
HAL Id: hal-01640313
https://hal.science/hal-01640313

Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible recommender systems based on graphs
Joseph Pellegrino

To cite this version:
Joseph Pellegrino. Flexible recommender systems based on graphs. AISR2017, May 2017, Paris,
France. �hal-01640313�

https://hal.science/hal-01640313
https://hal.archives-ouvertes.fr

 1



Abstract— The objective of this paper is to share Kernix’s

approach to build flexible recommender systems based on graph

oriented databases. The integration of entities, and relationships

between them, into a unique graph structure allows to design

recommendations as graph traversals. This approach offers a

flexible framework allowing to handle the variety of entities of

interest and enabling to design rich strategies in order to

compute recommendations for various use cases.

Index Terms—Graph database, Recommender systems, Data

Management

I. INTRODUCTION

ernix is a company of forty-five people whose activity

rely on a digital factory, crafting custom websites, and a

data lab, providing data oriented solutions for business use

cases. These solutions span from predictive maintenance to

credit risk scoring but also fraud detection and recommender

systems. In the latter context, Kernix has designed and built

several custom recommender engines aiming at fulfilling its

customers’ needs. In order to cope with the variety of these

needs and with the data available, Kernix has decided to adopt

a flexible approach essentially based on the use of a graph

oriented database.

Basic approaches to recommendation [1] consist in building

separate models for content-based (CB) and collaborative

filtering (CF) strategies, respectively relying on the

exploitation of items-items similarities and users-items

interactions. In general, these approaches lack some kind of

flexibility in the integration of complex interactions between

entities. As an illustration, in the case of movie

recommendation, it is not easy to merge in one approach the

explicit taste of a user about its favorite actors and genres with

its ratings for specific movies.

A flexible approach would ease the exploitation of the

multiple kinds of possible interactions between different

entities (users, actors, genres and movies in our example).

Graphs are natural mathematical structures allowing to encode

these interactions, and, as we will show in what follows,

recommendations can be computed thanks to graph traversals.

In the following, we present how Kernix is leveraging on a

graph oriented database technology in order to build different

so-called flexible recommendation engines. Part II briefly

describes the use of a graph oriented database, allowing us to

introduce the vocabulary further used. Part III deals with a toy

example of a CF recommendation based on the MovieLens

dataset. Part 2 refers to a hybrid recommender engine that

Kernix has built for one of its client. Part IV summarizes the

stack of technologies on which our solutions are based, and

the workflow associated to it. In the conclusion, we share

some advantages and caveats of our approach and draw some

perspectives.

II. BRIEF DESCRIPTION OF THE USE OF A GRAPH DATABASE

A graph database models and stores data as nodes and edges

of a graph structure [2]. These elements can bear types

allowing their categorization and can embed additional

information specifying their properties. For instance, in the

case of movie recommendation, node types could be User,

Actor, Genre and Movie and edge types could be Has_rated,

Has_actor, Has_genre for edges respectively linking users to

movies, movies to actors and movies to genres; while

properties of a User node could be the name, age and sex of

the user and a property of the Has_rated edge could be the

rating itself.

Graph databases allow efficient and fast retrieval of

complex hierarchical structures that are difficult to model in

relational systems. Information retrieval is performed thanks

to specific query languages [3] based on the semantic of graph

traversals, generally proposing optimized routines for

computing shortest paths for instance.

Within this graph framework, for a given dataset, several

kinds of recommendations can be elaborated by combining

and scoring paths between entities. In our example, similarity

between users can be evaluated through the paths that connect

one user to movies, actors and genres, that are themselves

connected to other users, each type of path being potentially

weighted by different coefficients. The two following parts

will concretely illustrate the way these concepts can be

implemented.

III. EXAMPLE OF A CF RECOMMENDER SYSTEM

To illustrate the case of a graph-based CF recommender

system, we have built a movie recommender engine based on

the ML-100k dataset [12]. This dataset has been gathered by

GroupLens Research on the MovieLens website and consists

in 100,000 ratings (1-5) from 943 users on 1682 movies. The

Flexible recommender systems based on graphs

J. Pellegrino, Kernix Software

K

 2

dataset has been cleaned up such that each user has rated at

least 20 movies. The model chosen for the graph consists in:

• two kinds of nodes: User and Movie.

• one kind of edge: Has_rated, relating users to

movies. The rating r(mj,ui) given by user ui to movie

mj is recorded as a property of the edge.

For a given user u1, we have chosen to recommend movies

that are mostly appreciated by users giving similar ratings as

u1. For reasoning, this strategy implies the following

conceptual steps.

Step 1: Selection of the users who are the most “similar” to u1.

The similarity between u1 and ui is here defined as:

𝑠𝑖𝑚(𝑢1, 𝑢𝑖) = 𝑐𝑎𝑟𝑑(𝑆𝑢1,𝑢𝑖
)/𝑐𝑎𝑟𝑑(𝑅𝑢1

)

where 𝑆𝑢1,𝑢2
= ⋃ 𝑚𝑗|𝑟(𝑚𝑗,𝑚2)−𝑟(𝑚𝑗,𝑚1)|≤1 , is the set of movies

commonly rated by u1 and u2 with a difference of rating less

are equal to 1; and Ru1 is the set of all movie rated by u1.

Thanks to this similarity measure, we form the subset Usim

of users ui with similarity with u1 above a certain threshold t

(here arbitrarily set to 0.5).

Step 2: Ranking of movies seen by these users.

The recommendation score of each movie mj rated by the

users belonging to Usim is then computed as the mean rating.

In this case, movies will be ranked from « most appreciated by

similar users » to « least appreciated by similar users ». If Vm

is the subset of users who have rated movie m, and Wm its

intersection with Usim, then the score of movie m can be

expressed as:

𝑠(𝑚) =
∑ 𝑟(𝑚, 𝑢𝑖)𝑢𝑖∈𝑊𝑚

𝑐𝑎𝑟𝑑(𝑊𝑚)

Despite the fact that the above description of the method is

mainly set-theoretical, the approach is in fact really natural in

terms of graph traversal as illustrated by Fig.1 and can be

easily implemented as a request to the graph database.

Although this toy recommender system shows reasonable

performances for this case, an assessment on a more

significant set of users must performed to draw any solid

performance metrics. One has to mention that this model

doesn’t involve any training phase as machine-learning based

approaches requires so it is really well suited for cases of fast

addition/deletion of entities and evolution of their connections.

The following part extends the approach to a richer use case.

IV. EXAMPLE OF A HYBRID RECOMMENDER SYSTEM

In this part, we will share the design of the approach we

took for building a recommender system for one of our client.

This company proposes to ease interactions between

individuals and professionals through “do it yourself”

workshops. Our goal was to integrate to the website of this

company an engine recommending workshops to users. The

recommendation has been built on connections between

different “entities”, namely User, Craftsman, Workshop,

Session and Category. The types of these entities and the

relationships we decided to implement in the graph database

are summarized in the Fig.2.

In order to compute the recommendation of workshops, we

decided to combine the three following strategies based on the

same graph structure.

Strategy 1: Scoring through categories

For a given user, the ranking of workshops to recommend is

based on the number of times they are linked to categories for

which the user has shown an interest. This mark of interest, as

illustrated in Fig.3, take into account several paths between the

user and the categories:

• direct edges of type “follow” from the user to the

categories

• paths through workshops followed by the user

• paths through workshops to which the user attend a

session

Fig. 1. Schematic representation of the method

Fig. 2. Types of data and edges defined for the recommender system

Fig. 3. Example of paths taken into account for the scoring through

categories (deeper paths passing by sessions are not shown for compactness)

 3

Strategy 2: Scoring through users similarity

This strategy is analogous to the CF recommendation

example of the previous part, except that paths taken into

account between users can be deeper than just one node.

Indeed, to select the subset Usim of users similar to the target

user, we exploit the paths through workshops for which the

user has shown a mark of interest by:

• following the workshop

• participating to a session of the workshop

• following the craftsman that proposes the workshop

The users defined as similar to the target user are those

counting a sufficient number of workshops in common with

him. Finally, workshops are ranked based on the number of

times they are linked to the subset Usim, through the same

kinds of paths as described above.

Startegy3: Scoring through workshops similarity

This last strategy leverages on the computation of semantic

similarity between the descriptions of the workshops. In order

to compute these similarities, we have implemented a NLP

pipeline performing the vectorization of the descriptions

(through tokenization, stemming and tf-idf weighting) and the

fit of these data points by LSI model (in order to merge

frequently co-occurring terms into main concepts). The

similarity between descriptions is obtained by the cosine of the

angle formed by their corresponding vectors. The similarity

scores are then materialized in the graph database as the

property of “similarity” edges drawn between corresponding

workshops as illustrated in Fig.5:

Recommended workshops are defined as the most similar to

the workshops for which the target user has shown an interest,

as described in the previous strategy.

Analogously to the above toy example, these three

strategies are implemented as requests to the graph database.

Their results are subsequently combined to give a list of

workshops that is further filtered by the geographical region of

interest of the user and sorted by remaining days before

available session.

One advantage of this approach is that it is very flexible

schemes of computation and combination of recommendation

based on the same graph structure. Another subtle advantage

is that a small amount of data is sufficient to start serving

reasonably adapted recommendations. This rely on the fact

that recommendations are based on local request to the graph

structure such that they can start making sense as soon as

portions of the graph are sufficiently well connected.

V. TECHNOLOGICAL STACK AND WORKFLOW

This part draws the main lines of the architecture we use in

order to build an engine serving the kind of flexible

recommendation described above.

Basically, the engine lies on the synchronized exploitation of a

Neo4j database [4] and a MongoDB database [7]. The Neo4j

technology is made for storing data structured as graph and

requesting it with the Cypher language. MongoDB, a

document oriented database, is used in order to store

potentially large content associated with each entity (the
descriptions of the workshops in the previous use case for

instance), whereas the graph database is not really suited for

this functionality.

The overall application is built with the Node.js [9]

framework. Packages of this framework (mainly async.js)

allow to design asynchronous workflows that are useful for

handling real-time addition/deletion of entities and

relationships, and managing complex execution schemes.

Other packages (mainly express.js) allow to expose web

services useful if the engine has to communicate with websites

(as needed by a majority of our use cases). Finally, connectors

to Neo4j and MongoDB are also available. All these features

allow the application to orchestrate data collection and

processing, writing to the databases and requesting them to

serve recommendations.

NLP and machine-learning tools we are using for

computing similarity between texts for instance, mainly

belong to the python library Gensim [6]. Python processes are

integrated to the overall Javascript platform thanks to

communication via a RabbitMQ queuing system [8].

Finally, to ease the deployment of the whole application,

each of its micro-services is containerize thanks to the Docker

technology [10] .

VI. CONCLUSION AND PERSPECTIVE

We have presented in this paper the way Kernix is building

recommender engine based on a graph database. To conclude,

we share some advantages and caveats of this kind of flexible

recommender system.

We have mainly adopted the approach described above

because of the ease of addition/deletion of entities and their

connections and the adaptability of the recommendation

Fig. 4. Example of paths taken into account for the scoring through users

similarity (deeper paths passing by sessions and craftsmen are not shown for

compactness)

Fig. 5. Example of paths taken into account for the scoring through

workshops similarity (deeper paths passing by sessions and craftsmen are not

shown for compactness)

 4

computation to the various client’s use cases we have

encountered over time. This flexibility of the system also

relies on the possible enrichment of the graph of entities

thanks to data processing as mentioned above concerning

semantic similarity. Beside these motivating points, two other

points remain challenging. Firstly, we are still investigating

ways to assess recommendations quality either by in

production A/B testing and by offline evaluation. Secondly,

we are studying the potential scalability of these techniques to

high data volume and denser stream of information.

REFERENCES

[1] Francesco Ricci and Lior Rokach and Bracha Shapira, Introduction to

Recommender Systems Handbook, Recommender Systems Handbook,

Springer, 2011, pp. 1-35

[2] Angles, Renzo; Gutierrez, Claudio, "Survey of graph database models"
ACM Computing Surveys. Association for Computing Machinery. 40 (1)

[3] https://developer.ibm.com/dwblog/2017/overview-graph-database-

query-languages/

[4] https://neo4j.com/

[5] https://neo4j.com/developer/cypher-query-language/

[6] https://radimrehurek.com/gensim/
[7] https://www.mongodb.com/

[8] https://www.rabbitmq.com/

[9] https://nodejs.org/en/

[10] https://www.docker.com/

[11] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens
Datasets: History and Context. ACM Transactions on Interactive

Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages.

DOI=http://dx.doi.org/10.1145/2827872

[12] https://movielens.org
[13] A Graph-based Recommender System for Digital Library Zan Huang,

Wingyan Chung, Thian-Huat Ong, Hsinchun Chen

(https://pdfs.semanticscholar.org/859b/e8c9a179cb0d231e62ca07b9f256

9035487f.pdf)

http://www.inf.unibz.it/~ricci/papers/intro-rec-sys-handbook.pdf
http://www.inf.unibz.it/~ricci/papers/intro-rec-sys-handbook.pdf
http://www.cse.iitk.ac.in/users/smitr/PhD%20Resources/Survey%20of%20Graph%20Databases%20Models.pdf
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://developer.ibm.com/dwblog/2017/overview-graph-database-query-languages/
https://developer.ibm.com/dwblog/2017/overview-graph-database-query-languages/
https://neo4j.com/
https://neo4j.com/developer/cypher-query-language/
https://radimrehurek.com/gensim/
https://www.mongodb.com/
https://www.rabbitmq.com/
https://nodejs.org/en/
https://www.docker.com/
http://dx.doi.org/10.1145/2827872
https://movielens.org/

	I. INTRODUCTION
	II. Brief description of the use of a graph database
	III. Example of a CF recommender system
	IV. Example of a hybrid recommender system
	V. Technological stack and workflow
	VI. Conclusion and Perspective
	References

