer/cypher-query-language/ 

[6] https://radimrehurek.com/gensim/ 
[7] https://www.mongodb.com/ 

[8] https://www.rabbitmq.com/ 

[9] https://nodejs.org/en/ 

[10] https://www.docker.com/ 

[11] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens 
Datasets: History and Context. ACM Transactions on Interactive 

Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages. 

DOI=http://dx.doi.org/10.1145/2827872 

[12] https://movielens.org  
[13] A Graph-based Recommender System for Digital Library Zan Huang, 

Wingyan Chung, Thian-Huat Ong, Hsinchun Chen 

(https://pdfs.semanticscholar.org/859b/e8c9a179cb0d231e62ca07b9f256

9035487f.pdf) 

 

http://www.inf.unibz.it/~ricci/papers/intro-rec-sys-handbook.pdf
http://www.inf.unibz.it/~ricci/papers/intro-rec-sys-handbook.pdf
http://www.cse.iitk.ac.in/users/smitr/PhD%20Resources/Survey%20of%20Graph%20Databases%20Models.pdf
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://developer.ibm.com/dwblog/2017/overview-graph-database-query-languages/
https://developer.ibm.com/dwblog/2017/overview-graph-database-query-languages/
https://neo4j.com/
https://neo4j.com/developer/cypher-query-language/
https://radimrehurek.com/gensim/
https://www.mongodb.com/
https://www.rabbitmq.com/
https://nodejs.org/en/
https://www.docker.com/
http://dx.doi.org/10.1145/2827872
https://movielens.org/

	I. INTRODUCTION
	II. Brief description of the use of a graph database
	III. Example of a CF recommender system
	IV. Example of a hybrid recommender system
	V. Technological stack and workflow
	VI. Conclusion and Perspective
	References

