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OPE FOR XXX

PHILIPPE DI FRANCESCO AND FEDOR SMIRNOV

In memory of Ludwig Dmitrievich Faddeev

Abstract. We explain a new method for finding the correlation functions for the XXX
model which is based on the concepts of Operator Product Expansion of Quantum Field
Theory on one hand and of fermionic bases for the XXX spin chain on the other. With
this method we are able to perform computations for up to 11 lattice sites. We show
that these “experimental" data allow to guess exact formulae for the OPE coefficients.

1. Introduction

This paper deals with the isotropic Heisenberg spin chain. However, even dealing with a
lattice model, it is important to have in mind certain general ideas coming from Quantum
Field Theory (QFT). One of them is the operator product expansion (OPE).

Suppose for a given QFT we know a complete set of local operators Oi(x). Then for
small x we have an expansion

Oi(x)Oj(0) =
∑

k

Ck
i,j(x)Ok(0) .

We take the OPE quite symbolically leaving aside the necessity of time ordering, the
convergence issues etc. An important feature of the OPE is that it is defined only by the
short distance, ultra-violet (UV) nature of the theory. The infra-red (IR) environment
becomes relevant when the correlation functions are computed. In the OPE approach, it
enters through the one-point functions only:

〈Oi(x)Oj(0)〉env =
∑

k

Ck
i,j(x)〈Ok(0)〉env .(1.1)

A first serious problem concerning the application of OPE consists in finding a conve-
nient way to enumerate the local operators. It is well known that in a two-dimensional
conformal field theory (CFT) they correspond to representations of the Virasoro algebra.
A less known example is provided by the sine(h)-Gordon model for which there exists
a fermionic basis for the local operators where all the one-point functions are expressed
as determinants [1, 2]. In the UV limit the relation of the fermionic basis to the Vira-
soro basis is known, and this allows in principle to apply Perturbed CFT methods to the
computation of the two-point functions.

On the other hand, let us imagine a situation when for a large number of IR environ-
ments the one-point functions and two-point functions are known. Then the relations
(1.1) provide equations for the coefficients of the OPE. One can dream that these equa-
tions could be sufficient to entirely fix all the coefficients of the OPE. For the moment this
program does not look realistic for the QFT. However, we shall show that it is applicable
to integrable lattice models.

Generally, the OPE does not depend on the IR environment. However, one can consider
classes of IR environments possessing certain symmetries. For example, they can respect
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2 PHILIPPE DI FRANCESCO AND FEDOR SMIRNOV

translational invariance. In this case the spatial derivatives of one-point functions vanish,
and we can drop them in the right hand side of the OPE. We shall deal with much wider
symmetries of this kind, and write the OPE modulo symmetries as

Oi(x)Oj(0) ≡
∑

k

Ck
i,j(x)Ok(0) .

Certainly, the symmetries in question will have to be carefully implemented. They can
be not only continuous, but also discrete ones, like C-symmetry for instance.

In this paper we shall consider the celebrated isotropic Heisenberg magnet (XXX spin
chain) with the Hamiltonian

H =

∞∑

j=−∞

hj,j+1, hj,j+1 =
1
2
(σa

j σ
a
j+1 − 1) ,

with usual notations for Pauli matrices σa
j at site j, and where summation over repeated

indices is always implied. For some technical reasons which will be explained later we
consider the two-point functions of sl2-invariant operators. The examples will be σa

1σ
a
N

and h1,2hN−1,N .
We consider the correlation functions with arbitrary Matsubara data which will be

introduced in the next section. This is a quite general situation which includes important
physical applications: zero-temperature anti-ferromagnet, (anti)-ferromagnet with non-
zero temperature and magnetic field or even the case of generalised Gibbs ensemble. All
these cases correspond to choosing certain special Matsubara data and taking limits for
them.

The set of local operators in the lattice analogue of OPE is expressed via the fermionic
basis. Crucial to our study are the cases with simple Matsubara data. For these the
one-point functions are computed as determinants and there is an efficient procedure for
computing the two-point functions using the quantum inverse scattering method (QISM)
techniques [3, 4, 5]. This allows to obtain an over-determined system of equations for the
OPE coefficients. We check that these systems have solutions up to N = 11 and compute
all the OPE coefficients. These coefficients can now be used for any Mastubara data.

It will be very interesting to guess general formulae for the OPE coefficients from our
“experimental" data. This part of the work is still under way, but we shall present here
some preliminary results.

The paper is organised as follows. In Section 2 we formulate the problem of computing
correlation functions on a cylinder (Matsubara environment). In Section 3 the fermionic
basis and its restriction to our problem are explained. In Section 4 we present an efficient
computation procedure for small Matsubara chains. In Section 5 we further restrict the
fermionic basis. The results of computations and formulae for some elements of OPE are
given in Section 6.

2. Formulation of the problem

Consider the following square lattice wrapped onto a cylinder R× S1

We associate the space C2 to each horizontal lattice site (along each of the parallel
circles), and the space C

2sm+1 together with the complex parameter τm to the m-th site
of the compact Matsubara lattice (along horizontal lines). Denote by π2s

λ the evaluation
representation of the Yangian with the dimension 2s + 1 and evaluation parameter λ.
Every crossing corresponds to the sl2 Yangian R-matrix in the tensor product of two
evaluation representations: π1

0 and π2sm
τm−1/2. Summation is implied over all indices except
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Figure 1.

the four fixed: ǫ1, ǫ2, ǫ
′
1, ǫ

′
2. We denote the partition function defined by the picture of

Fig.1 by Z
ǫ′1,ǫ

′

2
ǫ1,ǫ2 , then the expectation value of σa

1σ
a
N (correlation function of spins) with

the Matsubara data {sm, τm} is defined by

Gσσ(N) = 1 +
2

Z

(
Z−+

+− + Z+−
−+ − 2Z+−

+−

)
,

where Z is the usual partition function (without insertions). A similar formula based on
the partition function with four operator insertions (at the sites 1, 2, N − 1, N) is easy to
write for the expectation value Ghh(N) of h1,2hN−1,N (correlation function of densities of
the Hamiltonian). The Matsubara direction has finite size n while the horizontal (space)
direction is infinite. The latter infinity may cause trouble, so we regularise the horizon-
tal space by assuming it has finite length equal to 2L and imposing periodic boundary
conditions (this amounts to putting our lattice on a torus), and then by finally sending
L → ∞.

Let us be more formal. Consider the representation of Yangian πS which is the tensor
product of 2L representations π1

0 . Consider in addition the representation πM which is
the tensor product of the n representations π2sm

τm−1/2, m = 1, 2, ...,n. Define

TS,M = (πS ⊗ πM)(R) ,

with R being the universal R-matrix. Then for any O acting on a small (compared to L)
number of tensor components of the representation space of πS define

Z(O) = lim
L→∞

TrMTrS (TS,MO)

TrMTrS (TS,M)
.

This is the more general definition of the functional Z which was introduced earlier in a
particular case.

To the left and to the right of the insertion (see Fig.1) we have products of Matsubara
transfer-matrices

TM = TM(0), TM(λ) = Tr
(
π1
λ ⊗ πM(R)

)
,

where the trace is taken with respect to the first tensor component. Generically the
transfer-matrix TM has a single eigenvector |max〉 corresponding to an eigenvalue T of
maximal absolute value. Suppose the operator O is localised on the interval [1, N ] (like
on Fig.1). Clearly, because of the limit L → ∞

Z(O) =
〈max|Tr[1,N ]

(
T[1,N ],MO

)
|max〉

TN〈max|max〉
.
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This quantity was actually computed using the fermionic basis in [6]. The computation
is purely algebraic and uses only the fact that |max〉 is an eigenvector. For that reason
the computation extends to more general quantities of the form

Z(O,Ψ) =
〈Ψ|Tr[1,N ]

(
T[1,N ],MO

)
|Ψ〉

TN〈Ψ|Ψ〉
,(2.1)

with an arbitrary eigenstate |Ψ〉 with eigenvalue T of the transfer-matrix TM.

3. Fermionic basis

The fermionic basis is defined in [7] for the anisotropic XXZ model with the anisotropy
parameter ∆ = 1

2
(q + q−1). Taking the limit q → 1 is not a difficult problem. More

importantly, Ref. [7] deals with the quasi-local operators of the form qα
∑0

j=−∞
σ3
jO. Taking

the limit α → 0 in this expression is non trivial, and requires some explanation.

In the XXZ case the basic algebraic tool is the quantum affine algebra Uq(ŝl2) which
replaces the Yangian used for the XXX case. The main result of [7] is the existence of
creation operators t∗j (boson), b∗

j , c
∗
j (fermions) for j = 1, 2, · · · . By acting on the primary

field Φα = qα
∑0

j=−∞
σ3
j these operators create a basis in the space of quasi-local operators

for which the expectation values of the type considered in the previous section are easily
computed. It should be noticed that contrary to the fermions the operators t

∗
j are of

rather simple origin, however they make computations much more involved.
In the limit α → 0 the operators b

∗
j , c

∗
j acting on Φα develop simple poles in α. As

a consequence, computing expectation values involves using L’Hospital’s rules. This is
doable, but leads eventually to the doubling of fermions: one has to consider for every
fermion its regular part and residue at α = 0. However, there is a notable exception

of this general picture. The algebra Uq(ŝl2) contains two finite-dimensional subalgebras
isomorphic to Uq(sl2). Consider the operators O commuting with the action of one of
them. In a weak sense (when inserted in expectation values) it can be shown that in
the limit α → 0 these operators are created by the action of regular parts of fermions
only. This is a great simplification. Another nice point is that the operators t

∗ do not
contribute for α = 0.

Passing to the XXX case with α = 0 we assert that the local operators are created by
b
∗
j , c

∗
j . We use the multi-index notations: for I = {i1, · · · , in} we define b

∗
I = b

∗
i1
· · ·b∗

in ,
c
∗
I = c

∗
in · · · c

∗
i1 . We denote by #(I) = n the cardinality of I, and by |I| =

∑n
ℓ=1 iℓ. Then

according to previous considerations the invariant operators are contained in the space
H0 of operators with the basis

b
∗
Ic

∗
J · I , #(I) = #(J) ,(3.1)

I standing for the unit operator. The operator (3.1) is supported on an interval of length
at most |I|+ |J |.

It is important to identify among these the operators which are localised on an interval
of length N . The following first two conditions follow for instance from [8]:

#(I) ≤ [N/2] , max(I ∪ J) ≤ N .(3.2)

Moreover, we consider C-invariant operators (invariant under σa
j → −σa

j ). For them it
can be shown that the following additional condition can be imposed:

|I|+ |J | ≡ 0 (mod 2) .(3.3)

Let us denote the subspace of H0 satisfying (3.2), (3.3) by H
(N)
0 .
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More sophisticated conditions result from the homogeneous limit of the results of [9].
Consider the annihilation operators bj , cj canonically conjugated to b

∗
j , c

∗
j , and annihi-

lating the vacuum. Introduce the operators

Qm =

m−1∑

j=1

cjbm−j , m = 1, 2, . . .

We state that the operators localised on [1, N ] are linear combinations of (3.1) satisfying

QmO = 0 , m > N .(3.4)

Due to the second condition in (3.2) for given N we can restrict the values of m in the
above to m ≤ 2N + 1.

The main theorem of [6] states that for #(I) = #(J)

Z(b∗
Ic

∗
J · I,Ψ) = det

(
ωip,jq

)
p,q=1,...,#(I)

,(3.5)

where ωi,j is an infinite matrix depending on

Matsubara data = {{sm, τm}n
m=1 , |Ψ〉} .

The exact definition of ωi,j will be given in the next section.
In our case (α = 0) the matrix ωi,j is symmetric. Since we decided to work in a weak

sense, this imposes additional restrictions. The first of them is obvious: we can consider
the space H0/ι, with ι being the anti-homomorphism b

∗
j ↔ c

∗
j . For example, we can

require that I ≤ J in lexicographical order. Another consequence is less trivial. The
following simple example explains that there are linear relations between minors of any
given symmetric matrix:

∣∣∣∣
ω1,3 ω1,4

ω2,3 ω2,4

∣∣∣∣−
∣∣∣∣
ω1,2 ω1,4

ω2,3 ω3,4

∣∣∣∣+
∣∣∣∣
ω1,2 ω1,3

ω2,4 ω3,4

∣∣∣∣ = 0 .

This identity implies that working in a weak sense we can factor out the null-vector
(
b∗1b

∗
2c

∗
4c

∗
3 − b∗1b

∗
3c

∗
4c

∗
2 + b∗2b

∗
3c

∗
4c

∗
1

)
· I .

We look for a general formula for such null-vectors. Consider the operator

C =

∞∑

i=1

c∗i bi ,

and the space H2 spanned by b
∗
Ic

∗
J · I with #(I) = #(J)+2. Then the subspace N = CH2

of the space H2 consists of null-vectors. Indeed, by taking linear combinations, the formula
(3.5) can be rewritten as

Z(O,Ψ) = I∗ eΩ O ,

where Ω =
∑

i,j ωi,jbicj and the left vacuum I∗ is annihilated by the right action of creation
operators. The fact that N consists of null-vectors follows from the commutation of C
with Ω. We do not have a formal proof that belonging to N is necessary for a vector to
be a null-vector, but since the computer does not contradict this, we shall assume it is
true.

Let us summarise what we have for the moment. In the weak sense for any local
operator O acting on N sites we have

O ≡
∑

α

Cαvα ,(3.6)
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where vα is a basis of the space

V
(N) =

2N+1⋂

i=N+1

Ker
(
Qi

∣∣
H
(N)
0 /ι/N

)
.(3.7)

the dimension of this space is much smaller than the dimension of H
(N)
0 /ι. We shall see

that it is possible to reduce the space further, but with V(N) we can already start working.

4. Explicit computations for small Matsubara chain

The main goal of this section is to show how to produce a large number of Matsubara
data, and subsequently compute the matrix (ωi,j) and expectation values using them.

Suppose we are given some Matsubara parameters τ1, s1, · · · τn, sn. The eigenvectors
|Ψ〉 are parametrised by Bethe roots β1, · · · , βm. They satisfy the Bethe equations which
are conveniently written in terms of the Baxter function Q(λ) =

∏m
j=1(λ− βj):

a(βj)Q(βj + 1) + d(βj)Q(βj − 1) = 0, j = 1, · · · , m ,(4.1)

where

a(λ) =

n∏

m=1

(λ− τm − sm), d(λ) =

n∏

m=1

(λ− τm + sm) .

Recall sm are given integers, however the subsequent formulae are all analytical in sm,
hence we may consider them as arbitrary complex parameters. Then a(λ), d(λ) will be
considered as arbitrary monic polynomials of degree n:

a(λ) = λn +

n∑

j=1

ajλ
n−j, d(λ) = λn +

n∑

j=1

djλ
n−j .(4.2)

The usual problem of the theory of quantum integrable models is to find solutions to
Bethe equations for the input data

input = {a1, · · · an, d1, · · · dn} .(4.3)

Now solving the Bethe equations we would obtain an equivalent set of parameters to the
previously introduced

Matsubara data = {{τm}, {sm},Ψ} ≡ {β1, · · ·βm, a1, · · ·an, d1, · · · dn} .(4.4)

For certain well-known reason we set m ≤ [n/2].
The main problem here is that the Bethe equations constitute a complicated system of

algebraic equations for β1, · · ·βm. But we have to realise that our goal is different from the
usual one. We do not need to find the spectrum for a given chain. Rather we need a stock
of solutions of the Bethe equations in order to obtain equations for the OPE coefficients.
That is why we make the following new choice of input data

input = {β1, · · · , βm, am+1, · · · an, d1, · · · dn} .(4.5)

The number of continuous parameters is the same, but the unknowns are now a1, · · · , am.
Note that for them the Bethe equations are linear. Solving them is easy, and we obtain
as a result some Matsubara data (4.4).

Given some Matsubara data, we need first of all to construct the infinite matrix ωi,j.
The latter is conveniently coded by the generating function

ω(λ, µ) :=
∞∑

i,j=1

λi−1µj−1ωi.j .(4.6)
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Let us define the latter in the spirit of [10]. Introduce the kernel and “half-kernel" func-
tions:

K(λ) = −
2

λ2 − 1
, H(λ) =

1

(λ− 1)λ
.

and the measure

dm(λ) =
dλ

1 + a(λ)
, a(λ) =

a(λ)Q(λ+ 1)

d(λ)Q(λ− 1)
.

We need an auxiliary function defined by the integral equation

G(η, µ) = H(η − λ)−
1

2πi

∮

Γ

K(η − σ)G(σ, µ)dm(σ) ,

where the contour Γ goes around the Bethe roots β1, · · · , βm and the point σ = µ. For
a finite Matsubara chain we have a finite number of Bethe roots for which the equation
above reduces to a linear system for G(βj, µ). The function ω(λ, µ) is given by

ω(λ, µ) =
1

2πi

∮

Γ′

H(η − λ)G(η, µ)dm(η)−
1

4
K(λ− µ) ,

with Γ′ containing one more point: η = λ . It is easy to see that this function is symmetric.
Finally, extracting the coefficients of ω(λ, µ) from (4.6) allows to compute the right hand
side of

〈O〉Md =
∑

α

Cα〈vα〉Md ,(4.7)

where Md stands for Mastubara data and {vα} is the reduced fermion basis (3.6).
The left hand side of (4.7) is computed by QISM techniques. Let us begin by introducing

the main character of QISM, the monodromy matrix. We use the block decomposition
with respect to the first tensor component

(π1
λ ⊗ πM)(R) =

(
A(λ) B(λ)
C(λ) D(λ)

)
,

with A(λ), B(λ), C(λ), D(λ) acting in the Matsubara space. We shall denote A = A(0),
etc. We want to compute

〈Ψ|Tr[1,N ]

(
T[1,N ],MO

)
|Ψ〉 ,

for O located on sites [1, N ]. For given Matsubara data we write

〈Ψ| = 〈β1, · · · , βm| = 〈↓ |B(β1) · · ·B(βm) ,

|Ψ〉 = |β1, · · · , βm〉 = C(β1) · · ·C(βm)| ↓〉 .

The normalisation is provided by the Gaudin formula below. Obviously, for given O the
expression Tr[1,N ]

(
T[1,N ],MO

)
is certain linear combination of monomials of A,B,C,D of

total degree N . So, we have to learn how to compute their averages in an efficient way.
We start with the Slavnov formula for the scalar product of the Bethe covector 〈β1, · · ·βm|

with an off-shell vector |µ1, · · · , µm〉 = C(µ1) · · ·C(µm)| ↓〉, µj being arbitrary. The for-
mula is

〈β1, · · ·βm|µ1, · · · , µm〉 =

m∏

j=1

d(βj)d(µj)

m∏
i,j=1

(βj − µi + 1)

∏
i<j

(µi − µj)
∏
i<j

(βj − βi)
det(N) ,(4.8)
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where the matrix N has entries

Ni,j =
1

(µi − βj)

( 1

(µi − βj − 1)
−

1

(µi − βj + 1)
a(µi)

)
.

The left hand side of (4.8) is by definition a symmetric polynomial of µ1, · · · , µm, hence
the singularities in the right hand side cancel. We shall return to this point later.

The normalisation of the Bethe vectors is given by the Gaudin formula, expressible via
L’Hospital rules from (4.8). Explicitly, we have

〈β1, · · ·βm|β1, · · ·βm〉 =
m∏

j=1

a(βj)d(βj)
∏

i 6=j

βi − βj + 1

βi − βj

det(G) ,(4.9)

where the matrix G has entries

Gk,l =
∂

∂βl
log a(βk) , k, l = 1, · · · , m .

We want to compute

〈β1, · · ·βm|X1X2 · · ·XN |β1, · · ·βm〉 ,

where Xj is one of A,B,C,D. We proceed as follows. Start with the Slavnov formula.
Use the following formulae which are easily obtained by methods of QISM. Consider any
Bethe covector 〈Φ|. Introduce the notations v(λ) = 1/λ, u(λ) = v(λ) + 1. Provided

f(µ1, · · · , µm) = 〈Φ|µ1, · · · , µm〉 ,

is known for arbitrary µ1, · · · , µm we have

〈Φ|A|µ1, · · · , µm〉 =
m∏

j=1

u(−µj)a(0)f(µ1, · · · , µm)(4.10)

−
k∑

j=1

v(−µj)
k∏

r 6=j

u(µj − µr)a(µj)f(µ1, · · · , µ̂j, · · · , µm, 0) ,

〈Φ|D|µ1, · · · , µm〉 =
k∏

j=1

u(µj)d(0)
k∏

j=1

C(µj)| ↓〉(4.11)

−

m∑

j=1

v(µj)

m∏

r 6=j

u(µr − µj)d(µj)f(µ1, · · · , µ̂j, · · · , µm, 0) ,
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〈Φ|C|µ1, · · · , µm〉 =
( k∑

j=1

v(−µj)

k∏

r 6=j

u(−µr)(µr − µj)a(0)d(µj)(4.12)

+ v(µj)

k∏

r 6=j

u(µr)(µj − µr)d(0)a(µj)
)
f(µ1, · · · , µ̂j, · · · , µm)

+
∑

j>i

(
d(µi)a(µj)v(−µi)v(−λ)u(µj − µi)

k∏

r 6=i,j

u(µr − µi)u(µj − µr)

+ a(µi)d(µj)v(−µj)v(µi)u(µi − µj)

k∏

r 6=i,j

u(µi − µr)u(µr − µj)
)

× f(µ1, · · · , µ̂i, · · · , , · · · , µ̂j, · · · , µm, 0) .

〈Φ|B|µ1, · · · , µm〉 = f(µ1, · · · , µm, 0) .(4.13)

Notice that in the last two formulae the number of arguments changes. Using these
formulae we compute inductively

〈β1, · · ·βm|X1X2 · · ·XN |µ1, · · ·µm〉 ,

and then set µj = βj, j = 1, · · · , m.
Our goal is to implement the formulae above on a computer. To proceed fast we

have to avoid symbolic computations as much as possible. The input data are chosen
numerically as a set of random integers from 1 to 10. Still in the procedure described
above we cannot immediately exclude the symbolic variables µj . It has been said that
〈β1, · · ·βm|µ1, · · · , µm〉 is a symmetric polynomial in µ1, · · · , µm. So are the expressions
(4.10), (4.13), (4.12), (4.11). However, to arrive at the polynomial form we have to cancel
some singularities by factorizing the expressions in the right hand side. Factorisation
is a time consuming operation, it should be ultimately avoided. Actually, looking at the
Slavnov formula one realises that it can be easily rewritten as a sum of Schur polynomials.
Then with some effort one rewrites the right hand sides of (4.10), (4.13), (4.12), (4.11)
as operators acting in the basis of Schur polynomials (indexed by Young diagrams). In
this way we completely eliminate time-consuming symbolic computations. In fact acting
in the space of Young diagrams can be made very fast.

5. Final restriction of the number of variables

Now for any given input data we construct the full Matsubara data which allow to
compute, as explained in the previous section, the quantities 〈O〉Md and 〈vα〉Md in the
main formula (4.7).

We start with O = σa
1σ

a
N . It is interesting that in order to fix Cα up to N = 4 we

do not need to resort to non-trivial excited states Ψ in the Matsubara data to fix the
coefficients. Thus for N = 4, absolutely trivial computations give results allowing access
to the correlation functions in any environment. For N = 5 we need one one-particle
state Ψ. Starting from N = 8 a few two-particle states are needed. We always take more
Matsubara data than the number of unknowns, so that the systems of equations to solve
for Cα are overdetermined. The compatibility of all these equations is an important check
of the validity of our procedure.

We computed up to N = 9, and going further was very hard. However, analysing the
results we made the following important observation. Decompose the operators vα in the
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fermionic basis to rewrite

O ≡
∑

I,J

DI,J b∗Ic
∗
J · I .

A priori I, J are only lexicographically ordered, but we observe that the coefficients DI,J

vanish unless

ip ≤ jp, p = 1, · · · ,#(I) .

We shall write I 4 J .
We want to reduce the number of unknowns using this observation. The naïve idea

consists in repeating the procedure of Section 3 starting with the subspace H̃
(N)
0 spanned

by b∗Ic
∗
J · I satisfying (3.3), (3.2) and I 4 J . However, the resulting space (3.7) would be

too small, there would be no solutions to the equations for Cα. More careful consideration

and further experiments show that the correct choice is the subspace Ṽ(N) of H̃
(N)
0 such

that
2N+1⋂

i=N+1

Im
(
Qi

∣∣
Ṽ(N)

)
⊂ N .

This results in a drastic reduction of the dimension of the space. The dimensions up
to N = 12 are given in the table below.

N 2 3 4 5 6 7 8 9 10 11 12
dim(H̃

(N)
0 ) 1 3 11 26 99 253 1038 2816 12041 34062 148630

dim(Ṽ(N)) 1 2 6 12 31 79 178 434 1141 2946 7888

6. Results and conjectures

We computed the OPE coefficients for σa
1σ

a
N and h1,2hN−1,N up to N = 11. Starting

from N = 7 the data becomes too large to be presented here, they are available upon
request.

With the OPE coefficients at hand we can compute the correlation functions for any
Matsubara data, as well as the corresponding matrix ωi,j or equivalently the function
ω(λ, µ). In particular, for the anti-ferromagnet at zero temperature and zero magnetic
field we have

ω(λ, µ) = −1
2
+ 2 log(2) +

∞∑
k=1

(λ− µ)2k
(
2ζ(2k + 1)(1− 2−2k)− 1

2

)
.

Let us present the numerical values for Gσσ. Up to N = 8 they are known from [11], so,
we use the normalisation of this paper Gσσ(N) → Gσσ(N)/12 to simplify the comparison.

N Gσσ(N)/12
2 -0.147715726853315103139077
3 0.0606797699564353014934941
4 -0.0502486272572352479593931
5 0.0346527769827281656556596
6 -0.0308903666476093257628751
7 0.0244467383279589065417695
8 -0.0224982227633722183770986
9 0.0189734169587321977494075

10 -0.0177751064604679461357958
11 0.0155478493216075886422179
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The last two values are already in a good agreement with the asymptotic formula of [12].
We can proceed with computations for finite temperature and other Matsubara envi-

ronments, however, the most interesting applications of our “experimental" data consists
in trying to guess general structure of the OPE coefficients. We have some incomplete
results in this direction which we expose now.

Consider the decompositions

σ1
1σ

a
N ≡

∑

I4J

Dσσ
I,J(N)b∗

Ic
∗
J · I ,(6.1)

h1hN−1 ≡
∑

I4J

Dhh
I,J(N)b∗

Ic
∗
J · I .

A first question which we would like to address is the behaviour of the coefficients as
functions of N . The experimental data show that they are polynomial in N of degrees

dσσI,J = 1
2
(|I|+ |J |) + #(I)− 1 , dhhI,J = 1

2
(|I|+ |J |) + #(I)− 4 .(6.2)

Moreover, in these polynomials not all the coefficients are independent, we find that they
are of the form

Dσσ
I,J(N) =

dσσ
I,J∑

s=lσσ
I,J

Xσσ
s,I,J

(
N − 2

s

)
, Dhh

I,J(N) =

dhhI,J∑

s=lhh
I,J

Xhh
s,I,J

(
N − 4

s

)
.(6.3)

The lower limits lσσI,J , l
hh
I,J are rather subtle. Lower bounds for them are

lσσI,J ≥ max(J)− 2 , lhhI,J ≥ max(J)− 4 .

These estimates show that the coefficients vanish if max(J) goes far from the rest of
elements of I ∪ J . However, if two elements of J become large no vanishing happens.
There are some additional simple reason for the coefficients to vanish which will be clear
from examples below. In certain cases we were even able to make general conjectures for
the coefficients. Let us present them.

We begin with the simple case of Xσσ
s,I,J (coefficients in (6.3)) for the two-fermion case

with I = {k − p} and J = {k + p}. In that case we have 3− p ≤ 3 terms in our formula.
Since the space N is empty for the zero fermion case we have for any s

∑

p

Xσσ
s,{k−p},{k+p} = 0 .(6.4)

In particular, for s = k − 2 there is only one term in this sum. Hence Xσσ
k−2,{k},{k} = 0,

this is the above mentioned additional reason for coefficients to vanish. For nontrivial
coefficients it is easy to guess from our data that

Xσσ
k,{k−p},{k+p} = 2(−1)p−1

((
2

p

)
+ 2

(
1

p

))
, Xσσ

k−1,{k−p},{k+p} = 2(−1)p−1

(
1

p

)
.

Both coefficients vanish for p > 2 in agreement with the previous explanation.
It so happens that all the two fermions contribution to Ghh(N) vanish. The next

simplest case is that of four fermions contribution. For that case we use for the sets
I = {k − p, i}, J = {k + p, j} for i + j even and I = {k − p, i}, J = {k + p + 1, j} for
i + j odd. For fixed i, j we shall vary k and p within the obvious limits. Non-vanishing
coefficients Xhh for some (k, p) correspond to boxes in a triangular array (see Tab. 1 for
i = 1, j = 1). The vertical and horizontal sizes of the array are equal to S =

[
i+j
2

]
+ 3.

Counting the rows by p = 0, · · · , S − 1, and the columns by r = 0, · · · , S − 1, then let
s = r + k − 4 for i + j even and s = k + r − 3 for i + j odd. For given i, j we shall
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simplify notations: define Xr,p(k) := Xhh
s,{k−p,1},{k+p,1} with r and s related as explained.

Sums over columns equal zero for the same reason as explained above, so, we do not write
down Xr,r(k). Notice, in particular, that X0,0(k) = 0.

We start from the simplest case i = j = 1. Non-vanishing coefficients correspond to
boxes in the table

•
•

•
• Tab. 1

So, we shall not write formulae for the boxes with bullets for the reasons which have
been explained. The coefficients grow rather fast with k, so, at the first glance there is
no hope to find a formula for them. However, looking at them attentively, we observed
that the simplest one (the second from the left in the first row) is just

X1,0(k) =
1

6
(3k−2 − 1) .

Based on this observation and the experimental data we guessed further

X2,0(k) =
5

8
· 3k−1 +

(2k2 + 4k − 45)

24
,

X3,0(k) =
5

4
· 3k−1 +

2k2 + 8k − 49

12
,

X2,1(k) = −
5

2
· (3k−2 − 1) ,

X3,1(k) = −
5

8
· 3k −

2k2 + 8k − 159

24
,

X3,2(k) =
27

4
· (3k−3 − 1)−

(k − 3)(k + 7)

6
.

For certain reason X3,2(3) = 0. This is made explicit in the last line. We shall continue
making such vanishings explicit.

Let us consider now the case i = 1, j = 2. The table is the same as for the previous
case. From experimental data we guess the formulae

X1,0(k) := −
k − 2

24
· (3k−1 − 1)−

(k − 1)(k + 2)

12
,

X2,0(k) = −
5(k − 1)

16
· 3k−1 −

2k3 + 18k2 + 23k + 21

48
,

X3,0(k) := −
5k

32
· 3k −

6k3 + 52k2 + 89k + 128

96
,

X2,1(k) =
5(k − 1)

32
· 3k +

2k3 + 38k2 + 57k + 63

96
,

X3,1(k) :=
k

32
· 3k+2 +

2k3 + 20k2 + 31k + 64

32
,

X3,2(k) = −
5

32
k · 3k +

2k3 + 4k2 + 23k − 64

96
.
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At this point one can think that the general formula consists of combinations with
polynomial coefficients of 1 and 3k. Actually, this is not the case: we were able to fix
several additional coefficients observing that 6k starts to appear.

Consider i = 2, j = 2. In this case our data allow to define only three coefficients:

X1,0(k) =
1

125
· (6k−1 − 1)−

(2k + 1)

144
· (3k−1 − 1) +

(k − 1)(45k − 37)

1800
,

X2,0(k) =
49

250
· (6k−1 − 1) +

(k2 − 19k − 41)

96
· (3k−1 − 1)

+
(k − 1)(25k2 + 210k + 179)

1200
,

X2,1(k) = −
98

375
· (6k−1 − 1) +

(6k + 13)

24
· (3k−1 − 1)−

(45k + 43)(k − 1)

300
.

Similarly for i = 1, j = 3:

X1,0(k) = −
48

625
· (6k−2 − 1) +

(7k − 11)

60
· (3k−2 − 1)−

(k − 2)(5k − 53)

750
,

X2,0(k) = −
144 · 49

625
· (6k−3 − 1)−

27(2k2 − 15k − 18)

720
· (3k−3 − 1)

+
(k − 3)(25k2 − 465k + 10054)

3000
,

X2,1(k) =
32 · 49

625
· 6k−2 − 2k · 3k−2 +

75k2 + 1105k − 964

1875
.

Finally, we were able to guess one coefficient for each i = 2, j = 3 and
i = 1, j = 4. They are respectively

X1,0(k) = −
6(k − 4)

625
· (6k−1 − 1)−

(4k2 − 9k − 8)

240
· (3k−1 − 1)

−
(k − 1)(65k2 + 91k + 96)

3000
,

X1,0(k) =
12(k − 4)

625
· (6k−1 − 1) +

k2 + 9k − 40

120
· (3k−1 − 1)

+
(k − 1)(5k2 + 47k + 132)

500
.

An important question is that of the general structure. Is it true that the next exponent
to appear will be 9k? This should be possible to answer considering the cases i+ j = 6 for
which we observe experimentally faster growth than 6k. Unfortunately, our experimental
data do not allow to guess a general formula for this case.

For four fermions contributions to Gσσ the coefficients are more complicated, we shall
not present them because we know only very few. We would mention, however, that the
structure looks similar, but 6k starts to appear from the very beginning.

7. Conclusion

We have demonstrated the power of the method to fix the OPE coefficients for the
XXX model based on the fermionic basis. Somebody with better computer skills than
ours may probably produce some more data. For example N = 12 should be reachable.

The main problem which we could not solve for the moment is finding general formulae
for the coefficients even for the four fermion contributions to Ghh. For example, the
coefficient Xr,p(k) is known for {i, j} = {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, but still
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we were unable to find a conjecture for general i, j. Probably, an independent look is
needed?
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