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Abstract
Characterizing trophic networks is fundamental to many questions in ecology, but this typi-

cally requires painstaking efforts, especially to identify the diet of small generalist predators.

Several attempts have been devoted to develop suitable molecular tools to determinepred-

atory trophic interactions through gut content analysis, and the challenge has been to

achieve simultaneously high taxonomic breadth and resolution.General and practical meth-

ods are still needed, preferably independent of PCR amplification of barcodes, to recover a

broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthro-

pod predator gut contents, extracted from four common coccinellid and dermapteranpreda-

tors co-occurring in an agroecosystem in Brazil. By matching unassembled reads against

six DNA reference databases obtained from public databases and newly assembled mito-

genomes, and filtering for high overlap length and identity, we identified prey and other for-

eign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93%

of prey identified to species or genus), but with low recovery of matching reads. Two to nine

trophic interactions were found for these predators, some of which were only inferred by the

presence of parasitoids and components of the microbiome known to be associated with

aphid prey. Intraguild predation was also found, including among closely related ladybird

species. Uncertaintyarises from the lack of comprehensive reference databases and reli-

ance on low numbers of matching reads accentuating the risk of false positives. We discuss

caveats and some future prospects that could improve the use of direct DNA shotgun-

sequencing to characterize arthropod trophic networks.
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Introduction
Understanding the complexity of trophic interactions and their causes and consequences has
been a major focus of ecology since Elton [1] developed the concept, continuing to the present
with about 250 scientific papers each year. However, as many trophic interactions are infre-
quent and hard to see [2], especially for small arthropods, important trophic links are under-
represented. Molecular analyses of predator gut contents have become the dominant approach
to identify arthropod trophic interactions [3–6], especially PCR-based methods.

Lately, several studies have combined classic single DNA barcoding with next-generation
sequencing, referred to as metabarcoding, which has overcome the limitations of Sanger
sequencing when working with mixtures of templates, as those present in the gut [7,8]. How-
ever, these PCR-based methods have various limitations that restrict their general applicability
and overall scope. Specifically, standard barcodemarkers (e.g., cox1, rRNAs) are not sufficiently
conserved across taxonomic groups to develop universal or generic primers without target
match problems [9–11]. Thus, taxonomic biases and inaccurate estimation of the relative abun-
dance of some taxa are common due to marker choice and variation in primer efficiency [11–
18].

In addition, in most cases, the feeding by an arthropod on other arthropods limits the use of
universal barcode primers. More generally, the selection of primers made by the researcher
determines the target organisms and target genes, which constrains the research questions that
can be addressed from the outset, e.g. targeting either eukaryotic or bacterial genomes, but not
both. This constrains the characterization of complex food webs of generalist predators, as not
all prey species can be anticipated and trophic links are often unknown. PCR-based approaches
are particularly problematic for the analysis of intraguild predation [19] among closely related
species and require the development of stringently diagnostic primers for each species. In these
cases of taxonomic proximity between the target prey taxa and the focal predator, sequences of
the latter prevail in PCR due to their much higher abundance and lower degradation compared
to ingested DNA, unless ‘blocking’ primers can be designed that discriminate efficiently against
the host [7,20] or PCR products are sequenced deeply. Together, these various constraints limit
the scope of metabarcoding, which performs best on target groups in a narrow taxonomic win-
dow within which primer efficiency is relatively uniform, and at the same time the target
groups are taxonomically distant from the host organism (e.g. plant chloroplast DNA in the
gut of insects; e.g. [21]). Even where these conditions are fulfilled, the PCR-based analysis of
ingested (degraded)DNA requires the use of short fragments, which can result in poor taxo-
nomic resolution [22]. Whereas several attempts have beenmade to circumvent the limitations
due to short fragment length (e.g., [23–25]), biases associated with PCR still remain [11,18,26].

A more suitable approach to construct complex trophic interaction networks and to study
multiple interactions at various trophic levels is needed that combines high taxonomic breadth
and resolution [11,27]. Recently, metagenomics pipelines have been developed for studying the
arthropod diversity in a specimenmixture [16,28,29]. However, in gut content analysis an
additional challenge for using metagenomics is posed by the target environmental sample,
which is digested and degradedDNA, precluding the use of existingmetagenomic pipelines
(assembly> binning> annotation of the metadata [30]). Using feeding trials, Srivathsan et al.
[22] and Paula et al. [31] identified diet composition using an alternative metagenomic shot-
gun-sequencing pipeline of matching unassembled reads from faeces or gut contents with ref-
erence databases, and filtering for high overlap length and identity. The sensitivity and
specificity of this method depends on the DNA reference databases. As there is no limitation to
the identification of taxa imposed by specificmolecularmarkers, the outcome of this approach
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promises a broader identification of foreign species, including prey, internal parasites and asso-
ciated microbiomes.

In this work, we aimed to test the power of this alternative DNA shotgun-sequencingpipeline
to construct a qualitative trophic interaction network of generalist arthropod predators that are
considered to be effective biocontrol agents. These include three species of ladybirds (Coleoptera:
Coccinellidae)and an earwig (Dermaptera: Forficulidae),which feed on various herbivorous
insects, in particular aphids and moths, and potentially also on the juvenile stages of each other.
We used the Illumina platform for shotgun-sequencingof DNA isolated from gut contents of
field-collectedspecimens and an unfed predator as a control. In parallel, we constructedDNA
reference databases throughmining of publicly available sequence information, including partial
and complete mitochondrial and nuclear genomes, and barcode sequences, complemented with
sequences of taxa expected to interact with these predators in the sampled habitat. We were able
to identify the taxonomic composition of foreign DNA in the guts of these predators. This
includes those species directly preyed upon, but also produced a broader picture of the associated
organisms, such as parasitoids and microbiomes, for the identification of the trophic interaction
links with good taxonomic breadth and resolution. However, the lack of complete reference data-
bases limits the ability to identify all prey taxa, and the low recovery of matched reads limits the
sensitivity of this approach and accentuates the need to reduce the risk of false detection of spuri-
ous reads possibly generated from sample contamination or highly degradedDNA. This initia-
tive is an effort to develop a satisfactorymethodology to determine the targets of various
predators that could be used in biological control.

Material andMethods

Insects
The predator coccinellidsCycloneda sanguinea (n = 5),Harmonia axyridis (n = 1) andHippo-
damia convergens (n = 6), and the dermapteranDoru luteipes (n = 10), were collected at two
organic farms in central Brazil (15°58'27.67"S, 47°29'49.94"W, and 15°49'28.01"S, 48°
15'9.66"W) during November 2012. The farms produced similar crops in small fields, including
cabbage, cassava, lettuce, and tomato, surrounded by leucaena, banana, coffee and timber trees.
All specimens were immediately immersed in 100% ethanol (species were kept separate) and
stored at -80°C until total DNA extraction. All collectionswere authorized by SISBIO (authori-
zation number 36950), and access to the genetic heritage and transportation of biologicalmate-
rial was authorized by IBAMA (authorization number 02001.008598/2012-42). Field-collected
H. axyridis pupae were allowed to emerge in the laboratory, and unfed adults (<24 h) were
stored at -80°C in 100% ethanol, and designated as a control.

Shotgun-sequencing of the predator gut contents
The methodological pipeline is illustrated in Figure A in S1 File. To prevent cross contamina-
tion among samples, all the preparation procedures (i.e. gut dissection,DNA extraction, quan-
tification) for each predator sample were done on separate days with different tools and
materials (tweezers, scalpels, and petri dishes), which were washed with neutral soap, soaked in
5% bleach for 30 min and washed in 70% ethanol. Prior to sample preparation, the bench and
instruments were cleaned using 70% ethanol. Guts from the same species were pooled (the con-
trol was pooled separately) immediately after dissection in the first buffer of the DNA extrac-
tion kit using a DNA-free microtube placed in ice. The DNA extraction, estimation of DNA
concentration, and sample quality check were done as described in Paula et al. [31]. The DNA
concentration across samples was normalized to 20 ng/μl and TruSeq libraries were con-
structed. All predator gut contents were sequenced on an IlluminaMiSeq for 250 bp single-end
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reads (300 cycles, mean insert size 300 bp, v2 chemistry, proportion of the flow cell: 16.1% for
Cy. sanguinea, 19.8% for D. luteipes, 27.6% forH. axyridis), except forHi. convergens at 10% of
a run and 250 bp paired-end reads (500 cycles, insert size 600–900 bp bp, v2 chemistry) and
the control H. axyridis at 17% of a run and 250 bp paired-end reads (500 cycles, insert size 450
bp, v2 chemistry). For these last two samples, library preparations and sequencing were done
in a separate flow cell, months apart from that of the other predators, preventing cross-contam-
ination. All the programs and settings used in the bioinformatics analyses were based on Paula
et al. [31]. The quality assessment for each dataset was done using FastQC v0.10.1 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/).Library index adapters were trimmed
using Trimmomatic v0.30 (ILLUMINACLIP:2:30:10) [32]. The reads were passed through a
quality control check using PrinSEQ v0.19.2 [33], with a minimum Phred quality score of 20.
The retained reads after quality control were converted to Fasta format using a CAT and Perl
script [31].

DNA reference databases
Six DNA reference databases (Fasta format) with different taxonomic resolution were con-
structed for DNA identification: a) Insectamitogenomes, obtained by downloading all available
(at November 2013) insectmitogenomes of 588 species fromGenBank (Table A in S1 File), sup-
plemented by sequencing the mitogenomes of 17 potential prey species (Tables B and C in S1
File) with long-range PCR or shotgunmethodology [31,34,35]; b) cytochrome oxidase 1 (cox1)
barcode sequences of 58,367 Insecta species using a MegaBLAST based pipeline implemented by
Hunt et al. [36] and adapted by Srivathsan et al. [22,37]; c) aphid nuclear genomes obtained from
AphidBase (http://www.aphidbase.com/) consisting of the preliminary genome assemblies of
Myzus persicae and Aphis gossypii, and the complete nuclear genome of Acyrthosiphon pisum
(assembly Acyr_2.0; placed and unplaced scaffolds; GenBankAssembly ID: GCA_000142985.2);
d) parasitoid barcode sequences (ITS, rRNA genes, elongation factor, and cytb) from known par-
asitoid genera of the predators and aphids available at GenBank; e) rRNA genes containing data
on 3,000,000 bacteria, 150,000 archaea, and 250,000 eukaryote sequences obtained from the
SILVA rRNA database (release 115) [38]; f) genomes of bacteria genera known to include insect
endosymbionts [31]:Arsenophonus, Blattabacterium, Buchnera, Cardinium, Hamiltonella, Midi-
chloria, Nosema, Regiella, Rickettsia, Rickettsiella, Serratia, Spiroplasma andWolbachia.

Prey and other foreign DNA detection
After quality control, reads from each predator gut content dataset were matched against the
DNA reference databases using BLASTn v2.2.27+ (E-value<1e-5; maximum target sequences
3; no dust) (for Insecta mitogenome, parasitoids, and rRNA databases) and MegaBLAST 2.2.27
+ (E-value<1e-9) (for cox1, aphid genomes and bacterial genome databases) [39]. The
matched reads were filtered for minimum overlap length of 225 bp and identity of 95% (for the
bacterial genome database), 98% (for the mitogenome database) and 99% (for all other refer-
ence databases) using a set of Python customized scripts to eliminate false taxon identifications
as in Paula et al. [31] and Srivathsan et al. [22,37] (https://github.com/asrivathsan/
readidentifier). The mapping region for each matched read was checkedmanually. Reads
matching to the following regions were discarded: a) control region of mitogenomes; b) nuclear
repeat regions, such as short sequence repeats-SSR; c) Coccinellini rRNA because this region
does not differentiate prey from predator. Using these rigorous criteria, a matched read was
assigned to a taxon for the mitogenome, cox1, aphid genomes and bacterial genome databases.
For the rRNA and parasitoid databases, taxon assignment was made to the lowest taxonomic
level that could be reliably identified.

Shotgun-Sequencing of Insect PredatorGut Contents

PLOSONE | DOI:10.1371/journal.pone.0161841 September 13, 2016 4 / 14

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.aphidbase.com/
https://github.com/asrivathsan/readidentifier
https://github.com/asrivathsan/readidentifier


Results

Prey and other foreign DNA detected in the predator guts
The Illumina sequencing of the libraries of the four predator species generated>2 million
reads per species after quality control. Several thousand reads matched across the mitogenome
of the respective focal predator (Figures B-E in S1 File) ranging from 0.07% to 0.7% of total
reads depending on the library (Table 1). An additional 15 to 239 reads per library were identi-
fied as insect mitochondrial DNA but foreign to the focal predator (Table 1). The highest num-
ber of foreign insect taxa identified based on these reads was found inHi. convergens (n = 8,
Table 2). For the other libraries, the numbers ranged from two to three, and were not related to
the number of pooled predator specimens. In addition, non-insect DNA reads were found
using the various databases (Table 1).Doru luteipes had the highest richness of symbionts
(nine genera), plants, fungi and non-symbiont bacteria, whileCy. sanguinea had the lowest.
We did not detect foreign reads in the gut of the unfed recently emerged (control)H. axyridis,
except for one widespread and ubiquitous bacterium (Table 1).

The taxonomic assignment of the foreign DNA in the gut content of each predator is pre-
sented in Table 2, along with the number of reads matched to each of the DNA reference data-
bases. There were fewer matches and fewer species identified using the cox1 database than the
mitogenome database, consistent with the ~20x greater size of the mitogenome and the greater
number of target genes which were hit apparently randomly (Figures B-E in S1 File). In addi-
tion, to search for aphid prey we also used available whole-genome sequences to map the shot-
gun reads, which revealed the presence of Aphis gossypii in theH. axyridis gut, consistent with
the matches to the Insecta mitogenomes (Table 2).

The most common identified prey were intraguild prey and aphids. Evidence of intraguild
predation was detected in all predators.Harmonia axyridiswas preyed upon by all other preda-
tors, whereas predation on Cy. sanguinea andHi. convergens was not detected.Hippodamia
convergens had the highest intraguild prey richness of three coccinellid species and one non-
coccinellid predator (Orius insidiosus). Other extraguild prey detectedwere the lepidopterans
Spodoptera frugiperda,Helicoverpa sp., and Plutella xylostella, the parasitoidDi. coccinellae,
and the stink bug Euschistus sp. Plutella xylostella had a population outbreak in the organic
cabbage field whereD. luteipes was collected.

Non-prey foreign DNA was detected using the parasitoid, nuclear rRNA, and bacteria
genome databases. Parasitoids were detected in all predators using the parasitoid reference
database. However, at the 99% identity threshold used here, the reads matched the conserved
V5 region of 18S rRNA that was identical in closely related species. Consequently, we reported
the taxonomic level at which the match provided a reliable taxonomic determination (families

Table 1. Number of Reads and Taxa (in parentheses) in theGut Contentof the Predators.

Predator Total readsa Predator ForeignDNA

mtDNA Insecta Symbionts Plant Fungi

Cycloneda sanguinea 2,837,177 2,061 15 (3) 21 (2) 1 1

Hippodamia convergens 2,647,833 10,506 239 (8) 102 (3) 1 13 (1)

Harmonia axyridis 3,440,064 9,216 180 (4) 309 (7) 2 (2) 3 (1)

Doru luteipes 2,183,902 17,428 27 (4) 3,032 (9) 130 (2) 577 (2)

Control-groupb 3,502,252 7,427 0 0 (0) 0 0

a After trimming index library and quality control.
b Recently emergedH. axyridisadults without feeding.

doi:10.1371/journal.pone.0161841.t001
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of Chalcidoidea and Aphidiinae in Braconidae). For aphid parasitoids, this was sufficient to
distinguish hyperparasitoids from primary parasitoids and to identify two broad groups of

Table 2. ForeignTaxon andCorrespondingNumber of Reads (in parentheses) Detected in the Gut Content of each Predator usingDifferentDNA
Reference Databases.

Predator DNA reference databases

Insectamitogenomes cox1 Aphid
genomes

Parasitoids Bacterial genomes rRNA

Cycloneda
sanguinea

Doru luteipes (3) Harmonia axyridis (4) - Chalcidoidea (5) Hamiltonella sp. (20)a Ascomycota (1)

Harmonia axyridis (3) Spiroplasmaspp. (1) Spermatophyta (1)

Hippodamia
convergens

Dinocampus coccinellae
(58)

Dinocampus
coccinellae (2)

- Chalcidoidea
(19)

Regiella insecticola
(88)a

Ascomycota (13)

Coleomegilla maculata
(57)

*Aphidiinae (20) Rickettsia spp. (13) Spermatophyta (1)

Harmonia axyridis (27) Wolbachia sp. (1)

Spodoptera frugiperda
(18)

Serratia spp. (8,013)b

Orius insidiosus (15)

Coccinella
septempunctata (11)

Euschistus sp. (6)

Helicoverpa sp. (6)

Harmonia axyridis Doru luteipes (8) Aphis sp. (2) Aphis gossypii
(5)

Chalcidoidea
(125)

Regiella insecticola
(233)a

Ascomycota (3)

Aphis gossypii (5) *Aphidiinae (35) Hamiltonella sp. (29)a Spermatophyta (1)

Rickettsiella sp. (12) Streptophyta (1)

Spiroplasma spp. (12)

Wolbachia sp. (12)

Arsenophonus sp. (6)

Serratia spp. (16,814)b

Serratia symbiotica
(5)a

Doru luteipes Plutella xylostella (16) Plutella xylostella (1) - *Aphidius sp. (1) Spiroplasma spp.
(1,419)

Spermatophyta
(128)

Harmonia axyridis (7) Rickettsia spp. (642) Streptophyta (2)

Aphididae (2) Wolbachia sp. (640) Ascomycota (570)

Nosema spp. (263) Basidiomycota (7)

Serratia spp. (11,095)b

Serratia symbiotica
(29)a

Regiella insecticola
(21)a

Arsenophonus sp. (9)

Blattabacterium spp.
(6)

Hamiltonella sp. (3)a

Controlc 0 0 0 0 Serratia spp. (12,450)b 0

a Aphid parasitoids and aphid symbionts.
b Serratia sp. is presumably S.marcescens, an ubiquitous and highly abundant bacteriumon earth,which was included in the bacteria genome database,

although not strictly considered a symbiont. Curiously, this species was not detected in the predatorCy. sanguinea.
c Recently emergedH. axyridisadults without feeding.

doi:10.1371/journal.pone.0161841.t002
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primary parasitoids. Chalcidoidea parasitoids were detected in all coccinellids,while Aphidii-
nae were detected in all but Cy. sanguinea.

The nuclear rRNA database revealed that all of the predators harbored a remarkable diver-
sity of foreign DNA (Table 2). Reads matching Spermatophyta and fungal species (Strepto-
phyta, Ascomycota, and Basidiomycota) were found in all of the species, but the dermapteran
D. luteipes had by far the highest number of these reads (Table 2). The abundance of plant
DNA may be from indirect consumption because P. xylostella caterpillars are typically stuffed
with largely undigested leaf tissue in their guts. The large quantity of fungal DNA may be asso-
ciated with the scavenging behavior of this species.

The bacteria genome database returned several bacterial species associated with insects,
including facultative and obligate symbionts of aphids. Three aphid-specific symbionts,Hamil-
tonella, R. insecticola, and S. symbiotica, were detected in all four predators, but the strict obli-
gate Buchnera, which is a powerfulmarker of aphid consumption immediately after feeding
[31], was not detected in any of the samples. This probably happened because Buchnera DNA
detection drops very fast after aphid consumption, while the other prey symbionts keep in the
predator guts longer [31].Doru luteipes was the only predator containing numerous reads of
Blattabacterium, which is a mutualistic endosymbiont of cockroaches and some termites [40],
and possibly other cryptic arthropods such as Doru.Nosema, an obligate parasitic microspori-
dia, was found only inD. luteipes.

Predator qualitative trophic network
Based on read matches, a qualitative trophic network was drawn for the four predator species
in the Brazilian agroecosystem (Fig 1). Primary predation is straightforwardly established for
the herbivorous and sap sucking species of Lepidoptera, Hemiptera and Homoptera. In some
cases, the interaction could be established only indirectly through the presence of parasitoids
or bacteria that establish an associationwith a primary predation event on aphids. For example,
in Cy. sanguinea, even though no aphid DNA was detected, an aphid symbiont (Hamiltonella)
was present. Similarly, an aphid parasitoid (Aphidiinae) and an aphid symbiont (R. insecticola)
were found without detection of aphid DNA inHi. convergens. In contrast, direct evidence for
aphid DNA was seen inH. axyridis and D. luteipes, which also contained aphid parasitoid
DNA (Aphidiinae and Aphidius sp.) and aphid symbionts (R. insecticola,Hamiltonella and S.
symbiotica). Both species also harboredArsenophonus, Rickettsiella, Spiroplasma andWolba-
chia, of which somemay be (endo)symbionts of the predators.

In sum, these foreign DNA detections can be integrated into a network of interactions of
predation and parasitism, based on existing biological knowledge about the detected taxa for
the indirectly established interactions (Fig 1). The interpretation of the detection of known par-
asitoids could signal both the direct ingestion by predators or the indirect ingestion of the para-
sitized hosts, or could even signal the parasitism of the predator itself in the case of the
coccinellid specific parasitoid,Di. coccinellae. The total insect trophic links identified for each
focal predator using the Insecta mitogenome, cox1 and aphid genome databases was: two (plus
one indirect link) for Cy. sanguinea, eight (plus one indirect) forHi. convergens, two forH.
axyridis, and three for D. luteipes, of which 93% were species or genus specific (Table 2).

Discussion
The shotgun-sequencing of the DNA in the gut of predators enabled the identification of a set
of taxonomically and functionally diverse foreign taxa, and this information was used to infer a
qualitative trophic interaction network (Fig 1). We detected numerous foreign DNA sequences
that could be identified to 15 taxa at the species or genus levels and assigned a clear trophic
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linkage. The results provided similar taxonomic breadth but higher taxonomic resolution for
prey identification compared to other works using multiplex-PCR or metabarcoding on insect
gut contents (Table 3). For most components of the trophic network these interactions were
established based on just a few reads, although in some situations multiple evidences (e.g. co-
detection of aphids and their microbiome) support the interaction. Particularly interesting are
predator-on-predator interactions, inferred from the presence of predator-associated reads in a
library generated from the gut of a different predator. However, some concerns remain about
the minimum number of reads needed to confidently identify a prey species, because low num-
ber of reads can indicate not just low biomass of prey ingested or longer elapsed time after pre-
dation, but also false detection of spurious reads generated from sample contamination,
sequencing or bioinformatics errors [41]. Although our negative control indicated lack of sam-
ple cross-contamination in our results, we nevertheless consider the network as drawn (Fig 1)
to be no more than a heuristic summary of trophic interactions that require further testing
with improved methodologyand additional field sampling.

Biological knowledge about the identified taxa was required to establish the ingestion of
aphids indirectly via aphid symbionts and parasitoids, and the ecological role of the linkages
with parasitoids remains uncertain (direct or indirect consumption). Taken at face value, the

Fig 1. Qualitative trophic network for the focal predators usingDNA shotgun-sequencingof their gut content. The focal predators are in
black balloons, the prey are in white (extraguild) and grey (intraguild) balloonswith black letters and edges, the parasitoids in white balloonswith
grey edges, in which grey letters are for the known aphid parasitoids, and black letters for other parasitoids. The arrows indicate the flux of
biomass, in which black arrows indicate direct predation, and the dashed arrows indicate inferred predation associated with symbionts. The
numbers at the origin of each arrow indicate the number of reads supporting the arrow, which for inferred predation is a thesumof the total aphid-
specific symbiont reads.

doi:10.1371/journal.pone.0161841.g001
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identified linkages reveal predation on prey species known to occur at the sampled sites. Cyclo-
neda sanguinea andHi. convergens were the most abundant coccinellid species in the sampled
organic farms. Although aphid DNA was not detected in either Cy. sanguinea orHi. conver-
gens, the detection of aphid parasitoid taxa inHi. convergens, and aphid symbionts in both coc-
cinellids strongly implies the consumption of aphids (Table 2). As the dominant aphid species
in these habitats were probably Uroleucon sp. and Brevicoryne sp. [45], neither of which were
in the aphid genome or mitogenome reference databases, the probability of detection of aphid
DNA was reduced. In the dermapteran D. luteipes the observeddirect consumption of aphids
was also confirmed by the indirect linkages of an Aphidius parasitoid and three aphid-specific
symbionts.

Intraguild predation was commonly detected and was asymmetrical.Hippodamia conver-
gens fed on three other ladybirds, while no other predator species was detected in the gut ofH.
axyridis. In the temperate zone,H. axyridis is considered to be an aggressive intraguild preda-
tor and less commonly an intraguild prey [46]. However, in this Brazilian system, it was com-
monly detected as the intraguild prey. Finally, the detection of the coccinellid parasitoid,Di.
coccinellae, represents an interesting addition to the trophic network with its potential to regu-
late the species composition of coccinellid assemblages.While we can plausibly assume that the
Chalcidoidea and Aphidiinae parasitoids and symbionts of aphids (Table 2) were indirectly
preyed upon through predation on their hosts, rather than direct predation on the free-living
adults,Di. coccinellae pupates outside its host, and thus can be acquired by direct predation,
rather than by feeding on a parasitized immature or adult coccinellid. The latter scenario seems
unlikely because the parasitoid prefers adults [47], and intraguild predation is not common on

Table 3. Taxonomic Breadth and Resolutionof the ForeignSpecies Identified in ArthropodGut Contentsby DNA-basedMolecularTools.

Arthropod
taxa

n Food/ prey Breadth
(food
items/
táxon)

Resolution
(% identified
to species
or genus)

Method Target Prey assignment Reference

Reference
db

Read recovery Filtering

Pterostichus
melanarius

50 10 taxa,
slugs,
worms,
weevils,
aphids

7.0 71 multiplex-PCR cox1 – – – [42]

Polyphagous
grasshoppers

(faeces
samples)

3 Plants 3.0 44 metabarcoding,
454

P6 loop of
chloroplast
truL intron

GenBank MegaBLAST,
no discussion
of method for

taxon
assignment

20–85 bp,
% identity
manually
curated, <
4 reads
discarded

[43]

8 ground
predator
species

71.5
(range
6–155)

Arthropods
in banana

3.6 86 metabarcoding,
454

mini cox1
(127bp)

15 species
sequenced
and 20

species from
GenBank

after BLAST
with raw 454
sequences

BLAST+,
Nearest
Neighbor
algorithm

� 120 bp,
85%

identity, <
2 reads
discarded

[44]

4 foliar
predators

5.75
(range
1–10)

Insects in
agricultural

fields

3.8 93 shotgun-
sequencing,
IlluminaMiSeq

mito and
nuclear
DNA

Insecta
mtDNA,
cox1 and
aphid

genomes

BLASTn and
MegaBLAST,
manually
curated

� 225 bp,
98 to 99%
identity

This paper

n = number of individual predators or faeces samples.

doi:10.1371/journal.pone.0161841.t003
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adults [48]. A third scenario is that one of the ladybird specimens used for the gut analysis was
itself parasitized by Di. coccinellae, and traces of its non-degradedDNA (from live tissue) was
transferred into the gut extraction.

The key step of the DNA shotgun-sequencing analysis is the identification of reads as being
foreign to the focal predator genome, which is established based on a stringent match to
known barcode and genome sequences in the reference databases. For this, important issues
are the completeness of identifying foreign DNA (reducing false negatives, i.e., identifying all
of the foreign DNA in the predator gut) and the accurate taxonomic assignments of these
DNA sequences (reducing false positives, i.e., not misidentifying taxa).

Regarding the issue of false negative risks, the foreign reads have to be detected among mil-
lions of others that are unidentified and presumably mostly originate from the predator nuclear
genome. Thus, the taxonomic breadth and resolution of foreign DNA detection is directly
related to the comprehensiveness of the DNA reference databases and the diagnostic power of
the available genetic markers. Barcode and rRNA data were available in our reference databases
for tens of thousands of species, but this may correspond to just a few percent of the total spe-
cies in existence [49]. Thus, many species represented in the shotgun read mixture may remain
unrecognized for the lack of representation in the reference database. Genetic variation and
highly degraded prey DNA also add to the probability of missing a species represented in the
mixture.

The use of the much more comprehensive cox1 database with 58,367 Insecta species refer-
ence sequences did not detect more or unique prey species compared to the mitogenome data-
base (Table 3). This database differs from the mitogenome database in its much greater species
representation, but unlike the mitogenome database it was not supplemented with the local
pool and this may result in recovery of fewer prey species. Secondly, the ~20x shorter length of
the cox1 barcode compared to mitogenome likely resulted in a lower recovery probability. A
greater taxonomic coverage of mitogenomes is expected to aid in particular the resolution of
parasitoid identifications and the detection of more aphid reads. Parasitoid detectionwas
mainly against the parasitoid database, a collection of widely sequenced genes for diverse aphid
parasitoid species, but the reads only matched the conserved regions of the 18S rRNA gene,
which were invariable across entire clades and so parasitoid identifications could not be at the
species level (Table 2).

The underrepresentation of mitochondrial and nuclear genomes of the aphid and parasitoid
species in the DNA reference databases clearly limits the taxonomic resolution and the number
of reads recovered.Where nuclear genome sequences available, the detection of a prey is
expectedwith higher read numbers. For example, Paula et al. [31] detectedAcyrthosiphon
pisum in feeding trials using its nuclear genome at ~50x higher read numbers than by using the
mitogenome. The predator gut content DNA datasets obtained here can be reanalyzed using a
more comprehensive set of DNA reference databases to improve the taxonomic breadth and
resolution of prey and other foreign species. In particular, investments in the construction of
local mitogenome and draft nuclear genome databases of the species that share the habitat with
the predators are needed because the single-locus cox1 barcode database provides compara-
tively low read coverage for read matching (Table 2).

Regarding the risk of false positives, this is reduced because a high stringency of overlap
length and sequence identity for taxonomic identificationwas applied, although this approach
resulted in a low number of matching reads. For example, when we filtered theHi. convergens
gut content dataset against the Insecta mitogenome database using 90% identity, we obtained
775 reads for 11 foreign species, instead of 198 reads for eight foreign species when using 98%
identity (Table 1). In the three species eliminated, all of the reads mapped to the mitochondrial
D-loop region.Most of the remaining eliminated reads also mapped to this region. The
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proportion of D-loopmatching reads was unexpectedly high at a 90% identity threshold, and
does not give confidence in a prey species assignment. The D-loopmatches are probably spuri-
ous, perhaps resulting from the high AT content and possibly conserved tandem repeats char-
acteristic of these regions that limit the power for species discrimination. Therefore, the 98%
identity threshold for prey identification in the mitogenome database was appropriate to elimi-
nate false positive identifications. In a similar way, we establish identity thresholds for the
other reference databases.

Possible ways to address the issue of low number of matching reads could be increasing the
sequencing depth and optimizing the library insert size. In our various libraries we used insert
sizes between 300 and 900 bp and paired-end sequencing in some cases, but while this pro-
duces high-quality reads for secure species-level identification, it probably reduces the number
of reads to be detected for the prey DNA in digestion in the gut of the predator. Degraded
DNA in the gut is expected to be short (e.g.,�200 bp [50,51]) depending of the elapsed time
since ingestion. Consequently, long library insert size may discriminate against the ingested
DNA in favor of the non-degradedDNA from live predator tissue. At the same time, such an
insert size can be used to generate longer sequences, which improves the accuracy of taxon
identifications. Therefore, a balance between the library insert size and the read length should
be considered.Much higher sequencing depth can be achieved at the same cost with single-end
sequencing and shorter reads, and using the more powerful HiSeq platforms.

The metabarcoding approach may still be considered, due to the much larger number of for-
eign reads. However, PCR on degradedDNA is notoriously difficult, and variable PCR effi-
ciencymay skew the relative read numbers in the mixture due to imperfect primer target
match [13,15,26, 52, 53]. Thus, metabarcoding does not necessarily improve the completeness
of species detection [12, 54, 55] for trophic interaction studies of generalist predators. Clarke
et al. [17] observed in silico that a set of widely used ‘generic arthropod’ cox1metabarcoding
primers only managed to recover 43 to 64% of the species in a knownmixture of arthropod
DNA. Ji et al. [56] found that many cox1metabarcoding identifications are reliable, but were
only able to link the most commonly recovered foreign sequences to operational taxonomic
units (OTUs), despite the large cox1 reference database. In addition, some of the reads can orig-
inate from contamination or chimeras [13, 57]. Metabarcoding studies therefore use an arbi-
trary threshold for the minimum number of reads per sample (e.g., discarding reads occurring
less than four times, as in [42]).

In conclusion, even with modest sampling effort for four arthropod generalist predators,
this DNA shotgun-sequencing approach provided similar taxonomic breadth and higher
taxonomic resolution for prey identification compared to other works using multiplex-PCR
or metabarcoding on insect gut contents (Table 3). At the current stage, however, the num-
ber of matching reads needs to be increased and the interpretation of low read matches
needs to be validated. Despite this caveat, it is reasonable to conclude that shotgun-
sequencing has significant advantages compared to the current methodologies and there-
fore might emerge as a preferred choice for gut content analysis because of: a) high confi-
dence in the foreign DNA identifications; b) potential to simultaneously provide high
taxonomic breadth and resolution; c) its practicality for working even with closely related
prey and predator species, i.e. arthropods preyed upon by arthropods and even within a sin-
gle guild; d) its barcode-free and PCR-free detection, eliminating PCR bias in species detec-
tion and measures of abundance; and e) an analysis of a broader spectrumof the ecosystem,
including microbial symbionts and commensals, without the need for additional PCR tar-
geting these groups.
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