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Abstract
Information-flow security typing statically prevents confidential information to leak to public

channels. The fundamental information flow property, known as noninterference, states that a
public observer cannot learn anything from private data. As attractive as it is from a theoretical
viewpoint, noninterference is impractical: real systems need to intentionally declassify some
information, selectively. Among the different information flow approaches to declassification,
a particularly expressive approach was proposed by Li and Zdancewic, enforcing a notion of
relaxed noninterference by allowing programmers to specify declassification policies that capture
the intended manner in which public information can be computed from private data. This
paper shows how we can exploit the familiar notion of type abstraction to support expressive
declassification policies in a simpler, yet more expressive manner. In particular, the type-based
approach to declassification—which we develop in an object-oriented setting—addresses several
issues and challenges with respect to prior work, including a simple notion of label ordering
based on subtyping, support for recursive declassification policies, and a local, modular reasoning
principle for relaxed noninterference. This work paves the way for integrating declassification
policies in practical security-typed languages.
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1 Introduction

Information-flow security typing enables statically classifying program entities with respect
to their confidentiality levels, expressed via a lattice of security labels [18]. For instance,
a two-level lattice L 4 H allows distinguishing public or low data (e.g. IntL) from confid-
ential or high data (e.g. IntH). An information-flow security type system statically ensures
noninterference, i.e. that high-confidentiality data may not flow directly or indirectly to
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7:2 Type Abstraction for Relaxed Noninterference

lower-confidentiality channels [36]. To do so, the security type system tracks the confiden-
tiality level of computation based on the confidentiality of the data involved.

As attractive as it is, noninterference is too strict to be useful in practice, as it prevents
confidential data to have any influence whatsoever on observable, public output. Indeed,
even a simple password checker function violates noninterference. Consider the following:

String login( String guess , String password )
if( password == guess)

return "Login Successful "
else

return "Login failed "
}

By definition, a public observer that tries to log in should be able to “learn something”
about the confidential input (here, password), thereby violating the confidentiality restriction
imposed by noninterference.

This problem with noninterference has long been recognized. Supporting such intentional
downward information flows is called declassification, which can be supported in many dif-
ferent ways [29]. For example, Jif [24] supports an explicit declassify operator to allow
downward flows to be accepted by the security type system. In the above example, one
can use declassify(password == guess) to state that the returned value is public knowledge.
However, arbitrary uses of a declassify operator may lead to serious information flow leaks;
for instance declassify(password) simply makes the password publicly available. One solu-
tion adopted by Jif is to control declassification using principals with privileges, as in the
Decentralized Label Model (DLM) [25]. Trusted declassification [21] restricts Jif’s mech-
anism to specify authorization in a global policy file and formulate noninterference modulo
trusted methods. Robust declassification [40] relies on integrity to ensure that low integrity
flows do not influence high confidentiality data that will later be declassified.

To capture the essence of expressive declassification without appealing to additional
mechanisms like integrity or authority, Li and Zdancewic proposed an expressive mechanism
for declassification policies that supports the extensional specification of secrets and their
intended declassification [22]. A declassification policy is a function that captures what
information on a confidential value can be declassified to eventually produce a public value.
For the password checker example, if the declassification policy for password is λx.λy.x==y,
then an equality comparison with password can be declassified (and thus be made public).
However, this declassification policy for password disallows arbitrary declassifications such as
revealing the password. Furthermore, declassification can be progressive, requiring several
operations to be performed in order to obtain public data: e.g. λx.λy.hash(x)==y specifies
that only the result of comparing the hash of the password for equality can be made public.

The formal security property, called relaxed noninterference, states that a secure pro-
gram can be rewritten into an equivalent program without any variable containing confid-
ential data but whose inputs are confidential and declassified. For the password checker
example with p , λx.λy.x==y as the declassification policy for password, the program
login(guess,password) can be rewritten to the equivalent program login’(guess,p(password))
where login’ is:

String login ’( String guess , String→Bool eq){
if(eq(guess )) ...

}

Note that p(password) is a closure that strongly encapsulates the secret value, and only
allows equality comparisons.
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While the proposal of Li and Zdancewic elegantly and formally captures the essence
of flexible declassification while retaining a way to state a clear and extensional security
property of interest, it suffers from a number of limitations that jeopardize its practical
adoption. First, security labels are sets of functions that form a security lattice whose or-
dering, based on a semantic interpretation of these sets of functions, is far from trivial [22]:
it relies on a general notion of program equivalences that would be both hard to implement
and to comprehend. Second, Li and Zdancewic explicitly rule out recursive declassifica-
tion policies, which are however natural when expressing declassification of recursive data
structures. Finally, the rewriting-based definition of relaxed noninterference is unsatisfying
for practical software development, as it rigidly requires all secrets to be both global and
external, thereby losing modular reasoning; as recognized by the authors, local language
constructs for introducing secrets and their policies are lacking [22].

In this work, we exploit the familiar notion of type abstraction to capture declassifica-
tion policies in a simpler, yet more expressive manner. Type abstraction in programming
languages manifests in different ways [26]; here, we specifically adopt the setting of object-
oriented programming, where object types are interfaces, i.e. the set of methods available
to the client of an object, and type abstraction is driven by subtyping. For instance, the
empty interface type—the root of the subtyping hierarchy—denotes an object that hides all
its attributes, which intuitively coincides with secret data, while the interface that coincides
with the implementation type of an object exposes all of them, which coincides with public
data. Our initial observation is that any interface in between these two extremes denotes
declassification opportunities. Additionally, choosing objects, as opposed to records, allows
us to explore recursive declassification policies from the start, given that the essence of data
abstraction in OOP are recursive types [17].

The type-based approach to confidentiality is very intuitive as it only relies on concepts
that are readily available in object-oriented languages: a declassification policy is simply a
method signature, a security label is an object interface, and label ordering boils down to
subtyping. Progressive declassification occurs through chaining of method invocations. In
fact, the only extension to the standard programming model is that a security type has two
facets, each representing the view available to a private and public observer, respectively. In
addition to being intuitive, the type-based approach addresses the issues and challenges of
the downgrading policies of Li and Zdancewic: a) there is no need to rely on general program
equivalences to define and decide label ordering, which is just standard, syntactic subtyping;
b) declassification naturally scales to recursive policies over recursive data structures; and
c) type-based relaxed noninterference is formulated as a modular reasoning principle, and
local secrets can be introduced with standard type annotations.

This work makes the following contributions:
We develop a novel type-based approach to declassification policies, which supports in-
teresting scenarios while appealing to standard programming concepts such as interface
types and subtyping (Section 2).
We capture the essence of type-based declassification in a core object-oriented language,
ObSEC, in which a security type is a pair of (recursive) object types (Section 3). We
describe the static and dynamic semantics of ObSEC and prove type safety.
We specify the formal semantic notion of type-based relaxed noninterference, which ac-
counts for type-based declassification policies, independently of any enforcement mechan-
ism (Section 4). We then prove type soundness of ObSEC: a well-typed program satisfies
type-based relaxed noninterference.
We informally explore how the expressiveness of declassification policies scales with the
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7:4 Type Abstraction for Relaxed Noninterference

expressiveness of types (Section 5), identifying interesting venues for extensions.
Section 6 discusses related work and Section 7 concludes. Auxiliary definitions are provided
in Appendix.

2 Type-Based Declassification Policies

We now progressively and informally introduce the type-based approach to declassification
policies, appealing first to a simple intuitive connection with type abstraction. We then
explain why this first intuition is insufficient, and refine it in order to support the key
features of a security-typed language with expressive declassification. We end by discussing
the security guarantee supported by the approach.

Type abstraction and confidentiality. It is well-known that type abstraction can capture
the need to expose only a subset of the operations of an object. For instance, if the password
secret is made available using the interface type StringEq , [eq : String→ Bool], the login
function from Section 1 can be rewritten as follows:

String login(String guess , StringEq password ){
if( password .eq(guess )) ...

}

Because password has type StringEq, the login function cannot accidentally leak information
about the password. In particular, note that the function cannot even return the password
because StringEq is a supertype of String, not a subtype. Therefore, the standard substitut-
ability expressed by subtyping seems to align well with the valid information flows permitted
in a confidentiality type system: a (public) string value at type String can be used freely,
and passed as argument expecting a (mostly) private StringEq, which only exposes equality
comparison. Similarly, any value can flow to a private variable, characterized by the empty
interface type, > , [ ].1

Progressive declassification policies can be expressive with nested interface types. For
instance, assume that String objects have a hash method, of type Unit → Int. To specify
that only the hash of the password can be compared for equality, it suffices to expose the
password at type StringHashEq , [hash : Unit→ IntEq], where IntEq , [eq : Int→ Bool]:

String login(Int guess , StringHashEq password ){
if( password .hash (). eq(guess )) ...

}

In the code above, the only available operation on password is hash(), which in turn returns
an integer that only exposes an equality comparison. Note that here again, StringHashEq >:
String and IntEq >: Int.

Recursive declassification. The informal presentation of type-based declassification so far
has exemplified two of the main advantages of our approach: security label ordering is
syntactic subtyping, and secrets and their declassification policies can be declared locally,
by standard type annotations. We now illustrate recursive declassification policies.

1 The reader might wonder at this point about the effect of using arbitrary downcasts, as supported in
Java. Indeed, downcasts are a way to violate type abstraction, and therefore to violate the type-based
security guarantees. For instance, the login function could return (String)password, thereby returning
the password for public consumption. Fortunately, there is a simple solution to this issue, which we
discuss in Section 5.
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Recursive declassification policies are desirable to express interesting declassification of
either inductive data structures or object interfaces (whose essence are recursive types [17]).
Consider for instance a secret list of strings, for which we want to allow traversal of the
structure and comparison of its elements with a given string. This can be captured by the
recursive type StrEqList defined as:

StrEqList , [isEmpty : Unit→ Bool, head : Unit→ StringEq, tail : Unit→ StrEqList]

To allow traversal, the declassification policy exposes the methods isEmpty, head and tail,
with the specific constraints that a) accessing an element through head yields a StringEq, not
a full String, and b) the tail method returns the tail of the list with the same declassification
policy. Type-based declassification policies can therefore naturally be recursive, as long as
the underlying type language allows (some form of) recursive types.

Facets of computation. With the standard programming approach described so far, a
program that attempts to violate the declassification protocol of an object is rejected by the
(standard) type system because it is ill-typed. For instance:

String login(Int guess , StringEq password ){
if( password . length (). eq(guess )) ...

}

is rejected because length is not part of the exposed interface of password.
However, security-typed languages typically are more flexible than this: they allow com-

putation to proceed with private information, but ensure the result of such computation is
itself private [38]. For instance, adding a public integer and a private integer yields a private
result. Li and Zdancewic follow the same approach with declassification policies: using a
secret in a way that does not follow its declassification policy yields a private result [22].
The justification of these approaches is that computation with private data is relevant, but
only visible to a high security, private observer; noninterference only dictates that a low
security, public observer should not be able to deduce information about private data by
observing public outputs.

This means that security-typed languages inherently adopt a multi-faceted view of com-
putation, where each observation level corresponds to a different facet. Sticking to a two-
facet, private/public model, the definition of login above is well-typed if one “knows” that
password is in fact a String object. In this case using length is valid: it just yields a private
result. Flow-sensitivity then ensures that the result of login, which follows from a conditional
branching computed based on a private value, is also private.

Faceted types. To accommodate the possibility of computing with private data, we extend
standard types to faceted types. A security type S, noted T / U , consists of two standard
types: type T for the private interface, and type U for the public interface.2. In this paper,
we often use the notation TL as a shortcut for the lowest-confidentiality security type T / T ,
in which the public facet exposes the same interface as the private facet, and TH for the
fully-confidential security type T /> in which the public facet is empty.

To express that password is a private string that can only be declassified through equality
comparison, we can use the following signature for login:

2 Similarly to multi-faceted execution [8], one can extend the model to support n levels of observations,
by introducing security types with n facets.
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7:6 Type Abstraction for Relaxed Noninterference

StringL login(IntL guess , String/StringEq password )

With this signature the previous definition of login, which invokes length, is still ill-
typed. Indeed, the body of the function now has type StringL, capturing the fact that the
resulting string is private, but the signature pretends that the result of login is public, which
violates noninterference. For login to be well-typed, either the declared return type should
be changed to StringH, or the conditional should adhere to the public facet StringEq.

Note that subtyping naturally extends covariantly to faceted types, i.e. T1 / U1 <: T2 / U2
iff both T1 <: T2 and U1 <: U2. Therefore, it is invalid to pass a private string of type
String /> to a function expecting a declassifiable string of type String / StringEq, because
> is not a subtype of StringEq. Subtyping on the public facet corresponds to security label
ordering; compared to the semantic, equivalence-based interpretation of labels of Li and
Zdancewic, here label ordering is just standard syntactic subtyping.

Object types directly support the possibility to offer different declassification
paths for the same secret. For instance, the security type
String / [hash : UnitL → IntL, length : UnitL → IntL] allows a client to obtain a public integer
from a string by using either its hash or its length. Naturally, by breadth subtyping, such a
secret with two possible declassification paths can also be used as a more restricted secret,
e.g. one that only exposes its hash publicly.

Type-based relaxed noninterference. The security property we establish in this work is a
particular form of termination insensitive noninterference, called typed-based relaxed nonin-
terference (TRNI for short). Like the relaxed noninterference result of Li and Zdancewic [22],
TRNI accounts for declassification policies.

To understand the intuition behind TRNI, we must first establish a notion of type-based
observational equivalence between objects. The starting point of the notion of equivalence is
that an object is defined by the observations that can be made on it, that is, by invoking its
methods [17]. More precisely, two objects o1 and o2 are said to be observationally equivalent
at type S, with S , T / U , if for each method m : S1 → S2 of the public facet U , invoking
m on o1 and o2 with equivalent arguments at type S1, yields equivalent results at type S2.
Crucially, the definition of equivalence uses the public facet of the type, thereby accounting
for observational equivalence only up to declassified information.

For example, the strings "john" and "mary" are not equivalent at type String / String,
because a public observer can observe the first character of each string and realize they
are different. However, these strings are equivalent when observed at String / StringLen,
where StringLen , [length : UnitL → IntL], because the only declassified information about
the strings is their length, which is here equal. This also means that "john" and "james" are
equivalent when are observed at type StringH (i.e. String />) since there are no observations
available to distinguish them. In fact, any two objects of type T are equivalent at type TH.

Given this notion of equivalence, a program satisfies TRNI at type Sout, if given two
inputs that are equivalent at type Sin, it produces two results that are equivalent at type
Sout. Intuitively, the types Sin and Sout capture the knowledge of public observers. Another
way to understand TRNI is that, if the initial knowledge implies the final knowledge, then
the program is secure for the public observer.

For instance, consider a program with an input x of type String / StringLen. The program
x.length satisfies TRNI at type Int / Int: two executions of the program with related inputs
at String / StringLen, such as "john" and "mary", yields two identical results at type Int / Int
(i.e. 4 in both cases). However, the program if(x.eq("mary")) return 1 else 2 does not satisfy



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:7

e ::= v | e.m(e) | x (terms)
v ::=

[
z : S ⇒ m (x) e

]
(values)

T,U ::= O | α (types)
O ::= Obj(α).

[
m : S → S

]
(object type)

S ::= T / U (security type)

x, y, z (variables)
α, β (type variables)
m (method labels)

TL , T / T TH , T />

Figure 1 ObSEC: Syntax.

TRNI at type Int / Int because there are equivalent inputs at type String / StringLen ("john"

and "mary") that yield different outputs at type Int / Int (1 and 2). For this program, the
only secure observation level is Int />.

We formally define these notions, and prove that the type system we propose enforces
TRNI, in Section 4.

3 An Object Language for Type-Based Declassification

We develop type-based declassification and relaxed noninterference using a core object-
oriented language, ObSEC, whose syntax is presented in Figure 1. The syntax of ObSEC
is similar to that of the object calculi of Abadi and Cardelli [2]. It includes three kinds of
expressions: variables, objects and method invocations. Note that we do not include method
updates or classes, both unnecessary to formulate our proposal. An object

î
z : S ⇒ m (x) e

ó
is a collection of method definitions, where method names are unique. The object definition
explicitly binds the self variable z in method bodies, with ascribed security type S. The
distinguishing feature of ObSEC are security types: as introduced in Section 2, a security type
S is a two-faceted type T / U , where T (resp. U) is the private (resp. public) facet. The
public facet corresponds to the declassification policy of an object. A fully opaque secret
has type T /> (also noted TH), exposing no method at all, while a low-confidentiality object
has type T / T (also noted TL), publicly exposing its full interface. A type T or U is either
a (recursive) object type Obj(α).

[
m : S → S

]
, where method types can use the self type

variable α, or a type variable. Note that we do not model parametric polymorphism in this
core calculus, so type variables are only used for self types. Following the tradition of Abadi
and Cardelli [2], ObSEC does not include base (non-object) types, however they can be easily
added or encoded.

Subtyping. The ObSEC subtyping judgment Φ ` T <: U is presented in Figure 2. The
subtyping environment Φ is a set of subtyping assumptions between type variables, i.e.
Φ ::= · | Φ, α <: β.3 For all judgments in this work, we often omit the empty environment,
e.g. we write ` T <: U for · ` T <: U .

Rule (SObj) accounts for subtyping between object types. Object type T1 is a subtype of
object type T2 if T1 has at least the same methods as T2, possibly more specialized. For this,
the rule checks subtyping between method types under a subtyping assumption between the
self type variable of T1 and that of T2. For instance, consider the following object types:

Counter , Obj(α). [get : UnitL → IntL, inc : UnitL → αL, dec : UnitL → αL]
IncCounter , Obj(β). [get : UnitL → IntL, inc : UnitL → βL] .

3 Type variables must appear at most once in the subtyping environment.
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7:8 Type Abstraction for Relaxed Noninterference

Φ ` T <: T

(SObj)

O1 , Obj(α).
[
m : S1 → S2

]
O2 , Obj(β).

[
m′ : S′1 → S′2

]
m′ ⊆ m

mi = m′j =⇒ (Φ, α <: β ` S′1j <: S1i Φ, α <: β ` S2i <: S′2j)
Φ ` O1 <: O2

(SVar)
α <: β ∈ Φ
Φ ` α <: β (SSubEq) O1 ≡ O2

Φ ` O1 <: O2
(STrans) Φ ` T1 <: T2 Φ ` T2 <: T3

Φ ` T1 <: T3

Φ ` S <: S

(TSubST) Φ ` T1 <: T2 Φ ` U1 <: U2

Φ ` T1 / U1 <: T2 / U2

Figure 2 ObSEC: Subtyping rules.

methsig(O,m) = S → S

O , Obj(α).
[
m : S1 → S2

]
S , S1i [O/α] S′ , S2i [O/α]

methsig(O,mi) = S → S′

m ∈ O

O , Obj(α).
[
m : S1 → S2

]
mi ∈ O

methimpl(o,m) = x.e

o ,
[
z : S ⇒ m (x) e

]
methimpl(o,mi) = x.ei

Figure 3 ObSEC: Some auxiliary definitions.

To establish that Counter is a subtype of IncCounter, the covariance between the return
types of the inc method requires a subtyping assumption between type variables, here α <:
β. Rule (SVar) specifies subtyping between type variables, which only holds if the relation is
in the subtyping environment. Rule (SSubEq) justifies subtyping between equivalent types.
We consider type equivalence up to renaming and folding/unfolding of self type variables;
for instance:

Obj(α). [m : αL → αL] ≡ Obj(β). [m : βL → βL] (alpha equivalence)
Obj(α). [m : S → αL] ≡ Obj(α).

[
m : S → Obj(β). [m : S → βL]L

]
(fold/unfold equivalence)

(Appendix A.4 provides the complete definition of type equivalence.)
Rule (STrans) is standard. Rule (TSubST) justifies subtyping between security types,

which is covariant in both facets.
Figure 3 presents auxiliary functions used to test method membership in a type (m ∈ T ),

to get the type of a method in an object type (methsig) and to get the implementation of
a method (methimpl). These operations are standard; the only interesting thing to note is
that in methsig we close the types in the method signature, by replacing type variables with
their object types.

Static semantics. Figure 4 shows the typing rules of ObSEC. The type judgment Γ ` e : S
gives a security type to an expression under a type environment Γ that binds variables
to types (Γ ::= · | Γ, x : S). In what follows, we assume well-formedness of types and
environments: informally, an environment is well-formed if all security types are closed and
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Γ ` e : S

(TVar)
x ∈ dom(Γ)
Γ ` x : Γ(x)

(TSub) Γ ` e : S′ ` S′ <: S
Γ ` e : S

(TObj)
S , T / U methsig(T,mi) = S′i → S′′i Γ, z : S, x : S

′
i ` ei : S′′i

Γ `
[
z : S ⇒ m (x) e

]
: S

(TmD)
Γ ` e1 : T / U m ∈ U methsig(U,m) = S1 → S2 Γ ` e2 : S1

Γ ` e1.m(e2) : S2

(TmH)
Γ ` e1 : T / U m /∈ U methsig(T,m) = S1 → T2 / U2 Γ ` e2 : S1

Γ ` e1.m(e2) : T2 / >

Figure 4 ObSEC: Static semantics.

well-formed; a well-formed security type satisfies the requirement that the private type is a
subtype of the public type. We further discuss well-formedness at the end of this section.

Rules (TVar) and (TSub) are standard. The (TObj) rule accounts for objects. It requires
each method body to be well-typed with respect to the private facet of the object. In
particular, the method body must match the return type of the method signature in the
private facet of the self type S.

From a security point of view, the interesting rules are the ones for method invocation.
Rule (TmD) applies when the invoked method is part of the public facet of the receiver. In
this case, because the method invocation respects the declassification policy, the overall type
of the invocation is the return type of the method in the public facet. This expresses that
the invocation advances a step in the progressive declassification of the object. For instance,
if the expression e1 has the public type StringHashEq , [hash : UnitL → Int / IntEq], the
invocation e1.hash() has type Int / IntEq, expressing that the returned value is a secret that
can further be declassified by calling the method eq from IntEq.

Rule (TmH) applies when the method is not in the public type U , but only in the private
type T (if the method is not in T , the expression is ill typed). In this case, the method call is
accessing the “secret” part of the object: the result of the method invocation must therefore
be protected by changing its public facet to >. This rule captures the design decision that
using a secret beyond its declassification policy is allowed, but the result must be secret. In
other words, only a private observer can use objects beyond their declassification policies;
to a public observer, the results of these interactions are unobservable.4

Dynamic semantics. We define a standard call-by-value small-step semantics for ObSEC,
based on evaluation contexts E ::= [ ] | E.m(e) | v.m(E).

The language includes a single reduction rule, for method invocation, which is standard:

(EMInv)
o , [z : _⇒ _] methimpl(o,m) = x.e

E[o.m(v)] 7−→ E[e [o/z] [v/x]]

4 Access modifiers in object-oriented languages, such as private and public in Java are a really differ-
ent mechanism. Such modifiers are about encapsulation, not about information flow. The essential
difference can be observed in rule (TmH), which propagates privacy on return values.
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7:10 Type Abstraction for Relaxed Noninterference

VkJSK = {v = [z : S1 ⇒ _] | S , T / U ` S1 <: S ∧
(∀j < k. v ∈ VjJS1K ∧

(∀m ∈ T, v′. methsig(T,m) = S′ → S′′ methimpl(v,m) = x.e

v′ ∈ VjJS′K =⇒ e [v/z] [v′/x] ∈ CjJS′′K))}

CkJSK = {e | ∀j < k. ∀e′.(e 7−→j e′ ∧ irred(e′)) =⇒ e′ ∈ Vk−jJSK}

Figure 5 ObSEC: Unary logical relation for safety.

Type safety. We now establish that well-typed ObSEC programs are safe. Note that type
safety does not provide any security guarantees for ObSEC. (Security guarantees will be
addressed in Section 4.) A program e is safe, noted safe(e), if it does not get stuck, i.e. if it
either reduces to a value or diverges.

I Definition 1 (Safety). safe(e)⇐⇒ ∀e′. e 7−→∗ e′ =⇒ e′ = v or ∃e′′. e′ 7−→ e′′

We prove type safety for ObSEC using a semantic interpretation of types as a unary lo-
gical relation [3]. We cannot however define the logical relation based on a direct induction
over the structure of types, because of recursive types, which would make such a definition
ill-founded. Therefore, we use a step-indexed logical relation [4, 6]. We establish an inter-
mediary result for a fixed number k of steps, meaning that a term is safe for k evaluation
steps, and then quantify ∀k ≥ 0 to obtain the general result. Step indexing ensures the
well-foundedness of the logical relation.

Figure 5 defines the unary logical relation that captures the safety interpretation of types
as values and computations, in a mutually recursive manner. The set VkJSK denotes the safe
value interpretation of type S for k steps; it contains all the values (i.e. objects) for which
it is safe (for any j < k number of steps) to invoke methods of the private type T of the
security type S , T / U . Note that the definition needs to assume that the self object is in
the value interpretation of S, for j < k steps; without step-indexing, this relation would be
ill-founded due to the recursive nature of objects through their self variables. The set CkJSK
contains all the expressions that can be safely executed for k steps at the security type S. In
the definition, the irred(e) predicate denotes irreducible expressions, i.e. expressions e such
that @e′.e 7−→ e′.

We define semantic typing, written |= e : S, to denote that a closed expression e executes
safely for any fixed number of steps:

I Definition 2 (Semantic typing). |= e : S ⇐⇒ ∀k ≥ 0. e ∈ CkJSK.

We then first prove that semantic typing does imply safety as per Definition 1.

I Lemma 3 (Semantic type safety). |= e : S =⇒ safe(e)

Proof. To show safe(e) we need to consider an arbitrary e′ such that e 7−→∗ e′ and then
show that either e′ = v or ∃e′′. e′ 7−→ e′′

Let us consider an arbitrary j1 to count the step that takes e 7−→∗ e′. Let us denote l = j1+1
By expanding the definition of |= e : S we have ∀k ≥ 0. e ∈ CkJSK. We instantiate this with
k = l to obtain e ∈ ClJSK. By expanding this we have:
∀j < l. ∀e1.(e 7−→j e1 ∧ irred(e1)) =⇒ e1 ∈ Vk−jJSK. We instantiate e ∈ ClJSK with j1
and e′ and we obtain: (e 7−→j1 e′ ∧ irred(e′)) =⇒ e′ ∈ Vk−j1JSK.
There are two cases to consider: ¬irred(e′) and irred(e′) . If ¬irred(e′), then by definition
∃e′′. e′ 7−→ e′′. If irred(e′), we have that e′ ∈ Vk−jJSK, so e′ is a value. J
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Second, we prove that syntactic typing (Figure 4) implies semantic typing.

I Lemma 4 (Syntactic typing implies semantic typing). ` e : S =⇒ |= e : S

Proof. The result follows from a similar lemma on open terms: Γ ` e : S =⇒ Γ |= e : S.
We define a standard notion of safe value substitutions [3], i.e. partial maps from variables
to safe values, γ ∈ GkJΓK and Γ |= e : S as follows:
γ ∈ GkJΓK ⇐⇒ dom(γ) = dom(Γ) and ∀x ∈ dom(Γ).γ(x) ∈ VkJΓ(x)K
Γ |= e : S ⇐⇒ ∀k ≥ 0, ∀γ. γ ∈ GkJΓK =⇒ γ(e) ∈ CkJSK.
Then we prove that Γ ` e : S =⇒ Γ |= e : S by induction on the typing derivation
of e. The case (TVar) is direct from the definition of γ ∈ GkJΓK. The case (TSub) fol-
lows directly from a subsumption lemma (e ∈ CkJSK ∧ ` S <: S′ =⇒ e ∈ CkJS′K).
Cases (TObj), (TmD) and (TmH) are proven by unfolding the definitions of CkJSK and
VkJSK, and applying the induction hypotheses for smaller indexes. For these cases, we use
mainly a monotonicity lemma for the value interpretation of a type regarding the index,
i.e. e ∈ VkJSK ∧ j ≤ k =⇒ v ∈ VjJSK. J

Together, Lemmas 3 and 4 imply that well-typed programs are safe.

I Theorem 5 (Syntactic type safety). ` e : S =⇒ safe(e)

Now that we have established that ObSEC is a well-defined, type-safe language, Section 4
will develop its security guarantees.

A note on well-formedness. Before we proceed, however, we need to mention a technical
yet important issue that we overlooked so far. For the main results of Section 4 to hold,
we need to ensure that we work with well-formed security types, i.e. that the private facet
type is a subtype of the public facet type. In a language with simple, non-recursive types,
defining such subtyping constraints is straightforward. However, in the presence of recursive
(object) types, defining the rules for the subtyping constraint of security types is rather
subtle and involved. The subtlety with type variables is that, at some point, we might
have to check well-formedness of a security type with a type variable in one of its facets, e.g.
α / T , without knowing any relation between α and T . To address this, we need to remember
the surrounding recursive object type O that binds α, and to transform the check ` α <: T
to ` O <: T . For conciseness, we leave out the well-formedness rules from the main body
of the paper; they are fully described in Appendix A.2. In what follows, we systematically
assume that security types (and by extension, type environments) are well-formed.

4 Type-Based Relaxed Noninterference

Faceted security types support information-flow security with declassification. The security
property that type-based declassification supports is a form of relaxed noninterference [22],
which we informally explained in Section 2. This section formally defines the notion of
type-based relaxed noninterference (TRNI) independently of any enforcement mechanism.
Then, we prove that the type system of ObSEC is sound with respect to this property.

Type-based equivalence. As introduced in Section 2, TRNI is defined in terms of a notion
of type-based equivalence between objects: a program satisfies TRNI at type Sout, if given
two inputs at type Sin, it produces two equivalent results at type Sout. Equivalence at a type
accounts for the possible observations (i.e. method invocations) that one is allowed to make
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7:12 Type Abstraction for Relaxed Noninterference

v1 ≈k v2 : VJSK ⇐⇒ S , T / U vi , [z : _⇒ _]
`1 vi : T ∧ (∀m ∈ U. methsig(U,m) = S′ → S′′ methimpl(vi,m) = x.ei

∀j < k, v′1, v
′
2. v1 ≈j v2 : VJSK ∧

(v′1 ≈j v
′
2 : VJS′K =⇒ e1 [v1/z] [v′1/x] ≈j e2 [v2/z] [v′2/x] : CJS′′K))

e1 ≈k e2 : CJSK ⇐⇒ S , T / U

`1 ei : T ∧ (∀j < k.(e1 7−→≤j v1 ∧ e2 7−→≤j v2) =⇒ v1 ≈k−j v2 : VJSK)

Figure 6 Step-indexed logical relation for type-based equivalence.

on an object. We define this equivalence as a step-indexed logical relation [4], in Figure 6.
We define how to relate values (i.e. objects) as well as computations (i.e. expressions). Step
indexing is required due to the recursive nature of object types, as explained below.

Note that the definitions use a simple typing judgment that does not account for security
typing at all; its sole purpose is to ensure safety. This is crucial: the public facets of security
types only play the role of specifications of declassification policies, and the logical relation
specifies the meaning of these specifications, without any consideration for an enforcement
mechanism. In particular, observe that the definitions in Figure 6 do not appeal to security
type judgments (`), but only to simple type judgments (`1).

I Definition 6 (Simple typing judgment). Based on the security typing judgment Γ ` e : S,
we define the simple typing judgment Γ `1 e : T by focusing only on the private facet of
security types. Formally: Γ `1 e : T ⇐⇒ Γ ` e : T / U for some U .
(The inductive definition of simple typing is in Appendix A.5.)

Intuitively, two objects v1 and v2 are equivalent at type S , T / U for k steps, noted
v1 ≈k v2 : VJSK, when one cannot distinguish them by invoking any method m of U . More
precisely, to ensure safety, we first demand that both values are well-typed at T with the
simple type system. Then, for each method m ∈ U and every j < k, the invocations of
m on v1 and v2 with related arguments at the argument type S′ of m must be equivalent
computations at the return type S′′ for j steps, as defined below. Finally, note that the
definition also requires that v1 and v2 are related self objects, for j < k steps; this is
necessary for the relation to be well-founded. (Observe that two simply well-typed objects
are vacuously equivalent for zero steps.)

Two expressions e1 and e2 are equivalent at security type S , T / U for k steps, noted
e1 ≈k e2 : CJSK, if they are both (simply) well-typed at T and, provided that they both
reduce to values in at most j < k steps (noted e 7−→≤j v), then both values are equivalent
at type S for the remaining k− j steps. Note that this definition is termination insensitive:
if one expression does not terminate in less than k steps, then both expressions are deemed
equivalent.

Defining TRNI. The type-based approach to declassification policies allows us to formulate
the corresponding relaxed noninterference property as a modular reasoning principle, simil-
arly to the common formulation of noninterference in languages without declassification [38],
thereby avoiding the global and external formulation of the transformation approach [22].

Standard noninterference is usually stated as a modular reasoning principle on open
terms [38]: given a well-typed open term, which depends on some private variables, clos-
ing the term with private inputs yields equivalent programs when observed by a low-
confidentiality observer. This statement can be generalized using the notion of value substi-
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tutions, i.e. partial maps from variables to values: given an open term that typechecks in
a given environment Γ, applying two related substitutions yields equivalent computations.
Applying a substitution, noted γ(e), substitutes the free variables of e with their values in
γ.

I Definition 7 (Satisfactory substitution). A substitution γ satisfies type environment Γ,
noted γ |= Γ, iff dom(γ) = dom(Γ) ∧ ∀x ∈ dom(Γ). `1 γ(x) : T where Γ(x) , T / U

I Definition 8 (Related substitutions). Two substitutions γ1 and γ2 are equivalent for k steps
with respect to a type environment Γ, noted γ1 ≈k γ2 : GJΓK, if γi |= Γ and

∀x ∈ dom(Γ).γ1(x) ≈k γ2(x) : VJΓ(x)K

The statement of type-based relaxed noninterference is a direct generalization of standard
noninterference: an open term e, simply well-typed in environment Γ, satisfies type-based
relaxed noninterference at security type S, noted TRNI(Γ, e, S), if two executions of e with
related substitutions with respect to Γ produce equivalent computational expressions at type
S, for any number of steps.

I Definition 9 (Type-based relaxed noninterference).

TRNI(Γ, e, S) ⇐⇒ S , T / U Γ `1 e : T ∧
∀k ≥ 0. ∀γ1, γ2. γ1 ≈k γ2 : GJΓK =⇒ γ1(e) ≈k γ2(e) : CJSK

This definition captures the semantic characterization of TRNI-secure expressions, in-
dependently of any enforcement mechanism (recall that, in Figure 6, the public facets of
security types only play the role of specifications of declassification policies). The ObSEC
type system is a sound, conservative enforcement mechanism for TRNI.

Security type soundness. To establish that well-typed ObSEC programs satisfy TRNI, we
first introduce a general notion of type-based equivalence between open expressions. Two
open expressions, well-typed under a type environment Γ, are equivalent at a security type
S , T / U , if both expressions have simple type T , and given two related value substitutions
for Γ, closing each expression with a satisfactory substitution yields equivalent expressions
at type S.

I Definition 10 (Equivalence of open terms).

Γ ` e1 ≈ e2 : S ⇐⇒ S , T / U Γ `1 ei : T∧
∀k ≥ 0. ∀γ1, γ2. γ1 ≈k γ2 : GJΓK =⇒ γ1(e1) ≈k γ2(e2) : CJSK

As is clear from the definitions, if a term is equivalent to itself at type S, then it satisfies
TRNI at S.

I Lemma 11 (Self-equivalence). Γ ` e ≈ e : S =⇒ TRNI(Γ, e, S)

Type soundness of ObSEC follows from the fact that the ObSEC type system enforces such a
self-equivalence.

I Lemma 12 (Fundamental property). Γ ` e : S =⇒ Γ ` e ≈ e : S

Proof. The proof is by induction on the typing derivation of e. The (TVar) case follows
directly from Definition 8 and the (TSub) case follows from a subtyping lemma: if e1 ≈k

e2 : CJSK and ` S <: S′ then e1 ≈k e2 : CJS′K. The (TObj) case applies the induction
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hypothesis (IH) on method bodies. To use the IH results, we need to show that the value
substitutions that result from extending the current substitutions with both self and actual
arguments are also related. This step requires auxiliary lemmas of monotonicity of the
logical relations regarding smaller indexes. The (TmD) case follows from applying the IH
over both subexpressions, selecting adequate indexes. The (TmH) case is simpler because
there is no method to invoke in the public type >. J

Finally, type soundness for ObSEC follows directly from Lemmas 11 and 12.

I Theorem 13 (Security type soundness). Γ ` e : S =⇒ TRNI(Γ, e, S)

Illustration. We now illustrate the relation between the security typing and the definition
of TRNI. In the examples we use some standard constructs like conditionals, not included
in ObSEC, but easily encodable.

As introduced in Section 2, the property TRNI(Γ, e, T / U) can be intuitively understood
as: the initial knowledge of a public observer in Γ (i.e. the declassification policies) implies
the final knowledge (i.e. the resulting public type U) that the observer has at hand to
distinguish the results of two arbitrary executions of the secure program e of simple type T .

Let us recall the type StringLen , [length : UnitL → IntL] from the end of Section 2.
Consider the open term e , x.length under the type environment Γ , x : String / StringLen.
The judgment Γ ` e : IntL ensures that TRNI(Γ, e, IntL) holds. It says that executing e, with
two different strings v1 and v2 of the same length is secure because the observer does not
learn anything new by exploiting the knowledge of distinguishing the resulting integers with
any method of Int. In fact, if we use the definition of TRNI, for any equivalent substitutions
γ1 and γ2 such that γ1 ≈k γ2 : GJΓK, such as γi , x 7→ vi, we need to show γ1(x).length()
≈k γ2(x).length() : CJIntLK. It is easy to see that this result follows from the assumption
that v1 and v2 have the same length (i.e. are equivalent at String / StringLen).

We have a different situation if we consider e′ , if(x.eq("mary")) return 1 else 2, with
the same type environment Γ. We cannot prove that TRNI(Γ, e′, IntL) holds, meaning this
program is not secure at type IntL. Indeed, take γ1 , x 7→ "mary" and γ2 , x 7→ "john".
Because both strings have the same length, we have "mary" ≈k "john" : VJString / StringLenK,
so the two substitutions are equivalent. However, we cannot show that γ1(e′) ≈k γ2(e′) :
CJIntLK, because this requires to show that 1 ≈k 2 : VJIntLK, which is obviously false.

The type system of ObSEC indeed rejects the judgment Γ ` e : IntL. It does accept the
judgment Γ ` e : IntH, meaning that e′ is secure at type IntH. This is correct because then
the public observer has no ability to compare the resulting values of e′. Note in fact that any
simply well-typed expression of type T is secure at type TH. Such expressions are opaque to
a public observer, but are observable by a private observer.

Principles of declassification. Our approach to type-based declassification satisfies the
declassification principles stated by Sabelfeld and Sands [29].5 We now briefly introduce
each principle and informally argue why it is respected.

Conservativity—i.e. “Security for programs with no declassification is equivalent to non-
interference”. It is easy to see that if a program satisfies TRNI(Γ, e, TL), for some T , and

5 Sabelfeld and Sands mention a fourth principle, non-occlusion, which addresses the interaction between
declassification and covert channels, such as heap assignments, exceptions or termination behavior.
ObSEC has neither mutation nor control operators, and termination is not considered a covert channel
because we only deal with termination-insensitive noninterference.
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all security types in both Γ and e are either highly confidential (TH) or not confidential
at all (TL), then the definition of TRNI coincides exactly with the definition of pure
noninterference [38]. Therefore type-based relaxed noninterference is a generalization of
pure noninterference.

Monotonicity of Release—i.e. “Adding further declassifications to a secure program can-
not render it insecure”. This lemma follows from subtyping naturally. Recall that in
our approach, in the judgment TRNI(Γ, e, S), declassification policies come from types
ascribed in both Γ and e. “Adding further declassification” in the inputs means in our
context replacing security types in Γ with subtypes, more precisely, where the public
facets are subtypes of the original types. The security typing judgment also holds in
this scenario of additional declassification in the inputs. Similarly, adding declassific-
ation in the expression e means specializing the public facets of types in object type
declarations. Again, this does not affect the semantic TRNI judgment. Note, however,
that if argument types are specialized, the program might not be typable anymore with
the security type system, as such a change breaks the contravariance of subtyping for
argument method types.

Semantic Consistency—i.e. “The (in)security of a program is invariant under semantics-
preserving transformations of declassification-free subprograms.”. The principle says that
it is possible to replace an expression that does not use declassification with another
semantically-equivalent expression, without affecting security. As observed by Sabelfeld
and Sands, the approach to declassification policies of Li and Zdancewic [22] violates this
principle, because they rely on a restricted, mostly-syntactic form of program equivalence
to decide label ordering. Therefore, many semantically-equivalent programs are not
deemed equivalent, hence affecting their (in)security. In contrast, our notion of type-
based equivalence (Figure 6) is semantic, not syntactic.

Limitations of security typing. The ObSEC type system is a static enforcement mechanism
for type-based relaxed noninterference. As such, it is inherently conservative. This has two
implications regarding Theorem 12.

First, the type system can reject some programs that are in fact secure. For example,
consider the following definitions:
T , Obj(α). [n : StringL → StringL]
T ′ , Obj(α). [m : StringH → StringH]
v , [z : TL ⇒ n (x) "hello"]
v′ , [z : T ′L ⇒ m (x) v.n(x)]

Here, v′ is not well-typed using the security type system, because of the call v.n(x)
(` StringH ≮: StringL). However, we can show that v′ does satisfy TRNI(·, v′, T ′L), because a
public observer always obtains the same result (i.e. "hello") for any two secrets passed to
method m; the program is not leaking any information.

Second, the type system can assign the security type T /> to an expression, despite the
fact that > is not the tighter secure type for TRNI to hold. For instance, let us assume that
Int has built-in methods mod2 and mod4 with the standard mathematical meaning, and we
define the type IntMod4 , [mod4 : UnitL → IntL]. Consider Γ , v : Int / IntMod4 and e ,
v.mod2(). The type system admits Γ ` e : IntH, which implies TRNI(Γ, e, IntH), but it does
not admit Γ ` e : IntL; despite the fact that TRNI(Γ, e, IntL) also holds—because if a and b
are equivalent modulo 4, then they are also equivalent modulo 2.
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5 Expressiveness of Declassification Policies

Our approach to type-based declassification policies builds upon an underlying type system.
While we have chosen a simple model of recursive object types to develop the approach in
the previous sections, it is interesting to explore how the expressiveness of the underlying
type discipline affects the range of declassification policies that can be defined.

Recursive types. It is possible to exploit the idea of type-based declassification policies
without recursive object types. We only need a type abstraction mechanism, such as that
enabled by subtyping. In fact, with only record types and subtyping, we can already capture
a set of interesting policies, such as those mentioned at the begin of Section 2 (e.g. StringEq,
StringHashEq). TRNI depends on the notion of equivalence between values and computa-
tions, which can be easily simplified for the non-recursive setting; in particular, we can get
rid of step-indexing in the logical relations.

Of course, without recursive object types in the core formalism, we lose the ability
to express recursive declassification policies (which are useful to declassify recursive data
structures, as illustrated in Section 2). With records but without objects, we can add
general recursive types of the form µX.T to support recursive declassification policies. Note
however that combining general recursive types and subtyping is challenging, and there are
different definitions that may not be complete (i.e. unable to establish a subtyping relation
that indeed holds); in particular, our subtyping rules are not complete regarding subtyping
between infinite trees [5]. This challenge solely affects the kinds of security types that can
be defined and deemed well-formed.

Finally, one characteristic of recursive declassification policies is that they potentially
allow to chain arbitrarily many invocations of a declassification method. For instance,
consider an infinite stream of strings, and a declassification that allows equality comparisons
on its elements:

StrEqStream , [head : UnitL → StringEqL, tail : UnitL → StrEqStreamL]

In case tolerating an unbounded number of observations would represent an unacceptable
accumulated leak, the programmer can define a more restrictive declassification policy that
restricts the number of tolerated calls by explicitly nesting interface types instead of defining
a fully recursive one. Obviously, to be practical, one would need to define a convenient
surface syntax such as:

StrEqStream , [head : UnitL → StringEqL, tail : UnitL → StrEqStreamL@k]

to specify that the declassification policy only supports at most k unfoldings of StrEqStream
through tail, and to desugar it to a finite nesting of interface types.

Universal types. Universal types allow programmers to define programs that are paramet-
erized by types. This can be used to define generic data structures, such as lists:

List [X] , {isEmpty : UnitL → BoolL, head : UnitL → XL, tail : UnitL → List[X ]L}

If we add parametric polymorphism to ObSEC, then in addition to get polymorphism
over implementation types, we naturally get a general form of security label polymorphism,
which is very useful (and supported in Jif [24]). For example, we can define generic data
structures that are polymorphic with respect to the security labels of their inner data; the
list structure defined above is a specific example.



R. Cruz, T. Rezk, B. Serpette, and É. Tanter 7:17

Similarly, a declassification policy can exploit parametric polymorphism. Recall the
recursive declassification example of Section 2, in which we allow traversing a list and only
comparing its elements with a given public element. We can express a generic version of
this declassification policy with the following type:

ListEq [X] , [isEmpty : UnitL → BoolL, head : UnitL → X / Eq[X ], tail : UnitL → ListEq[X ]L]
Eq [X] , [eq : XL → BoolL]

Note that the above definition is however invalid, because ListEq is not well-formed: in order
to satisfy the subtyping constraint between the facets of a security type such as X / Eq[X ],
we need to bound the type variable X, which leads us to bounded parametric polymorphism.
Then, the type ListEq can be correctly defined as follows:

ListEq [X <: Eq [X ]] ,
[isEmpty : UnitL → BoolL, head : UnitL → X / Eq[X ], tail : UnitL → ListEq[X ]L]

Refinement types. Refinement types, as found in e.g. LiquidHaskell [35], enrich standard
types with predicates over a decidable logic. For instance, the type {x : Int | x ≥ 0} denotes
natural numbers. Additionally, refinement types usually support a form of dependent types,
allowing refinements to refer to variables in scope as well as function arguments. Combining
such expressive types with our approach allows interesting declassification policies to be
defined, such as restricting successive arguments of a progressive declassification.

As an example, consider the following policy:

IntModProd , [mod : {x : IntL} → [mult : {y : IntL | x = y} → IntL]L]

This progressive declassification allows revealing the result of the chain of invocations
mod then mult, only if the argument to both invocations is the same. Note that IntModProd
is a proper supertype of Int, since {y : Int | x = y} is a subtype of Int.

More advanced scenarios. There are other interesting declassification policies that seem
more challenging to support with our type-based approach. An interesting example is spe-
cifying that a string secret can be leaked only after it has been encrypted; it is highly unlikely
that the standard String class exposes an encryption method. However, our approach does
appeal to the actual interface of an object in order to define its declassification. Hicks et
al. [21] introduce special declassifier functions to express arbitrary declassification that can
involve operations that are not defined on the declassified object itself. Therefore a possible
solution to address this example in our setting would be to rely on an external method
specification mechanism, such as open classes or mixin-based composition of traits in Scala.

Nevertheless, the above approach would still fall short of expressing global declassification
policies, as described by Li and Zdancewic [22], which can relate the declassification of dif-
ferent secrets at once. While the value dependencies can be expressed using, e.g. refinement
types, the challenge is to ensure that the obtained security types are still well-formed (i.e. the
public facet must be a supertype of the private facet). These are interesting challenges for
future development of the approach.

A note about casts. In Section 2 we alluded to the challenge of integrating explicit down-
casts in a language that adopts type-based declassification policies. Casts can be soundly
incorporated in such a language provided that we only allow casting values from a security
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type to another one that has the same public type, i.e. casts cannot affect the declassification
policy. Therefore the interesting typing rule for a cast expression 〈T 〉 e is:

(TCast) Γ ` e : T ′ / U ` T <: T ′
Γ ` 〈T 〉 e : T / U

As usual in security languages with casts, cast errors are seen as a non-termination
channel, hence not affecting the security definitions.

6 Related work

Information flow security in general, and declassification in particular, are very active areas
of research. We now discuss the most salient proposals related to this work.

Secure information flow and type abstraction. Our work shows a connection between
type abstraction and declassification policies for secure information flow. Previous works
also attempt to connect type abstraction and secure information flow.

Tse and Zdancewic [32] encode the Dependency Core Calculus (DCC) [1] in System F.
The correctness theorem of their translation aims at showing that the parametricity theorem
of System F implies the noninterference property. Unfortunately, Shikuma and Igarashi
identify a mistake in the proof of their main result [30]; they also gave a noninterference-
preserving translation for a version of DCC to the simply-typed lambda calculus. However,
this translation left open the connection between parametricity and noninterference, initially
aimed by Tse and Zdancewic.

Recently, Bowman and Ahmed [14] provide a translation from DCC to System Fω, suc-
cessfully demonstrating that noninterference can be encoded via parametricity. Our work
generalizes this by showing that type abstraction implies relaxed noninterference. Informa-
tion flow analyses have been proposed to generalize parametricity in the presence of runtime
type analysis [37]. Using security labels, a programmer can specify data structures that
should remain confidential in order to hide implementation details and rely on type abstrac-
tion for abstract datatypes.

An interesting research direction is to investigate whether our proposal of solving inform-
ation flow problems via type abstraction, here through subtyping, can be used to generalize
parametricity as proposed by Washburn and Weirich [37].

Declassification. As extensively discussed, our policies and security property are based on
the work of Li and Zdancewic [22], which proposes two kinds of downgrading policies (which
we call here declassification policies, since they only relate to confidentiality): local and
global policies. The declassification policies in this paper directly correspond to local policies,
as discussed in the introduction. Global policies refer to declassifications that involve more
than one secret simultaneously. As discussed in Section 5, it is unclear if and how global
policies can be supported using our type-driven approach; further exploration is necessary
to settle this issue. Additionally, in contrast to the definition of relaxed noninterference of Li
and Zdancewic [22], our definition is independent from the security enforcement mechanism.
This allows us to distinguish programs that are not secure from programs that are not
typable due to a necessarily conservative static security mechanism (see Section 4). Also,
our definition of relaxed noninterference is formulated as a generalization of the semantic
characterization of pure noninterference [38], providing a modular reasoning principle, as
opposed to the global translation approach of Li and Zdancewic.
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In the following, we focus on the closest related work on declassification policies starting
from 2005 and refer the reader to [29] for a survey prior to 2005.

Typing declassification in object-oriented languages. Since 2005, several works have stud-
ied static enforcement of declassification in object-oriented languages [9, 21, 11, 16].

Banerjee and Naumann [9] study the interaction between security typing for noninter-
ference and access control in a Java-like language. Security levels are not fixed but rather
depend on access permissions. In contrast to our work, security levels are independent of
method signatures or types and thus their typing does not relate to type abstraction.

Hicks et al. [21] propose trusted declassification for an object calculus. Principals in
a program have access to specified trusted declassifier functions or methods. Typeable
programs are secure for noninterference modulo trusted methods, in the same spirit as
typing of noninterference of programs with cryptographic functions [20]. In contrast to
relaxed noninterference, trusted declassification does not consider declassifiers as part of
security levels. Instead, declassifiers need to be associated by a policy to different principals
(security labels in our setting) in the lattice.

Barthe et al. [11] propose a modular method to extend type systems and proofs for
noninterference to declassification and discuss how the method extends to object-oriented
languages. The declassification property called delimited non-disclosure [23] does not sup-
port fine-grained specification of how to declassify a given secret, as supported by relaxed
noninterference.

Tse and Zdancewic [33] propose a security-typed language for robust declassification:
declassification cannot be triggered unless there is a digital certificate to assert the proper
authority. Their language inherits many features from System F<: and uses monadic labels
as in DCC [1]. The monadic style allows them to integrate computational effects, which
we do not support. In contrast to our work, security labels are based on the Decentralized
Label Model (DLM) [25], and are not semantically unified with the standard safety types of
the language.

Chong and Myers [16] propose hybrid typing to enforce declassification and erasure
policies and implement it in Jif [24]. Their language features a special declassification func-
tion that takes as input the expression and levels to declassify and also the conditions under
which declassification can occur. Security policies are specified by means of security levels
and conditions to downgrade them. This resembles our declassification policies, which spe-
cify the methods that can be applied in order to (partially) declassify; at a more abstract
level, the interface types of the public facet can be seen as “conditions” for declassifying.
The type system developed by Chong and Myers statically checks that conditions in de-
classification commands comply with the specified security policies. A dynamic mechanism
enforces this, or returns a dummy value (instead of the declassified value) at runtime. In
contrast to our work, their type system significantly departs from standard typing rules, and
dynamic checks are required for guaranteeing security.

Extensional specification of declassification policies. The language Air [31] expresses
declassification policies as security automata. The policies, seen as automata, transition
when a release obligation is satisfied. When an accepting state is reached, declassification
is performed. These policies resemble relaxed noninterference and our own declassification
policies but they require very specific typing rules.

Banerjee et al. [10] study declassification properties using ideas from epistemic logic can
capture global policies (as in the original work of relaxed noninterference) with an extensional
property. Their policies are not expressed using standard types as in our work.
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The language Paralocks [15] supports declassification policies represented as Horn clauses,
whose antecedents are conditions that should be satisfied for a flow to occur. There is a nat-
ural order between declassification policies that correspond to the logical entailment when
viewing policies as Horn clauses. The policies together with the logical entailment order
define a lattice that supports an extensional specification of secrets and their intended de-
classification, as in our work. However, declassification policies in Paralocks are not specified
by using the standard types of the language, and thus their enforcement requires specific
typing rules.

Multiple facets for dynamic enforcement of declassification. Austin and Flanagan intro-
duce Multiple Facets [8] as a dynamic mechanism to enforce secure information flow. The
main idea behind multiple facets is to execute a program using multiple values, one value or
facet for each security level of observation. A value considered confidential will only flow to
a public facet by facet declassification, based on robust declassification [40]. Robust declas-
sification requires the decision to declassify to be trusted according to integrity labels used
to model trust. In our work, we do not consider integrity labels or robust declassification.
However, the idea of multiple facets (having a facet for each observer at a given security
level) is similar to our faceted types. Just as Austin and Flanagan can run a program for dif-
ferent facets simultaneously, we type check programs providing different views to observers
with different security clearances.

Multiple facets are also inspired by Secure Multi Execution (SME) [19, 12], a dynamic
mechanism that roughly executes a program multiple times in order to enforce noninterfer-
ence. Hence, observers with different security clearances will potentially observe different
values during the execution of a program. Several works have studied declassification in
the context of SME [27, 34, 13]. Rafnsson and Sabelfeld [27] propose declassification in
SME based on the gradual release property [7]. This property differs from the property we
consider in our work in that it is not possible to extensionally specify what is being released
or declassified. The latest works on SME declassification [34, 13] generalize security levels
as declassifier functions, resembling declassification policies of both Li and Zdancewic and
ours. Since SME is a dynamic enforcement mechanism, these declassification policies are
not used for relating declassification and type abstraction.

7 Conclusion

One of the open challenges in the area of information flow security is integrating informa-
tion flow mechanisms with existing infrastructures [39]. Our work partially addresses this
challenge by showing a connection between type abstraction, more precisely that induced
by the the subtyping relation in an object-oriented language, and the order relation in se-
curity lattices. In particular, we exploit an intuitive connection between object interfaces
and declassification policies: an object interface already gives a way to control the exposed
behavior of an object. These connections imply that standard type systems can be used as
a direct means to enforce secure information flow, when types express security policies. It is
left to explore how this connection scales in practice, but we expect the economy of concepts
to be an important asset for adoption.

We plan to study the impact of more advanced typing disciplines on the expressiveness of
type-based declassification, especially dependent object types [28] and refinement types [35].
It remains to be seen whether global policies can be expressed, and how. Another venue
for future work is to develop our approach in a setting that relies on other forms of type
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abstraction, such as existential types. Finally, we intend to explore how to infer the minimal
knowledge that has to be exposed to a public observer in order to guarantee a relaxed
noninterference guarantee at a given type. Inferring the minimal input declassifications of a
secure program can for instance be useful to assess the impact some refactoring or extensions
of that program have on security.
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A Auxiliary Definitions

A.1 Environments
Γ ::= · | Γ, x : S (type environment)
Φ ::= · | Φ, α <: β (subtyping environment)
∆ ::= · | ∆, α (type variable environment)
Σ ::= · | Σ, α , O (type definition environment)

Γ is a finite map from variables to closed and well-formed security types. Σ is a finite
map from type variables to object types. Φ is a set of subtyping relations between type
variables. ∆ is a set of type variables.
dom(Env) (where Env could be Γ, Σ or Φ) is the set of variables for which the finite
map Env is defined. In the case of dom(Φ), it is the set of the type variables in the left
part of the subtyping relation.
We also use the notations Γ, x : S or Σ, α , O or Φ, α <: β to extend the environments
Γ, Σ , Φ with a new binding or relation, respectively. If x ∈ dom(Γ), α ∈ dom(Σ) or
either α or β ∈ dom(Φ)∪ cod(Φ) the extension operation is not defined for the respective
environment.
The notation ∆, α extends the set ∆ with a new type variable. If α ∈ ∆ the operation
is not defined.

We use the following functions to access to the elements of the environments:
Γ(x) returns the security type associated to x in Γ. If x /∈ dom(Γ), then Γ(x) is undefined.
Σ(α) returns the type associated to α in Σ. If α /∈ dom(Σ), then Σ(α) is undefined.
α <: β ∈ Φ is true if Φ(α) = β, false otherwise. Φ(α) returns the type variable in the
right part of the subtyping relation with α in Φ. If α /∈ dom(Φ), then Φ(α) is undefined.

A.2 Well-formedness of types and environments
For the main results of the Section 4 to hold we need to ensure we work with well-formed
security types.

Well formed types. We use the predicate valid(S) to denote that a security type S is closed
and that the object types that S contains have unique method members. The definition of
valid(S) is based on a standard notion well-formedness of object types [2] (Figure 7).

To check for well-formed security types, i.e. that the private type is a subtype of the
public type we define the judgment Σ `s S (Figure 8). The (WFS-ST) rule is the most
important. For this rule to hold, the subtyping relation between both facets must hold and
also the same principle must hold for the all the security types in each facet.

The presence of type variables in the facets of a security type and the corresponding
subtyping constraint introduces subtle cases to manage before using the subtyping judgment.
Consider the following object type: O , Obj(α). [m : S → α /Obj(β). [m : S → α / β]]. For
`s O to hold, α , O `s α /Obj(β). [m : S → α / β] must hold. It implies to check ` α <:
Obj(β). [m : S → α / β]. Note that, we can not justify that subtyping judgment, because we
do not have a subtyping premise involving the type variable α. To address this, we need to
remember (in Σ) the surrounding recursive object type O that binds α, and to transform the
check α , O `s α /Obj(β). [m : S → α / β] to ` O <: Obj(β). [m : S → O / β] by closing α
with the mappings in Σ (i.e. O). We use the notation Σ [T ] to substitute the free variables
in type T according to the bindings in Σ.
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∆ `t T

(WF-V) α ∈ ∆
∆ `t α

(WF-O)

T ≡ Obj(α).
[
m : S1 → S2

]
(i 6= j =⇒ mi 6= mj)

∆, α `t S1i ∆, α `t S2i

∆ `t T

∆ `t S

(WF-ST) ∆ `t T ∆ `t U

∆ `t T / U

· `t S

valid(S)

Figure 7 Standard well-formedness of object types and type variables, and its lifting to security
types.

Σ `s T

T ≡ Obj(α).
[
m : S1 → S2

]
Σ, α : T `s S1i Σ, α : T `s S2i

Σ `s T
(WFS-V) Σ `s α

Σ `s S

(WFS-ST)
Σ `s T Σ `s U · ` Σ [T ] <: Σ [U ]

Σ `s T / U

` S

(WF)
valid(S) · `s S

` S

Figure 8 Well-formedness of security types.

Finally, we say that a security type S is well-formed (notation ` S) if the type is valid
and the subtyping constraints for S hold (· `s S)

Well-formedness of a type environment. A type environment is well formed, noted Γ ` �,
if all types in the environment are well-formed:

(EEnvOk) · ` � (EnvOk)
Γ ` � ` S x /∈ dom(Γ)

Γ, x : S ` �

A.3 Subtyping
The gray parts in the subtyping rules of the Figure 9 were not included in the Figure 2 of the
main document. They prevent justifying inconsistent subtyping judgments by controlling
the uses of type variables.

For example, consider the following types:
T1 , Obj(α). [n : S → Obj(β). [m1 : βL → S′ m2 : S1 → S2]L]
T2 , Obj(β). [n : S → Obj(α). [m1 : αL → S′]L]
For ` T1 <: T2 to hold, after using the rule (SObj) twice, the contravariance of m1 parameters
·, α <: β, β <: α ` α <: β must hold. We can justify this by applying the rule (SVar) because
we have the assumption α <: β in the subtyping environment. So, we justify ` T1 <: T2 and
it is not the case that T1 is subtype of T2. The problem is the occurrence of the variables
α and β in both types, that creates subtyping assumptions in both directions and it allows
to justify subtyping between type variables that represent unrelated types (by subtyping).
The well-formedness condition of the subtyping environment Φ prevents this kind of cases,

ECOOP 2017



7:26 Type Abstraction for Relaxed Noninterference

Φ ` T <: T

(SObj)

O1 , Obj(α).
[
m : S1 → S2

]
O2 , Obj(β).

[
m′ : S′1 → S′2

]
m′ ⊆ m

mi = m′j =⇒ (Φ, α <: β ` S′1j <: S1i Φ, α <: β ` S2i <: S′2j)
Φ ` � dom(Φ) ∪ cod(Φ) `t Oi

Φ ` O1 <: O2

(SVar)

Φ ` �
α <: β ∈ Φ
Φ ` α <: β (SSubEq) T1 ≡ T2

Φ ` T1 <: T2
(STrans) Φ ` T1 <: T2 Φ ` T2 <: T3

Φ ` T1 <: T3

Φ ` S <: S

(TSubST) Φ ` T1 <: T2 Φ ` U1 <: U2

Φ ` T1 / U1 <: T2 / U2

Figure 9 Subtyping.

Φ ` �

(EEnvSubOk)
· ` �

(EnvSubOk)
Φ ` � αi /∈ dom(Φ) ∪ cod(Φ)

Φ, α1 <: α2 ` �

Figure 10 Well-formedness of the subtyping environment.

because we cannot extend the environment with a subtyping premise, where one of the
involved variables is already in the environment (Figure 10).

A.4 Type equivalence
Two types are equivalent (Figure 11) if the equivalence can be derived through the congru-
ence induced by rules (Alpha-Eq) and (Fold-Unfold). For example:
Obj(α). [m : α→ α] ≡ Obj(β). [m : β → β]
Obj(α). [m : > → α] ≡ Obj(α). [m : > → Obj(β). [m : > → β]]

A.5 Simple type system
The simple typing judgment Γ `1 e : T is defined in terms of “single-facet typing” (Fig-
ure 12). Single-facet typing Γ `sf e : S is a simplification of security typing: the rules
(TmD) and (TmH) are replaced by a single rule (T1mI) that simply ignores the public type.
Furthermore, the subtyping judgment Φ ` S1 <: S2 is replaced by the simple subtyping
judgment Φ `sf S1 <: S2 that only takes care of subtyping between the private facets of the
security types. Its definition is direct and omitted here.

I Lemma 14. Γ ` � ∧ Γ ` e : T / U then Γ `1 e : T

Proof. Trivial induction on typing derivations of e. J

I Lemma 15.

Γ ` � ∧ Γ `1 e : T =⇒ ∃U. Γ ` e : T / U
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T ≡ T

(Sym)
T ≡ T (Refl) T1 ≡ T2

T2 ≡ T1
(Trans) T1 ≡ T2 T2 ≡ T3

T1 ≡ T3

(O-Congr)
S1i ≡ S′1i S2i ≡ S′2i

Obj(α).
[
m : S1 → S2

]
≡ Obj(α).

[
m : S′1 → S′2

]
(Alpha-Eq)

O , Obj(α).
[
m : S1 → S2

]
β fresh

O ≡ O [β/α]
(Fold-Unfold)

O ≡ O [O/α]

S ≡ S

T1 ≡ T2 U1 ≡ U2

T1 / U1 ≡ T2 / U2

Figure 11 Type equivalence.

Γ `sf e : S

(T1Var)
x ∈ dom(Γ)

Γ `sf x : Γ(x)
(T1Sub) Γ `sf e : S′ `sf S

′ <: S ` S
Γ `sf e : S

(T1Obj)
` S S , T / U methsig(T,mi) = S′i → S′′i Γ, z : S, xi : S

′
i `sf ei : S′′i

Γ `sf
[
z : S ⇒ m (x) e

]
: S

(T1mI)
Γ `sf e1 : T / U methsig(T,m) = S1 → S2 Γ `sf e2 : S1

Γ `sf e1.m(e2) : S2

Γ `1 e : T

Γ `sf e : T / U
Γ `1 e : T

Figure 12 Simple typing, defined in terms of single-facet typing.

Proof. By induction of the typing derivation of Γ `1 e : T . In all the cases, we simply
choose U to be the private type T . J
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