A Model-checking Approach to Reduce Spiking Neural Networks

Elisabetta De Maria, Daniel Gaffé, Annie Ressouche, Cédric Girard Riboulleau

To cite this version:
A Model-checking Approach to Reduce Spiking Neural Networks

Elisabetta De Maria1, Daniel Gaffé2, Cédric Girard Riboulleau3 and Annie Ressouche3

1Univ. Côte d’Azur, CNRS, I3S, UMR 7271,06900 Sophia Antipolis, France
2Univ. Côte d’Azur, CNRS, LEAT, UMR 7248, 06900 Sophia Antipolis, France
3Univ. Côte d’Azur, INRIA SAM,06902 Sophia-Antipolis, France

edemaria@i3s.unice.fr, Daniel.GAFFE@unice.fr, cedric.girard-riboulleau@inria.fr, annie.ressouche@inria.fr

Keywords: Neural Spiking Networks, Probabilistic Models, Temporal Logic, Model Checking, Network Reduction.

Abstract: In this paper we formalize Boolean Probabilistic Leaky Integrate and Fire Neural Networks as Discrete-Time Markov Chains using the language PRISM. In our models, the probability for neurons to emit spikes is driven by the difference between their membrane potential and their firing threshold. The potential value of each neuron is computed taking into account both the current input signals and the past potential value. Taking advantage of this modeling, we propose a novel algorithm which aims at reducing the number of neurons and synaptical connections of a given network. The reduction preserves the desired dynamical behavior of the network, which is formalized by means of temporal logic formulas and verified thanks to the PRISM model checker.

1 INTRODUCTION

Since a few decades, neurobiologists and bioinformatics researchers work in concert to model neural networks, aiming at understanding the interactions among neurons, and the way they participate in the different vital functions of human beings. Models become bigger and bigger, and the necessity of reducing them while preserving their expected dynamics emerges, especially in the scope of the obtention of models which are suitable for formal verification. In this paper we tackle the issue of neural network reduction.

In the literature neural network modeling is often classified into three generations [Maass, 1997, Paugam-Moisy and Bohte, 2012]. First generation models, represented by McCulloch-Pitts one [McCulloch and Pitts, 1943], deal with discrete inputs and outputs and their computational units are a set of logic gates with a threshold activation function. Second generation models, whose most known one is the multi-layer perceptron [Cybenko, 1989], exploit real valued activation functions. These networks, whose real-valued outputs represent neuron firing rates, are extensively used in the domain of artificial intelligence and are also known as artificial neural networks. Third generation networks, also called Spiking Neural Networks [Paugam-Moisy and Bohte, 2012], stand out for the relevance of time aspects. Precise spike firing times are taken into account. Furthermore, they consider not only current input spikes but also past ones. In [Izhikevich, 2004], Spiking Neural Networks are classified with respect to their biophysical plausibility, that is, to the number of behaviors (i.e., typical responses to an input pattern) they can display. Among these models, the Hodgkin-Huxley model [Hodgkin and Huxley, 1952] is the one able to reproduce most behaviors. However, its simulation process is really expensive even for a few neurons.

In this work we choose to rely on the Leaky Integrate and Fire (LI&F) model [Lapicque, 1907], a computationally efficient approximation of a single-compartment model. Our LI&F model is augmented with probabilities. More precisely, the probability for neurons to emit spikes is driven by the difference between their membrane potential and their firing threshold. Probabilistic neurons are encoded as Discrete-Time Markov Chains thanks to the modeling language at PRISM user’s disposition. PRISM [Kwiatkowska et al., 2011] is a tool that allows not only to model different probabilistic systems (with discrete or continuous time, with or without nondeterminism), but also to specify their expected behavior thanks to the use of temporal logics, a formalism for describing the dynamical evolution of systems. Furthermore, PRISM provides a model checker [Clarke et al., 1999], which is a tool for automatically verifying whether a given system satisfies or not a property.
expressed in temporal logic. In case the property does not hold in the system, the user can have access to a counter-example, that is, an execution trace falsifying the property at issue, which often helps in finding modifications in the model for the property to be satisfied. In order to apply model-checking techniques efficiently, the model to handle should be as small as possible.

Taking advantage of this modeling and verification framework, we introduce a novel algorithm which aims at reducing the number of neurons and synaptical connections of a given neural network. The proposed reduction preserves the desired dynamical behavior of the network, which is formalized by means of temporal logic formulas and verified thanks to the PRISM model checker. More precisely, a neuron is removed if its suppression has a low impact on the probability for a given temporal logic formula to hold. Observe that, other than their utility in lightening models, algorithms for neural network reduction have a forthright application in the medical domain. In fact, they can help in detecting weakly active (or inactive) zones of the human brain.

The issue of reducing biological networks is not new in systems biology. Emblematic examples can be found in [Naldi et al., 2011], where the authors propose a methodology to reduce regulatory networks preserving some properties of the original models, such as stable states, in [Gay et al., 2010], where the authors study model reductions as graph matching problems, or in [Paulevé, 2016], whose author considers finite-state machines and proposes a technique to remove some transitions while preserving all the (minimal) traces satisfying a given reachability property. As far as neural networks are concerned, to the best of our knowledge the core of the existing reduction approaches only deals with second generation networks. Several methods to train a network that is larger than necessary and then remove the superfluous parts, known as pruning techniques, are explained in [Reed, 1993] . Finally, in [Menke and Martinez, 2009] the authors introduce an oracle learning methodology, which consists in using a larger model as an oracle to train a smaller model in order to obtain a smaller acceptable model. With oracle learning, the smaller model is created initially and trained using the larger model, whereas with pruning, connections are removed from the larger model until the desired size is reached.

The paper is organized as follows. In Section 2 we introduce a probabilistic version of the Leak Integrate and Fire Model. Section 3 is devoted to the PRISM modeling language and the temporal logic PCTL (Probabilistic Computation Tree Logic). In Section 4 we describe our modeling of neural networks as Discrete-Time Markov Chains in PRISM. Finally, in Section 5 we introduce the novel algorithm for the reduction of neuronal networks, and in Section 6 we discuss some future research directions.

2 PROBABILISTIC LEAKY INTEGRATE AND FIRE MODEL

We model neuron networks as Boolean Spiking Networks, where the electrical properties of neurons are represented through the Leaky Integrate and Fire (LI&F) model. In this modeling framework, neural networks are seen as directed graphs whose nodes stand for neurons and whose edges stand for synaptical connections. Edges are decorated with weights: positive (resp. negative) weights represent activations (resp. inhibitions). The dynamics of each neuron is characterized through its (membrane) potential value, which represents the difference of electrical potential across the cell membrane. At each time unit, the potential value is computed taking into account present input spikes and the previous decayed potential value. In order to weaken the past potential value, it is multiplied by a leak factor. In our probabilistic LI&F model, the probability for each neuron to emit an action potential, or spike, is governed by the difference between the potential value and a given firing threshold. For positive (resp. negative) values of this difference, the more its absolute value is big, the more (resp. the less) is the probability to emit a spike. After each spike emission, the neuron potential is reset to zero. In the literature, other ways exist to incorporate probabilities in LI&F models, such as the Noisy Integrate and Fire models [Di Maio et al., 2004, Fourcaud and Brunel, 2002], where a noise is added to the computation of the potential value.

More formally, we give the following definitions for probabilistic LI&F networks.

Definition 1 (Boolean Probabilistic Spiking Integrate and Fire Neural Network). A Boolean Probabilistic Integrate and Fire Neural Network is a tuple (V, E, w), where:

- V are Boolean probabilistic spiking integrate and fire neurons,
- $E \subseteq V \times V$ are synapses,
- $w: E \rightarrow \mathbb{Q} \cap [-1, 1]$ is the synapse weight function associating to each synapse (u, v) a weight w_{uv}.

We distinguish three disjoint sets of neurons: V_i (input neurons), V_{int} (intermediary neurons), and V_o (output neurons), with $V = V_i \cup V_{int} \cup V_o$.

\[V = V_i \cup V_{int} \cup V_o. \]
Definition 2 (Boolean Probabilistic Spiking Integrate and Fire Neuron). A Boolean Probabilistic Spiking Integrate and Fire Neuron \(v \) is a tuple \(\langle \tau, r, p, y \rangle \), where:

- \(\tau \in \mathbb{N} \) is the firing threshold,
- \(r \in \mathbb{Q} \cap [0, 1] \) is the leak factor,
- \(p : \mathbb{N} \rightarrow \mathbb{Q}_0^+ \) is the [membrane] potential function defined as
 \[
 p(t) = \begin{cases}
 1 & \text{if } p(t) - \tau \geq l_k \\
 p_{2k} & \text{if } l_{k-1} \leq p(t) - \tau < l_k \\
 \vdots & \\
 p_{k+1} & \text{if } 0 \leq p(t) - \tau < l_1 \\
 p_k & \text{if } -l_1 \leq p(t) - \tau < 0 \\
 \vdots & \\
 p_1 & \text{if } -l_k \leq p(t) - \tau < -l_{k-1} \\
 0 & \text{if } p(t) - \tau < -l_k
 \end{cases}
\]

where \(p(0) = 0 \), \(m \) is the number of inputs of the neuron \(v \), \(w_i \) is the weight of the input synapse connecting the \(i^{th} \) input neuron of \(v \) to the neuron \(v \), and \(x_i(t) \in \{0, 1\} \) is the signal received at the time \(t \) by the neuron \(v \) through its \(i^{th} \) input synapse (observe that, after the potential overcomes its threshold, it is reset to 0),

- \(y : \mathbb{N} \rightarrow \{0, 1\} \) is the output function of the neuron.

Supposing to discretize \(p(t) - \tau \) in \(k + 1 \) positive intervals and \(k + 1 \) negative intervals, the probability for the neuron \(v \) to emit a spike can be described as follows:

\[
P(y(t) = 1) = \begin{cases}
1 & \text{if } p(t) - \tau \geq l_k \\
p_{2k} & \text{if } l_{k-1} \leq p(t) - \tau < l_k \\
\vdots & \\
p_{k+1} & \text{if } 0 \leq p(t) - \tau < l_1 \\
p_k & \text{if } -l_1 \leq p(t) - \tau < 0 \\
\vdots & \\
p_1 & \text{if } -l_k \leq p(t) - \tau < -l_{k-1} \\
0 & \text{if } p(t) - \tau < -l_k
\end{cases}
\]

with \(\{l_1, \ldots, l_k\} \subseteq \mathbb{N}^+ \) such that \(l_i < l_{i+1} \) \(\forall i \in \{1, \ldots, k-1\} \) and \(\{p_1, p_2, \ldots, p_{2k}\} \subseteq [0, 1] \cap \mathbb{Q} \) such that \(p_i < p_{i+1} \) \(\forall i \in \{1, \ldots, 2k-1\} \).

In our implementation, the probability values are chosen in order to conform to a sigmoidal function.

3 THE PROBABILISTIC MODEL CHECKER PRISM

The probabilistic model checker PRISM [Kwiatkowska et al., 2011] is a tool for formal modeling and analysis of systems with a random or probabilistic behavior. It supports several types of probabilistic models: discrete ones, namely discrete-time Markov chains, Markov decision processes, and probabilistic automata, and continuous ones, namely continuous-time Markov chains, probabilistic timed automata, and priced probabilistic timed automata. In this work we rely on discrete-time Markov chains, which are transition systems augmented with probabilities. Their set of states represent the possible configurations of the system being modeled, and transitions between states model the evolution of the system, which occurs in discrete-time steps. Probabilities of making transitions between states are given by discrete probability distributions. Markov chains are memoryless, that is, their current state contains all the information needed to compute future states (Markov property). More precisely, the following definition can be given:

Definition 3 (Discrete-Time Markov Chain). A Discrete-Time Markov Chain (DTMC) over a set of atomic propositions \(AP \) is a tuple \((S, S_{init}, P, L) \) where:

- \(S \) is a set of states (state space)
- \(S_{init} \subseteq S \) is the set of initial states
- \(P : S \times S \rightarrow [0, 1] \) is the transition probability matrix, where \(\sum_{s' \in S} P(s, s') = 1 \) for all \(s \in S \)
- \(L : S \rightarrow 2^{AP} \) is a function labeling states with atomic propositions over \(AP \).

An example of DTMC representing a simplified neuron is graphically depicted in Figure 1, where the neuron can be either active or inactive.

![Figure 1: Example of a two-state DTMC representing a simplified neuron.](image)

3.1 The PRISM Modeling Language

PRISM provides a state-based modeling language inspired from the reactive modules formalism of [Alur and Henzinger, 1999]. A model is composed by a set of modules which can interact with each other. At each moment, the state of each module is given by the values of its local variables, and the global state of the whole model is determined by the local state of all its modules. The dynamics of each module is described by a set of commands of the form:

\[
\text{guard} \rightarrow \text{prob}_1 : \text{update}_1 + \ldots + \text{prob}_n : \text{update}_n;
\]

where guard is a predicate over all the variables of the model, indicating the condition to be verified in order
to execute the command, and each \textit{update} indicates a possible transitions of the model, to be achieved by giving new values to the variables of the module. Each \textit{update} is assigned to a probability and, for each command, the sum of probabilities must be 1. The PRISM code for the DTMC of Figure 1 is given in Figure 2. In such a simple module, the square brackets at the beginning of each command are empty but it is possible to add labels representing \textit{actions}. These actions can be used to force two or more modules to make transitions simultaneously. In this work, we take advantage of this feature to synchronize neurons in networks. Finally, PRISM models can be extended to automatically validate DTMCs over PCTL properties.

\begin{verbatim}
module simplified_neuron
 // Declaration of the integer variables y
 y: [0..1] init 0;
 // Commands
 [] y=0 -> 0.5: (y'=0) + 0.5: (y'=1);
 [] y=1 -> 1: (y'=0);
endmodule
\end{verbatim}

Figure 2: PRISM code for the DTMC of Figure 1. The only variable \(y \), representing the state of the neuron, ranges over \([0..1]\). Its initial value is 0. When the guard is \(y = 0 \), the updates \((y' = 0) \) and \((y' = 1) \) and their associated probabilities state that the value of \(y \) remains at 0 with probability 0.5 and passes to 1 with probability 0.5. When \(y = 1 \), the variable changes its value to 0 with a probability of 1.

with \textit{rewards} [Kwiatkowska et al., 2007], which allow to associate real values to states or transitions of models. As an example, in Figure 3 we show how to augment the simplified neuron code of Figure 2 in order to add a reward each time the neuron is active, and thus to count the number of spike emissions.

\begin{verbatim}
rewards "y"
 y=1: 1;
endrewards
\end{verbatim}

Figure 3: Addition of a reward to the PRISM code for a simplified neuron. Each time \(y = 1 \) (spike emission), the reward increases of one time unit.

3.2 Probabilistic Temporal Logic

PRISM allows to specify the dynamics of DTMCs thanks to the temporal logic PCTL (Probabilistic Computation Tree Logic) introduced in [Hansson and Jonsson, 1994], which extends the logic CTL (Computation Tree Logic) [Clarke et al., 1986] with time and probabilities. The following state quantifiers are available in PCTL: \(X \) (next time), which specifies that a property holds at the next state of a given path, \(F \) (sometimes in the future), which requires a property to hold at some state on the path, \(G \) (always in the future), which imposes that a property is true at every state on the path, and \(U \) (until), which holds if there is a state on the path where the second of its argument properties holds and, at every preceding state on the path, the first of its two argument properties holds. Note that the classical path quantifiers \(A \) (for all) and \(E \) (exists) of CTL are replaced by probabilistic properties. Thus, instead of saying that some property holds for all paths or for some paths, we can express that a property holds for a certain fraction of the paths [Hansson and Jonsson, 1994].

The most important operator in PCTL is \(P \), which allows to reason about the probability of event occurrences. The property \(P \text{ bound } [\text{prop}] \) is true in a state \(s \) of a model if the probability that the property \(\text{prop} \) is satisfied by the paths from state \(s \) satisfies the bound \(\text{bound} \). As an example, the PCTL property \(P = 0.5 \{ X \{ y = 0 \} \} \) holds in a state if the probability that \(y = 1 \) is true in the next state equals 0.5. All the state quantifiers given above, with the exception of \(X \), have bounded variants, where a time bound is imposed on the property. For example, the property \(P > 0.9 \{ F<=10 y=1 \} \) is true in a state if the probability of \(y \) being equal to 1 within 10 time units is greater than 0.9. Furthermore, in order to compute the actual probability that some behavior of a model is displayed, the \(P \) operator can take the form \(P=? \{ \text{prop} \} \), which evaluates to a numerical rather than to a Boolean value. As an example, the property \(P =? \{ G \{ y = 0 \} \} \) expresses the probability that \(y \) is always equal to 0.

PRISM also allows to formalize properties which relate to the expected values of rewards. This is possible thanks to the \(R \) operator, which can be used in the following two forms: \(R \text{ bound } [\text{rewardprop}] \), which is true in a state of a model if the expected reward associated with \(\text{rewardprop} \) when starting from that state meets the bound, and \(R=? \{ \text{rewardprop} \} \), which returns the actual expected reward value. Some specific operators are introduced in PRISM in order to deal with rewards. In the rest of the paper, we mainly exploit \(C \) (cumulative-reward). The property \(C<=t \) corresponds to the reward cumulated along a path until \(t \) time units have elapsed. As an example, consider the reward \(y \) of Figure 3. The property \(R\{ y\} =? \{ C <= 100 \} \) returns the expected value of the reward \(y \) within 100 time units. PRISM provides model-checking algorithms [Clarke et al., 1999] to automatically validate DTMCs over PCTL properties and reward-based ones. The available algorithms are able to compute the actual probability that some behavior of a model is displayed, when required.
4 NEURONAL NETWORKS IN PRISM

This section is devoted to the modeling of Boolean Probabilistic LI&F neural networks as DTMCs using the PRISM language. As a first step, we introduce an input generator module in order to generate input sequences on the alphabet \{0, 1\} for input neurons. Such a module deals with one only Boolean variable whose value is 1 (resp. 0) in case of spike (resp. no spike) emission. We provide several instantiations of such a module to be able to generate different kinds of input sequences: persistent ones (containing only 1), oscillatory ones, and random ones.

We then define a neuron module to encode LI&F neurons. The state of each neuron is characterized by two variables: a first Boolean variable denoting the spike emission, and a second integer\(^1\) variable representing the potential value, computed as a function of the current inputs and the previous potential value, as shown in Definition 2. The difference between the potential value and the firing threshold is discretized into \(k + 1\) positive intervals and \(k + 1\) negative intervals and a PRISM command is associated to each one of these intervals: if the neuron is inactive and the difference between the potential and the threshold meets the guard, the neuron is activated with a certain probability \(p\) (a bigger difference gives a higher probability). The neuron remains inactive with a probability equal to \(1 - p\). The aforementioned commands share the same label \((\cdot \cdot)\). To complete the modeling of a single neuron, we add a command acting when the neuron is active: with a probability of 1 it resets the potential value and makes the neuron inactive. Such a command is connotated by a new different label \((\text{reset})\), that turns out to be useful to synchronize the output of neurons with the input of the following ones. Thanks to a module renaming feature at PRISM user’s disposition, neurons with different parameters can be easily obtained starting from the standard neuron module.

We then model the synaptic connections between the neurons of the network. In order to avoid a neuron to be reset before its successor takes its activation into account, we introduce a transfer module consisting of one only variable ranging over \{0, 1\} and being initialized at 0. Thanks to synchronization labels, at each reset of the first neuron this variable passes to 1 first, and then goes back to 0, synchronizing with the second neuron (label \(\cdot\cdot\)), which takes the received signal into account to compute its potential value.

\(^1\)We exploit integer rather than rational numbers in order to have efficient model-checking performances

The PRISM code for the neuron and the transfer modules can be found in [Girard Riboulleau, 2017], where the PRISM model has been validated against several PCTL properties.

5 MODEL-CHECKING BASED REDUCTION ALGORITHM

In this section we introduce a novel algorithm for the reduction of Boolean Probabilistic LI&F networks. The algorithm supposes the network to be implemented as a DTMC in PRISM [Girard Riboulleau, 2017] and makes several calls to the PRISM model checker, in order to retrieve the probability relative to the satisfaction of some PCTL formulas and the value of some rewards.

As a first step, the algorithm aims at identifying, and thus removing, the wall neurons, that is, the neurons that are not able emit, even if they receive a persistent sequence of spikes as input. More formally, a neuron can be characterized as a wall one if its probability to be always quiescent (inactive) is 1:

\[P=1 \ \text{[}G (y=0)\} \].

When the algorithm detects a wall neuron, it removes not only the neuron but also its descendants whose only incoming synaptical connection comes, directly or indirectly \(^2\), from this neuron, and its ancestors whose only outgoing edge enters, directly or indirectly, the neuron.

As a second step, the algorithm aims at testing whether the suppression of the remaining neurons preserves or not the dynamics of the network. The removal of a neuron (and its associated ancestors and descendants) is authorized if the following two quantities are kept (modulo a certain error):

Quantitative criterion. The reward computing the number of emitted spikes (within 100 time units) of each output neuron.

Qualitative criterion. The probability for a given PCTL property (concerning the output neurons) to hold.

The number of spikes emitted by a neuron within 100 time units can be computed thanks to the following reward-based PRISM property:

\[R\{y\star\} =?= [C <= 100] \].

An example of key property concerning the qualitative behavior of a neuron is the following one, expressing an oscillating trend: \[P=? \ [G((y=1 \Rightarrow (y=1 U y=0)) \& (y=0 \Rightarrow (y=0 U y=1)))\}]. Such a formula requires every spike emission to be followed by a quiescent state (not necessarily immediately) and vice versa.

\(^2\)By one only edge or a path
Formulas comparing the behaviors of several neurons can be written as well. Observe that the respect of both quantitative and qualitative criteria is needed for a neuron removal. In fact, the output neurons of two different networks could exhibit the same spike rate but display a completely different behavior. On the other hand, their could exhibit the same qualitative behavior (e.g., an oscillatory trend), but have quite different spike rates.

The pseudo-code for the proposed reduction algorithm is given in Algorithm 1. It takes as input a Boolean Probabilistic LI&F network $G = (V, E, w)$ as given in Definition 1, a PCTL property Prop concerning the dynamical behavior of the output neurons of the network, and an allowed error value ε. Only intermediary neurons are affected by the reduction process, that is, input and output neurons cannot be removed. Intermediary neurons are first visited following a depth first search (DFS) in order to remove wall neurons (and their associated ancestors and descendants). We opt for a depth first visit instead of a breath first visit to avoid expensive backtracking. Furthermore, DFS is better suited to our approach because it allows to quickly take into account all the descendants of a node and cut them if necessary.

The procedure in charge to remove a neuron (and its associated ancestors and descendants) is REMOVAL (see Algorithm 2). Another depth first traversal of the (remaining) intermediary neurons is then performed to identify (and thus remove thanks to the REMOVAL procedure) neurons whose removal has a low influence (according to ε) on the probability for Prop to be satisfied and on the rate spike. It is possible to see that, for each traversal, each edge is visited at most twice, once forward and once backward.

An example of application of the algorithm to a neural network composed of eight neurons and nine edges is graphically depicted in Figure 4. The reduction process leads to a reduced network consisting of four neurons and three edges.

In Table 1 we consider several neural networks composed of four neurons (with only one input and output neuron) and their corresponding reduced network, consisting of three neurons. For each network, we give the spike rate of the output neuron, and the number of states and transitions of the corresponding PRISM transition system. For an average error lower than 0.65 in the spike rate, we have an average reduction of the state number of a factor 19.6 and an average reduction of the transition number of a factor 19.64 when passing from the complete to the reduced network.

Algorithm 1 LI&F REDUCTION (G, Prop, ε)

1. We distinguish input, intermediary, and output neurons
2. Let $V = V_i \cup V_{int} \cup V_o$
3. for all $v_i \in V_{int}$ in a DFS visit do
4. Set to 1 all the input signals of v_i
5. Call to the PRISM model checker
6. if $P = 1[G(y_i = 0)]$ $\forall y_i$ is the output of v_i then
7. $\text{REMOVAL}(v_i)$ $\forall V_{int}$ and E are modified by REMOVAL
8. Set to 1 all the input signals of the neurons of V_i
9. for all $v_o \in V_o$ do
10. Compute $r_o = \text{spike rate of } v_o$ thanks to PRISM rewards
11. Compute $p = \text{Prob}({\text{Prop} \text{ is TRUE}})$ thanks to PRISM
12. for all $v_i \in V_{int}$ do
13. Let $V' = V \setminus \{v_i\}$, $E' = E \setminus \{(v_i, v_j) \cup (v_k, v_j)\}$
14. s.t. $v_j, v_k \in V$
15. for all $v_o \in V_o$ do
16. Compute $r_o' = \text{spike rate of } v_o$ in G'
17. thanks to PRISM rewards
18. Compute $p' = \text{Prob}({\text{Prop} \text{ is TRUE}})$ in G'
19. then
20. $\text{REMOVAL}(v_i)$

<table>
<thead>
<tr>
<th>Complete network (4 neurons)</th>
<th>Reduced network (3 neurons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spikes states transitions</td>
<td>spikes states transitions</td>
</tr>
<tr>
<td>6.75 252820 565068</td>
<td>6.72 16816 37510</td>
</tr>
<tr>
<td>7.93 148480 519549</td>
<td>7.92 10255 22029</td>
</tr>
<tr>
<td>6.11 291002 455121</td>
<td>6.07 19803 44559</td>
</tr>
<tr>
<td>5.55 280719 608641</td>
<td>5.94 12062 26109</td>
</tr>
<tr>
<td>6.75 225169 300245</td>
<td>6.72 15055 31254</td>
</tr>
<tr>
<td>5.86 265683 591546</td>
<td>5.48 19971 43542</td>
</tr>
<tr>
<td>8.75 149641 525890</td>
<td>8.65 9418 20466</td>
</tr>
<tr>
<td>7.39 193897 425447</td>
<td>7.37 12851 28341</td>
</tr>
<tr>
<td>8.16 961701 2142739</td>
<td>8.16 21829 48547</td>
</tr>
<tr>
<td>5.84 60422 129383</td>
<td>5.84 7239 15536</td>
</tr>
<tr>
<td>9.50 196431 427191</td>
<td>9.50 12768 27762</td>
</tr>
<tr>
<td>10.26 333952 715719</td>
<td>10.26 10841 23101</td>
</tr>
<tr>
<td>8.13 192456 424269</td>
<td>8.13 12634 28909</td>
</tr>
<tr>
<td>7.77 273260 602285</td>
<td>7.72 13946 30657</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>States</th>
<th>Transitions</th>
<th>States</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.72</td>
<td>16816</td>
<td>37510</td>
<td></td>
</tr>
<tr>
<td>7.92</td>
<td>10255</td>
<td>22029</td>
<td></td>
</tr>
<tr>
<td>6.07</td>
<td>19803</td>
<td>44559</td>
<td></td>
</tr>
<tr>
<td>5.94</td>
<td>12062</td>
<td>26109</td>
<td></td>
</tr>
<tr>
<td>6.72</td>
<td>15055</td>
<td>31254</td>
<td></td>
</tr>
<tr>
<td>5.48</td>
<td>19971</td>
<td>43542</td>
<td></td>
</tr>
<tr>
<td>8.65</td>
<td>9418</td>
<td>20466</td>
<td></td>
</tr>
<tr>
<td>7.37</td>
<td>12851</td>
<td>28341</td>
<td></td>
</tr>
<tr>
<td>8.16</td>
<td>21829</td>
<td>48547</td>
<td></td>
</tr>
<tr>
<td>5.84</td>
<td>7239</td>
<td>15536</td>
<td></td>
</tr>
<tr>
<td>9.50</td>
<td>12768</td>
<td>27762</td>
<td></td>
</tr>
<tr>
<td>10.26</td>
<td>10841</td>
<td>23101</td>
<td></td>
</tr>
<tr>
<td>8.13</td>
<td>12634</td>
<td>28909</td>
<td></td>
</tr>
<tr>
<td>7.77</td>
<td>13946</td>
<td>30657</td>
<td></td>
</tr>
</tbody>
</table>
Algorithm 2 REMOVAL(v_i)

1: $$ \text{If it suppresses a neuron } v_i \text{ and all the neurons only having } v_i \text{ as ancestor or descendant}$
2: $V_{int} = V_{int} \setminus \{v_i\}$
3: $E = E \setminus \{(v_i, v_j) \cup (v_k, v_i)\}$ s.t. $v_j, v_k \in V$
4: $G_{work} = (V_{int}, E)$
5: for all v_j descendant of v_i in a DFS visit of G do
6: $\text{If } v_j \text{ has no incoming edges in } G_{work}, \text{ we remove } v_j \text{ and its exiting edges}$
7: if $\{(v_j, v_i)\} = \emptyset$ then
8: $V_{int} = V_{int} \setminus \{v_j\}$
9: $E = E \setminus \{(v_j, v_h)\}$ s.t. $v_h \in V$
10: for all v_k ancestors of v_j in a DFS visit of G do
11: $\text{If } v_k \text{ has no outgoing edges in } G_{work}, \text{ we remove } v_k \text{ and its incoming edges}$
12: if $\{(v_k, v_i)\} = \emptyset$ then
13: $V_{int} = V_{int} \setminus \{v_k\}$
14: $E = E \setminus \{(v_i, v_k)\}$ s.t. $v_l \in V$
15: $G = G_{work}$

6 CONCLUSIONS

In this paper we have formalized Boolean Probabilistic Leaky Integrate and Fire Neural Networks as Discrete-Time Markov Chains using the language PRISM. Taking advantage of this modeling, we have proposed a novel algorithm which aims at reducing the number of neurons and synaptical connections of a given network. The reduction preserves the desired dynamical behavior of the output neurons of the network, which is formalized by means of temporal logic formulas and verified thanks to the PRISM model checker.

This work is the starting point for several future research directions. From a modeling point of view, the use of labels entails a break time during which the different modules communicate but all the other functions are stopped. Namely, in our model the reset label causes a break time after each spike emission. A big number of spikes leads thus to a big number of break times and we intend to minimize these times. We also plan to model the refractory time of neurons, a lapse of time following the spike emission during which the neuron is not able to emit (even if it continues to receive signals). At this aim, we may need to take advantage of Probabilistic Timed Automata, which are at PRISM user’s disposition.

Concerning the reduction algorithm, for the moment we show our approach to be efficient for small networks, i.e., the removal of only one neuron drastically reduces the size of the transition system. As for future work, we intend to scale our methodology.

Figure 4: Application of the reduction algorithm on a neuronal network of eight neurons. The only input neuron is v_i and the only output neuron is v_o. The other neurons are numbered according to a DFS order. The neuron 1 is identified as a wall one. The first reduction step (4(b)) consists in removing the neuron 1 and, consequently, the neuron 2, because its only ingoing edge comes from the neuron 1. No other wall neuron is detected. The second reduction (4(c)) is due to the fact that the removal of neuron 4 influences neither the satisfaction of Prop nor the spike emission rate of v_o. The neuron 3 is also removed because its only output edge enters the neuron 4. The final reduced network is given in 4(d).

The actual version of the reduction algorithm finds a reduction which conforms to the expected behavior of the network. We find one solution among several possible ones, but this solution is not necessary the optimal one, that is, it does not necessarily minimize the difference of behavior between the complete and the reduced network. In order to help the research of optimal solutions, we intend to perform a sensitivity analysis of our networks, aiming at identifying the parameters playing a most important role in the verification of some given temporal properties.
ACKNOWLEDGEMENTS

We thank Alexandre Muzy for fruitful discussions
on neuron behaviors.

REFERENCES