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Abstract—Question answering (QA) is one of the biggest chal-
lenges for making sense out of data. Web of Data has attracted
the attention of question answering community and recently,
a number of schema-aware question answering systems have
been introduced. While research achievements are individually
significant; yet, integrating different approaches is not possible
due to lack of a systematic approach for conceptually describing
QA systems.

In this paper, we present a message-driven vocabulary built
upon an abstract level. This vocabulary is concluded from
conceptual views of different question answering systems. In this
way, we are enabling researchers and industry to implement
message-driven QA systems and to reuse and extend different
approaches without the interoperability and extension concerns.

Index Terms—Semantic Web, Software Reusability, Question
Answering, Semantic Search, Ontologies, Annotation Model

I. INTRODUCTION

Web of Data is enormously growing (currently more than
84 billion triples1) as well as enterprise data. Still, taking ad-
vantage of this rapidly growing data is challenging. Therefore,
automatic as well as intelligent approaches are needed to (1)
make sense of the data, (2) make the data accessible, and
(3) provide easy-to-use interfaces for querying data. Question
answering (QA) is multi discipline, and it bridges artificial
intelligence, information retrieval, and knowledge base. Re-
cently, the question answering community paid considerable
attention for adapting and improving QA systems by taking
Web of Data into account. As the result of these attempts, there
is an emerging generation of QA systems, which are applied
on Web of Data (e.g., [1], [13], [27], [29]).

It is important to note that most of the available QA
systems are more focused on implementation details and have
limited reusability and extensibility in other QA approaches.
Hence, considering the challenges of QA systems there is a
need of a generalized approach for architecture or ontology
of a QA system and semantic search to bring all state-
of-the advancement of QA under a single umbrella. While
many of these system achieved significant performance for
special use cases, a shortage was observed in all of them.
We figured out that the existing QA systems suffer from the
following drawbacks: (1) potential of reusing its components

1observed on 14 October 2015 at http://stats.lod2.eu/

is very weak, (2) extension of the components is problematic,
and (3) interoperability between the employed components
are not systematically defined. Therefore, there is a need
for a descriptive approach that define a conceptual view of
QA systems. This approach must cover all needs of current
QA systems and be abstracted from implementation details.
Moreover it must be open such that it can be used in future
QA systems. This will allow interoperability, extensibility, and
reusability of QA approaches and components of QA systems.

In this paper, we introduce a generalized ontology which
covers the need for interoperability of QA systems on a
conceptual level. We initiate a step towards a message-driven
interoperable approach that will be used to build systems
which follow a philosophy of being actually open for exten-
sions. Our approach collects and generalizes the necessitated
requirements from the state-of-the-art of QA systems. We
model the conceptual view of QA systems using and extending
the Web Annotation Data Model. This model empowers us for
designing a message-driven approach for QA systems. To the
best of our knowledge, in this way we will establish for the
first time a conceptual view of QA systems.

The rest of this paper is structured as follows. Section II de-
scribes the diverse field of QA systems and its classification. It
also covers current approaches for establishing an abstraction
of QA systems and their limitations. Section III introduces
dimensions of QA based on which many requirements to build
open QA systems can be identified. Section IV describes the
existing problem and our proposed idea of an implementation
independent compatibility level in detail. Section V details the
requirement of message-driven QA systems which are derived
from the state-of-the-art QA approaches. Section VI illustrates
our proposed ontology with a case study to address all the
requirements. Conclusion and future work are presented in
Section VII.

II. RELATED WORK

In the recent past, different systems for QA have been
developed. This section provides a brief overview on various
QA system, their scope of applicability, and their different
components.

The QA systems can be distinguished based on scope of
applicability and approaches. Some of them consider a specific

http://stats.lod2.eu/
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domain to answer a query, they are known as closed domain
QA systems. These QA systems are limited to a specific
Knowledge Base (KB), for example medicine [1].

However, when scope is limited to an explicit domain
or ontology, there are less chances of ambiguity and high
accuracy of answers. It is also difficult and costly to extend
closed domain systems to a new domain or reusing it in
implementing a new system.

To overcome the limitations of closed domain QA systems,
researchers have shifted their focus to open domain QA
systems.

FreeBase [3], DBpedia [2], and Google’s knowledge graph
[25] are few examples of open domain Knowledge Bases.
Through KBs like Google’s knowledge graph are not pub-
lically available. Open domain QA systems use publically
available semantic information to answer questions.

Other type of QA systems described in [27] extract answers
from an unstructured corpus (e.g., news articles), or other
various form of documents available over Web. They are
known as corpus based QA systems. QuASE [27] is one of
such corpus based QA system that mines answers directly from
the Web.

In 2011, a yearly benchmark series QALD was introduced.
In the latest advancements, QALD now focus on hybrid ap-
proaches using information from both structured and unstruc-
tured data. Many open domain QA systems now use QALD
for the evaluation. PowerAqua [13] is an ontology based QA
system which answers the question using the information that
can be distributed across heterogeneous semantic resources.
FREyA [6] is another QA system that increases system’s QA
precision by learning user’s query formulation preferences.
It also focuses to resolve ambiguity while using natural
language interfaces. QAKiS [5] is an agnostic QA system that
matches fragments of the question with binary relations of the
triple store to address the problem of question interpretation
as a relation-based match. SINA [23] is a semantic search
engine which obtains either keyword-based query or natural
language query as input. It uses a Hidden Markov model for
disambiguation of mapped resources and then applies forward
chaining for generating formal queries. It formulates the graph
pattern templates using the knowledge base. TBSL [29] is a
template based QA system over linked data that matches a
question against a specific SPARQL query. It combines natural
Language Processing capabilities (NLP) with linked data to
produce good results w.r.t. QALD benchmark.

The field of QA is so vast that the list of different QA
systems can go long. Besides domain specific question an-
swering, QA systems can be further classified on type of
question (input), sources (structured data or unstructured data),
and based on traditional intrinsic challenges posted by search
environment (scalability, heterogeneity, openness, etc.) [15].
For a QA system, an input type can be anything ranging
from keyword, factoids, temporal and spatial information
(e.g., the geo-location of the user), audio, video, image etc.
Many systems have been evolved for a particular input type.
For example, DeepQA of IBM Watson [19], Swoogle [7],
and Sindice [20] focus on keyword-based search whereas
systems described in [10] integrates QA and automated speech

recognition (ASR). Similarly, there are several examples of
QA based on different sources used to generate an answer
like Natural Language Interfaces to Data Bases (NLIDB) and
QA over free text.

Earlier in this section, we have observed that the field of QA
is growing and new advancements are made in each of existing
approaches over the short period of time. However, there is a
need of an open framework for generating QA system that
integrates state-of-the-art of different approaches. Now we
discuss some approaches for establishing an abstraction of QA
systems and semantic search.

Research presented in [28] describes a search ontology to
provide abstraction of users question. User can create complex
queries using this ontology without knowing the syntax of the
query. This approach provides a way to specify and reuse
the search queries but the approach is limited in defining
properties represented within the ontology. Using search on-
tology, user can not define the dataset that should be used
and other specific properties. The QALL-ME framework [8] is
an attempt to provide a reusable architecture for multilingual,
context aware QA framework. It is an open source software
package. The QALL-ME framework use an ontology to model
structured data of a targeted domain. This framework is
restricted to closed domain QA, and finds limitation to get
extended for heterogeneous data sources and open domain QA
systems.

The openQA [17] framework is an architecture that is
dedicated to implement a QA pipeline. Additionally, here
the implementation of a QA pipeline is limited to Java and
cannot work agnostic to the programming language. For im-
plementing an open framework for generating QA systems, it
is important to define a generalized vocabulary for QA. It will
be an abstraction level on top of all the existing QA approaches
and will provide interoperability and exchangeability between
them. This generalized vocabulary can be further used to
integrate different components and web services within a QA
system. DBpedia Spotlight [18] is an open source web service
for annotating text documents with DBpedia resources. AIDA
[12] is a similar project which uses the YAGO [26] ontology.
While the last two examples address only specific ontologies,
AGDISTIS [31] is an approach for name entity disambiguation
that can use any ontology. To leverage the capabilities of
different available web services and different tools for QA
systems, a generalized vocabulary is needed.

III. DIMENSIONS OF QUESTION ANSWERING SYSTEMS

When we look at the typical pipeline of QA systems, the
complete QA process is oriented to three main dimensions as
follows: (i) Query dimension: covers all processing on input
query. (ii) Answer dimension: refers to processing on the query
answer. (iii) Dataset dimension: is related to the both charac-
teristics of and processing over employed datasets. Figure 1
presents these high level dimensions. Generally, all of various
known QA processes either associated or interacted with QA
systems are corresponding to one of these dimensions. In the
following, each dimension is discussed in more detail.

1) Query Dimension: The first aspect of this dimension
refers to the characteristics of the input query. User-
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Fig. 1. Main dimensions of question answering systems.

supplied queries can be issued through multifold inter-
face such as voice-based, text-based, and form-based.
Apart from the input interface, each query can be
expressed in its full or partial form. For instance, full
form of a textual or voice query is a complete natural
language query whereas partial form is an incomplete
natural language query (i.e., either keyword-based query
or phrase-based); or full form of a form-based query is
a completion of all fields of the form. The second aspect
of this dimension refers to processing techniques, which
are run on the input query, e.g., query tokenization or
Named Entity Recognition.

2) Answer Dimension: Similar to the input query, answer
dimansion (i.e., refers to the retrieved answer for the
given input query) also can have its own characteristics.
Answer can have different types (e.g., image, text, audio)
also with full or partial form. For instance, a given query
can have either a single or a list of items as answer
(e.g., the query “islands of Germany” has a list of items
as answer). The system might deliver a complete answer
(the full list of items) or partial answer (i.e., a subset of
items).

3) Dataset Dimension: This dimension also has a series of
inherent characteristics such as (i) The type of a dataset
refers to the format in which s dataset has been pub-
lished, i.e., structured, semi-structured or unstructured.
(ii) Domain of dataset specifies subject of information
included. (e.g., movies, sport, life-science and so forth).
If the domain of a dataset covers all subjects, the dataset
is open domain. In contrast, a closed domain dataset is
limited to a few number of subjects. (iii) The size of
data obviously shows how big are the employed datasets.
Datasets hold two sub-dimensions as follows:

a) Helper Dataset Sub-dimension This dimension in-
cludes all datasets required for (i) providing addi-
tional information, (ii) training the models. In other
words, the helper dataset is used for annotating the
input query. Dictionaries like WordNet, gazetteers
are examples of this kind of dataset.

b) Target Dataset Sub-dimension Target datasets are
leveraged for finding and retrieving answer of input
query. For instance, Wikipedia can be a target
dataset for search.

IV. PROBLEM AND IDEA

In this section we will present the problem observed from
the state-of-the-art. Thereafter we will outline our idea for
solving the problem.

Problem: Considering the related work it is clear that three
groups of problems exist:

1) Lack of a generic conceptional view on QA systems:
While there are many different architectures for QA
system (e.g., [27], [10], [17], [13]), most of them are
tailored to specific and limited use cases as well as
applications. Reusability and interoperability was not
(enough) in the focus of such approaches. Creating new
QA systems is cumbersome and time consuming as well
as limited to domains or programming languages.

2) No standardized message format for QA systems: While
there are plenty of available tools and services employed
by QA systems, yet, interoperability is not ensured due
to a missing message format. However, there might
be great synergy effect while creating QA systems
w.r.t. the combination of different tools. For example, in
a given architecture, Named Entity Recognition (NER)
and Named Entity Disambiguation (NED) are integrated
in a single tool. NER solutions might be evolved and
thus, implemented in either a novel way (e.g., in [18]) or
employ existing tools (e.g., the Stanford NER [9] used in
[12]). Thus, integrating a (new) NER approach without
a standardized message format is also cumbersome and
time consuming. However, integrating different compo-
nents is very difficult and causes a lot of work for each
new implementation.

3) Scalability and Coverage problem: Existing schema-
driven approaches are mainly focus on the input query
(even limited to textual representations of input query),
and aren’t flexible for fulfilling emerging demands
which are not discovered yet (e.g., [28]).

Hence, considering the implementations of current QA
systems (and their components) it can be observed they do
not achieve compatibility due to their concentration on the
implementation instead of the conceptial view. Instead, imple-
mentation details need to be hidden and the focus has to be on
the message format communicated between the components of
the QA system.

Idea: A conceptual view of QA systems has to be com-
pletely implementation-independent. Therefore, we introduce
a vocabulary (i.e., schema) that addresses abstract definitions
of the data needed for solving QA tasks. We will describe the
data model by following the mentioned dimensions (cf., Sec.
III).

1) Input Query: The abstract definition of the input query
along with its properties used for the interpretation and
transformation leading towards a formal query of the
given dataset.

2) Answer: The abstract definition of the answer (i.e., the
search result for the given input query) covering all its
associated properties.

3) Dataset: The abstract definition for all kinds of data be-
ing used as background knowledge (i.e., for interpreting
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the input query and retrieving the answer).
Please note that we do not describe a specific architecture.

Instead our focus is the conceptual level, i.e., the format of
the message that needs to be used as input and returned as
output by the components of the QA system. Hence, properties
need to be annotated to the question to make them available
for the following components in the QA system pipeline. As
each component of the QA system will use the message to
retrieve and encode its knowledge about the question from
the message, QA applications following this idea are called
message-driven. Hence, information need to be annotated to
the message to make it available for following components in
the QA system pipeline.

We adapt the definition of annotations from the Web Anno-
tation Data Model2.

Definition 1 (Annotation): An annotation is an object hav-
ing the properties body and target. There should be associated
one or more instances of the body property of an annotation
object, but there might be zero body instances. There must be
one or more instances of the target property of an annotation.
For example, considering the question “Where was the Euro-
pean Union founded?” (target) it might be annotated that it
contains the named entity “European Union” (body).

In many circumstances, it is required to retrieve the anno-
tator (i.e., the creator) of annotations. Thus, we demand the
provenance of each annotation to be expressable (e.g., while
using several NED components and later pick one interpreta-
tion). We manifest this in the following requirement:

Req. 1 (Provenance of Annotations): The provenance of
each annotation needs to be representable within the data
model. The annotator needs to be a resource that identifies
the agent responsible for creating the annotation.

Hence, if annotations are available, then each atom of the
question can be annotated with additional information.

Definition 2 (Question Atom): The smallest identifiable
part of a question (user query) is called question atom
and denoted by qa. Thus, each given user query Q
independent of its type consist of a sequential set of atoms
Q = (q1, q2, . . . , qn).
For example, while considering the question to be a text,
the characters of the string or the words of the query might
be considered as question atoms, while a user query in the
form of an audio input (e.g., for spoken user queries) might
be represented as byte stream. Considering textual questions,
main component might be parser or Part of Speech taggers.
They are used to identify relations between the terms in a
question. These relations can have a tree structure like in
the case of dependency trees but also more complex ones
like direct acyclic graphs (DAG) that are used for example
in Xser [33]. Some QA systems such as gAnswer [34] use
coreference resolution tools, i.e., finding phrases that refer to
some entity in the question. Moreover, a typical goal of QA
systems is to group phrases in triples that should reflect the
RDF structure of the given dataset. These examples imply the
following requirement:

2W3C First Public Working Draft 11 December 2014, http://www.w3.org/
TR/annotation-model/

Req. 2 (Relations between Annotations): (a) It has to be
possible to describe relations between annotations. (b) Using
these relations, it has to be possible to describe a directed or
undirected graph (of annotations).

Annotations of components do not always have boolean
characteristics. It is also possible to assign a confidence,
(un)certainty, probablity, or (in general) score for the annota-
tions. Once again an example is the NED process, where for
entity candidates also a certainty is computed (like in [18]).
This implies the following requirement:

Req. 3 (Score of Annotations): It should be possible to as-
sign a score to each annotation.
Note: The type of the score is an implementation detail, e.g., in
[18] the confidence (score) is within the range [0, 1] while in
[21] the score might be any decimal number.

In the next section the three main dimensions of QA system
are described and necessary requirements are derived.

V. REQUIREMENTS OF MESSAGE-DRIVEN APPROACH

In this section while aiming for a conceptional level the
requirements of message-driven approach for describing QA
systems are derived from the state-of-the-art (cf., Section II).
We present them following the dimensions of QA systems as
described in Section III. Hence, on the one side a data model
for messages in QA systems should be able to describe at least
actual QA systems. On the other side the data model has to
be flexible and extensible since it is not known how future
QA systems will look like nor which kind of annotations their
components will use. In general, there are two main attributes
which we have to take into account:

• The proposed approach should be comprehensive in order
to catch all known annotations used so far in QA systems.

• It should have enough flexibility for future extensions in
order to be compatible with the upcoming annotations.

A. Input Query

The input query of a QA system can be of various types.
For example it might be a query in natural language text
(e.g., [30]), a keyword-based query (e.g., [24]), an audio
stream (e.g., [16]), or a resource-driven input (e.g., [4]). In all
these cases the parts of an input query need to be identifiable
as a referable instance such that they can be annotated during
the input query analysis. Hence, we define the following
requirement:

Req. 4 (Part of the Input Query): The definitions of part of
the input query satisfies the following conditions: (i) Part
consists of a non-empty set of parts and atoms: each part
might be an aggregation of atoms and other parts. However,
the transitive closure of the aggregation of each part needs to
contain at least one question atom. (ii) For an input query an
arbitrary number of parts can be defined.
Please note that as we mentioned before, all of the require-
ments or definitions are independent of any implementation
details. Thus, for instance, input query, atom or part have to
been interpreted conceptually.

Examples from an implementation view are as follows:
for text queries the NIF [11] vocabulary might be used to

http://www.w3.org/TR/annotation-model/
http://www.w3.org/TR/annotation-model/
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identify each part by its start and end position within the list
of characters. Similarly, the Open Annotation Data Model [22]
selects parts of a binary stream by indicating the start and end
position within the list of bytes. We leave the actual types of
atoms and properties of parts open, as it is depending on the
implementation of the actual QA system.

In a QA system the components of the analytics pipeline
will annotate the parts of the query. Examples for such compo-
nents are Part-of-Speech (POS) taggers (e.g., in [14]), Named
Entity Recognition (NER) tools (e.g., in [5]) or Named Entity
Disambiguation (NED) tools (like [31]). One possible scenario
for a textual question is that first several parts are computed
(e.g., with a POS-tagger). Thereafter a NED component might
annotate the parts with the additional properties, expressing the
current state of the question analytics, using the properties that
are accepted in the NED community. As it is not known what
kind of properties are annotated by which component, we will
not define them here. Hence, we have to keep the annotations
open for on-demand definition:

Req. 5 (Annotations of Parts): It has to be possible to de-
fine an arbitrary number of annotations for each part.

For example, for the input textual query “capital of Ger-
many”, the part “Germany” might be annotated by a NER
tool as place (e.g., while using dbo:place3).

B. Answer

Each QA system is aiming at the computation of a result.
However, considering the QA task there are some demands
of the type of the answer. For example, the QA task might
demand a boolean answer (e.g., for “Did Napoleons first wife
die in France?”), a set of resources (e.g., for “Which capitals
have more than 1 mio. inhabitants?”), a list of resources,
just one resource etc. Therefore, we define the following
requirement:

Req. 6 (Answer): The question needs to be annotated with
an object typed as answer. A resource of the type answer might
be annotated with a property describing the type of the QA
task (e.g., boolean, list, set, . . . ).

Of course, it is possible that the answer type is pre-
configured by the user as well as that it needs to be derived
automatically by the QA system from the given question.

Additionally only several types might be acceptable for the
items been contained in the answer. For example, given the
question “Who was the 7th secretary-general of the United Na-
tions?” only specific resource types are acceptable as answer
items (w.r.t. the given data). Here it might be dbo:person.
From this observation we derive the following requirement.

Req. 7 (Types of Answer Items): An arbitrary number of
types can be annotated, to express the types acceptable for
the items within the answer.

As an answer is also an annotation of the question, the
answer, its answer item types and any additional pieces of
information might also be annotated with a score (cf., Req.
3), the annotator (cf., Req. 1) etc.

3@prefix dbo: <http://dbpedia.org/ontology/>

C. Dataset

The proposed data model needs to take into account infor-
mation about the employed datasets. The dataset dimension
and its sub-dimensions were introduced in the section III.
To include these dimensions to the data model, the following
requirements are met:

Req. 8 (Dataset): A dataset provides an endpoint where the
data can be accessed and statements about the dataset format
can be gathered.

Req. 9 (Helper Dataset): A question should be annotated
by an arbitrary number of helper datasets (which are subclass
of dataset class).

Req. 10 (Target Dataset): At least there is one target
dataset (which is subclass of dataset class). Both question
and answer should be annotated by at least one target dataset
(number of target datasets is arbitrary).

These requirements enables QA system components to
easily (1) spot data, (2) access data, (3) query data. Please
note that target datasets might overlap with the helper data
sets and vice versa.

VI. CASE STUDY

In the previous section, we have collected the requirements
for a data model describing the message of interoperable QA
systems. As case study we know focus on an ontology that
fulfills these requirements (although other formal representa-
tion will also comply with the requirements). Here, the Web
Annotation Data Model (WADM4) is used as basis that is
currently a W3C working draft. The WADM is an extensible,
interoperable framework for expressing annotations and is well
accepted. In the following it is shown that how the identified
requirements are met.

The WADM introduces the class Annotation of the
vocabulary oa5. Thus, any annotation can be defined as an
instance of this class. The class Annotation has two major
characteristics as the body and the target. The body is “about”
the target and it can be changed or modified according to
the intention of the annotation. The basic annotation model is
represented in Turtle format6 as follows:

<anno> a oa:Annotation ;
oa:hasTarget <target> ;
oa:hasBody <body> .

The above pseudocode describes an annotation instance
which is identified by anno. The anno has the properties
target and body (i.e., each one is a resource). In the follow-
ing, we extend the WADM in order to meet all requirements.
For this purpose, a new namespace is introduced:

@prefix qa: <urn:qa> .

In order to illustrate the implications, we use a running
example with the question “Where was the European Union
founded?”. First an instance with the type qa:Question is

4W3C First Public Working Draft 11 December 2014, http://www.w3.org/
TR/annotation-model/

5@prefix oa: <http://www.w3.org/ns/oa#> .
6http://www.w3.org/TR/owl2-manchester-syntax/RDF 1.1 Turtle, W3C

Rec. 2014-02-25, http://www.w3.org/TR/turtle/

http://www.w3.org/TR/annotation-model/
http://www.w3.org/TR/annotation-model/
http://www.w3.org/TR/turtle/
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Fig. 2. This picture represents an annotation of the question ”Where was the European Union founded?”. The part ”European Union” is selected using a
Specific Resource and a Selector. Moreover a semantic tag is associated to it.

instantiated with the identifier URIQuestion. We extended
the data model as the input query needs to be defined as well as
the answer and the dataset. These concepts are represented by
the classes qa:Question, qa:Answer and qa:Dataset
which are used to identify questions, answers and datasets.
For the example also a URI for the answer URIAnswer and
for the dataset URIDataset is introduced. Then one can
establish the corresponding instances:

<URIQuestion> a qa:Question .
<URIAnswer> a qa:Answer .
<URIDataset> a qa:Dataset .

These annotations instantiates question, answer and
dataset object. To establish annotation of a question in-
stance we introduce a new type of annotation namely
qa:AnnotationOfQuestion. It is defined as follows:

qa:AnnotationOfQuestion rdf:type owl:Class ;
rdfs:subClassOf oa:Annotation ;
owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty oa:hasTarget ;
owl:someValuesFrom qa:Question

].

This means that annotations of this type need to have
a target of type question. Analogously two new annota-
tion types are introduced qa:AnnotationOfAnswer and
qa:AnnotationOfDataset. In our example the question
is annotated with an answer (anno1) and a dataset (anno2).

<anno1> a oa:AnnotationOfQuestion ;
oa:hasTarget <URIQuestion> ;
oa:hasBody <URIAnswer> .

<anno2> a oa:AnnotationOfQuestion ;
oa:hasTarget <URIQuestion> ;
oa:hasBody <URIDataset> .

Now, we will consider requirement 4. To select parts of a
query the WADM introduces two concepts: Specific Resources

and Selectors. In the WADM, there is a class called Specific
Resource (oa:SpecificResource) for describing a spe-
cific region of another resource called source. We use this
class for typing the concept of part of query in our data
model. Assume “European Union” is a part of the input
query. For this part, we instantiate a resource with the iden-
tifier sptarget1 and the type oa:SpecificResource.
The WADM introduces the property oa:hasSource which
connects a specific resource to its source. In our example,
the source of sptarget1 is URIQuestion stating that
“European Union” is a part of the input query. Another
relevant class which can be captured from the WADM is the
class oa:Selector. It describes how to derive the specific
resource from the source. In our example we instanciate the
resource selector1 which is a particular type of selector,
namely a oa:TextPositionSelector. It descibes that
the part “European Union” can be selected in the input query
between the character 13 and 27. This is indicated using the
properties oa:start and oa:end. This can be expressed
via:
<sptarget1> a oa:SpecificResource;

oa:hasSource <URIQuestion>;
oa:hasSelector <selector1> .

<selector1> a oa:TextPositionSelector;
oa:start 13 ;
oa:end 27 .

WADM introduces other types of selectors like Data Position
Selectors for byte streams and Area Selectors for images.
Hence, the requirement 4 is fulfilled. It is obvious that we
can instantiate an arbitrary number of annotations for each
part of a question. Thus, the requirement 5 is also met.

The WADM defines the property oa:annotatedBy to
identify the agent responsible for creating the Annotation,
s.t., requirement 1 is fulfilled. To comply with requirement 3
a new property qa:score with domain oa:Annotation
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and range xsd:decimal is introduced. For example, if
“European Union” is annotated by DBpedia Spotlight7 with
a confidence (score) of 0.9, this can be expressed as:
<anno3> a oa:Annotation ;

oa:hasTarget <sptarget1> ;
oa:hasBody <semanticTag> .

<semanticTag> a oa:SemanticTag ;
foaf:page dbr:European_Union .

<anno3> oa:annotatedBy DBpedia spotlight ;
oa:score "0.9"ˆˆxsd:decimal .

To fulfill requirement 6, in our data model a new
class qa:AnswerFormat and a new type of annotation
qa:AnnotationOfAnswerFormat are introduced:
qa:AnnotationOfAnswerFormat a owl:Class ;

rdfs:subClassOf oa:AnnotationOfAnswer;
owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty oa:hasBody ;
owl:someValuesFrom qa:AnswerFormat

].

If the expected answer format is a string, then this can be
expressed with the following annotation:
<anno4> a qa:AnnotationOfAnswerFormat ;

oa:hasTarget <URIAnswer> ;
oa:hasBody <body4> .

<body4> a qa:AnswerFormat ;
rdfs:label "String" .

Although later a resource will be used (instead of the
rdfs:label), this shows that the requirement 6 is
met. Requirement 7 is analogously satisfied. Now the re-
quirements for datasets are considered. To fulfill require-
ment 8 a new class qa:Endpoint is introduced hav-
ing the property qa:hasFormat and a new annotation
qa:AnnotationOfEndpointOfDataset:
qa:AnnotationOfEndpointOfDataset a owl:Class ;

rdfs:subClassOf oa:AnnotationOfDataset ;
owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty oa:hasBody ;
owl:someValuesFrom qa:Endpoint

].

If the question in the example should be answered using a
SPARQL endpoint available under the URI body5 (e.g., http:
//dbpedia.org/sparql), this might be expressed by:
<anno5> a oa:AnnotationOfEndpointOfDataset;

oa:hasTarget <URIDataset> ;
oa:hasBody <body5> .

<body5> a qa:Endpoint ;
qa:hasFormat dbr:SPARQL .

To fulfill requirements 9 and 10 two new classes are in-
troduced qa:HelperDataset and qa:TargetDataset.
Both are subclasses of qa:Dataset. If DBpedia is consid-
ered to be a target dataset, this can be expressed as follows
while URIDataset is http://dbpedia.org:
<URIDataset> a qa:TargetDataset ;

rdfs:label "DBpedia version 2015" .

Relations between two annotations <annoX> and
<annoY> with a label can be expressed using a new
annotation in the following way:

7@prefix dbr: <http://dbpedia.org/resource/>

<annoZ> a oa:Annotation ;
oa:hasTarget <annoX> ;
oa:hasBody <annoY> ;
rdfs:label "my anotation label" .

This corresponds to a directed edge between the two annota-
tions. Representing undirected edges is possible in a similar
way. This shows that requirement 2 is also fulfilled.

To sum up, in this case study we expressed the demanded
datamodel with a generalized ontology which is reusing the
concepts of the Web Annotation Data Model. We have shown
that it is able to address all the requirements identified in
Section V. Moreover, we have illustrated the usage with an
example. While using annotation, the data model is extensible
and open for improvements. The complete case study is
available as online appendix at https://goo.gl/vECgK5.

VII. CONCLUSION AND FUTURE WORK

In this paper we have motivated the high demand for an
ontology which covers the need for interoperability of QA
systems on a conceptual level. We distinguish our approach
from other attempts to establish a QA system architecture.
Instead we focus on the message level, s.t., everything needed
to establish a QA system is included within the data model.
Given the requirements and the corresponding case study to
the best of our knowledge, we have established for the first
time a message-driven interoperable approach that follows a
philosophy aiming for QA systems actually open for extension.

Consequently, we collected the requirements for the data
model from the recent works to cover also the needs of existing
QA systems. However, previous work consider only specific
scopes of applicability of QA systems (particularly many focus
on text-driven QA). We have chosen an approach that is
agnostic to the implementation and the actual representation
of the input question and the answer as well as the data
sets. Hence, it is a descriptive and open approach. This is an
important milestone on the way to actual open QA systems.

We have shown in our case study that our requirements
can be covered by the Web Annotation Data Model. Hence,
a logical, extensible, and machine-readable representation is
now available fulfilling the collected requirements. Eventually
the proposed approach can be used for all the existing QA
systems while transforming them into a message-driven (and
therefore interoperable) implementations.

We see this work as the first step in a larger research agenda.
Based on the presented data model (or its implementation as
an ontology) the research community is enabled to establish a
new generation of QA systems and components of QA systems
that are interoperable. Hence, actually open QA systems are
in sight. Based on our contribution the research community
and the industry can work with a best-of-breed paradigm
while establishing future QA systems and integrate novel
components into their QA systems. Additionally, our approach
enables developers to integrate several components with the
same task (e.g., NED) and thereafter compare the results
(e.g., with ensemble methods) to achieve the best results
w.r.t. the considered domain or data. Consequently we will
also aim at an implementation of an open QA system that can
be used for comparable benchmarks (like it was done for entity

http://dbpedia.org/sparql
http://dbpedia.org/sparql
http://dbpedia.org
https://goo.gl/vECgK5
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annotation in [32]) strengthening the competition of different
approaches as well as measuring the influence of different data
sets.

Acknowledgments Parts of this work received funding from
the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agree-
ment No 642795 (WDAqua project). We thank Didier Cherix
for his kind support while developing the approach.

REFERENCES

[1] Asma Ben Abacha and Pierre Zweigenbaum. Medical question an-
swering: translating medical questions into sparql queries. In ACM
International Health Informatics Symposium, IHI ’12, Miami, FL, USA,
January 28-30, 2012, pages 41–50, 2012.
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