K. Savolainen, N. H. Pylkkänen-p, . Falck-g, . Lindberg-h, and . Tuomi-t, -Nanotechnologies, engineered nanomaterials and occupational health and safety ? A review -An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication, Safety Sci. Ann. Occup. Hyg, vol.483, issue.58, pp.957-963, 2011.

G. S. , B. J. , C. J. Elder-a, G. T. , and G. G. , Workshop report: Strategies for setting occupational exposure limits for engineered nanomaterials. Regul, Toxicol. Pharm, vol.68, pp.305-311, 2014.

W. J. , A. C. Fissan-h, K. T. Hülser-t, and . Thompson-d, How can nanobiotechnology oversight science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS), J. Nanopart. Res, vol.13, pp.1373-1387, 2011.

B. D. Van-duuren-stuurman, J. E. Berges-m, and B. D. , -From workplace air measurement results towards estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects, J. Nanopart. Res, vol.11, pp.1867-1881, 2009.

B. D. Exposure, K. T. , A. C. Fissan-h, G. D. Stintz-m-ramachandran-g, . Ostraat-m et al., -Nanoparticle exposure at nanotechnology workplaces: A reviewA strategy for assessing workplace exposures to nanomaterials, Toxicology Part. Fiber Toxicol. Journal of Occupational and Environmental Hygiene, vol.26910, issue.8, pp.120-127, 2010.

M. M. Hodson-l, . L. Ostraat-m, . W. Thornburg-j, . G. Malloy-q, . M. Methner et al., -Measurement strategies of airborne nanomaterials -Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials ? part B: results from 12 field studies -Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of Engineered Nanomaterials (ENM) at four facilities -Assessing potential nanoparticle release during nanocomposite shredding using direct-reading instrumentsIndustrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide - The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility -Exposure Controls for Nanomaterials at Three Manufacturing Sites -Metrological Performances of a Diffusion Charger Particle Counter for Personal Monitoring -Evaluation of a Diffusion Charger for measuring aerosols in a workplace, CEN -prEN 16966, Workplace exposure ? Metrics to be used for the measurements of exposure to inhaled nanoparticles (nano-objects and nanostructured materials) such as mass concentration, number concentration and surface area concentration, pp.127-132, 2006.

J. J. Bau-s, W. J. , J. J. , L. J. , K. J. et al., Comparison of nanoparticle measurement instruments for occupational health applications -Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles, [26] WITSCHGER O. -Monitoring nanoaerosols and occupational exposure Nanoethics and nanotoxicology, pp.718-733, 2011.

F. M. Houle-c and . Steigmeier-p, -Design, calibration, and field performance of a Miniature Diffusion Size Classifier, Aerosol Science and Technology, vol.83827, issue.45, pp.10-1088, 2011.

B. S. Zimmermann-b and . Payet-r, http://testo-partikel.de/files/DiSCmini_EN_compressed.pdf (2016-11-02) [30] -Laboratory study of the performance of the miniature Diffusion Size Classifier (DiSCmini) for various aerosols in the 15-400 nm range, Environmental Science: Processes and Impacts, pp.261-26931, 2015.

A. C. Kaminski-h, K. D. Von, . Monz-c, and . Dziurowitz-n, Comparability of portable nanoparticle exposure monitors [32] MILLS J. B. -Evaluation of the DiSCmini personal aerosol monitor for submicrometer sodium chloride and metal aerosols -Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols, Ann. Occup. Hyg. Journal of Occupational and Environmental Hygiene, vol.5634, issue.10, pp.606-621, 2012.

O. S. and K. B. Kim-h, -Comparison of nanoparticle exposures between fumed and solgel nano-silica manufacturing facilities, Ind. Health, vol.5237, pp.190-198, 2014.

M. J. Voetz-m, K. H. Buonanno, . Stabile-l, . G. Bekö, . U. Kjeldsen-b et al., -Monitor for detecting and assessing exposure to airborne nanoparticles -Personal exposure to ultrafine particles: the influence of time-activity patternsContribution of various microenvironments to the daily personal exposure to ultrafine particles: Personal monitoring coupled with GPS tracking -Determination of mean particle size using the electrical aerosol detector and the condensation particle counter: comparison with the scanning mobility particle sizer, J. Nanopart. Res. Science of the Total Environment Atmos. Environ. Journal of Aerosol Science, vol.1241, issue.39, pp.21-37, 2008.