DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild

Abstract : In this paper we propose to learn a mapping from image pixels into a dense template grid through a fully convolu-tional network. We formulate this task as a regression problem and train our network by leveraging upon manually annotated facial landmarks " in-the-wild ". We use such landmarks to establish a dense correspondence field between a three-dimensional object template and the input image, which then serves as the ground-truth for training our regression system. We show that we can combine ideas from semantic segmentation with regression networks, yielding a highly-accurate 'quantized regression' architecture. Our system, called DenseReg, allows us to estimate dense image-to-template correspondences in a fully convo-lutional manner. As such our network can provide useful correspondence information as a stand-alone system, while when used as an initialization for Statistical Deformable Models we obtain landmark localization results that largely outperform the current state-of-the-art on the challenging 300W benchmark. We thoroughly evaluate our method on a host of facial analysis tasks, and demonstrate its use for other correspondence estimation tasks, such as the human body and the human ear. DenseReg code is made available at http://alpguler.com/DenseReg.html along with supplementary materials.
Type de document :
Communication dans un congrès
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017, Honolulu, United States. pp.6799-6808, 2017
Liste complète des métadonnées

Littérature citée [52 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01637896
Contributeur : Riza Alp Guler <>
Soumis le : samedi 18 novembre 2017 - 14:44:23
Dernière modification le : jeudi 7 février 2019 - 17:29:12
Document(s) archivé(s) le : lundi 19 février 2018 - 12:38:35

Fichier

DenseReg_CameraReady.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01637896, version 1
  • ARXIV : 1612.01202

Citation

Riza Alp Guler, George Trigeorgis, Epameinondas Antonakos, Patrick Snape, Stefanos Zafeiriou, et al.. DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017, Honolulu, United States. pp.6799-6808, 2017. 〈hal-01637896〉

Partager

Métriques

Consultations de la notice

332

Téléchargements de fichiers

115