D. Louis, A. Perry, and G. Reifenberger, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathologica, vol.45, issue.6, pp.803-820, 2016.
DOI : 10.1038/ng.2611

URL : https://hal.archives-ouvertes.fr/hal-01479018

D. Ricard, A. Idbaih, and F. Ducray, Primary brain tumours in adults, The Lancet, vol.379, issue.9830, pp.1984-1996, 2012.
DOI : 10.1016/S0140-6736(11)61346-9

H. Ohgaki and P. Kleihues, The Definition of Primary and Secondary Glioblastoma, Clinical Cancer Research, vol.19, issue.4, pp.764-772, 2013.
DOI : 10.1158/1078-0432.CCR-12-3002

R. Stupp, W. Mason, and M. Van-den-bent, Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-996, 2005.
DOI : 10.1056/NEJMoa043330

J. Chan, S. Lee, and B. Fraass, Survival and Failure Patterns of High-Grade Gliomas After Three-Dimensional Conformal Radiotherapy, Journal of Clinical Oncology, vol.20, issue.6, pp.1635-1642, 2002.
DOI : 10.1200/JCO.2002.20.6.1635

A. Yin, J. Cheng, X. Zhang, and B. Liu, The treatment of glioblastomas: A systematic update on clinical Phase III trials, Critical Reviews in Oncology/Hematology, vol.87, issue.3, pp.265-282, 2013.
DOI : 10.1016/j.critrevonc.2013.01.007

R. Galli, E. Binda, and U. Orfanelli, Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma, Cancer Research, vol.64, issue.19, pp.7011-7021, 2004.
DOI : 10.1158/0008-5472.CAN-04-1364

S. Singh, I. Clarke, and M. Terasaki, Identification of a Cancer Stem Cell in Human Brain Tumors, Cancer Res, vol.63, pp.5821-5828, 2003.

J. Lee, M. Son, and K. Woolard, Epigenetic-Mediated Dysfunction of the Bone Morphogenetic Protein Developmental Pathway Inhibits Differentiation of Human Glioblastoma Tumor Initiating Cells, Cancer Cell, vol.13, 2008.

Y. Wang, J. Yang, and H. Zheng, Expression of Mutant p53 Proteins Implicates a Lineage Relationship between Neural Stem Cells and Malignant Astrocytic Glioma in a Murine Model, Cancer Cell, vol.15, issue.6, pp.514-526, 2009.
DOI : 10.1016/j.ccr.2009.04.001

G. Young, E. Macklin, and K. Setayesh, Longitudinal MRI evidence for decreased survival among periventricular glioblastoma, Journal of Neuro-Oncology, vol.67, issue.5, pp.261-269, 2011.
DOI : 10.1227/NEU.0b013e3181f556ab

URL : https://link.springer.com/content/pdf/10.1007%2Fs11060-010-0477-1.pdf

N. Jafri, J. Clarke, and V. Weinberg, Relationship of glioblastoma multiforme to the subventricular zone is associated with survival, Neuro-Oncology, vol.15, issue.1, pp.91-96, 2013.
DOI : 10.1093/neuonc/nos268

E. Brantley and E. Benveniste, STAT-3: A Molecular Hub for Signaling Pathways in Gliomas, Mol Cancer Res MCR, 2008.

U. Wegenka, J. Buschmann, and C. Lütticken, Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level., Molecular and Cellular Biology, vol.13, issue.1, pp.276-288, 1993.
DOI : 10.1128/MCB.13.1.276

J. Darnell, I. Kerr, and G. Stark, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science, vol.264, issue.5164, pp.1415-1421, 1994.
DOI : 10.1126/science.8197455

S. Hervas-stubbs, J. Perez-gracia, and A. Rouzaut, Direct Effects of Type I Interferons on Cells of the Immune System, Clinical Cancer Research, vol.17, issue.9, pp.2619-2627, 2011.
DOI : 10.1158/1078-0432.CCR-10-1114

L. Vallières and S. Rivest, L'interleukine-6 dans le système nerveux central. médecine/sciences 16:936. doi: 10, p.42671761, 2000.

G. Miklossy, T. Hilliard, and J. Turkson, Therapeutic modulators of STAT signalling for human diseases, Nature Reviews Drug Discovery, vol.23, issue.8, pp.611-629, 2013.
DOI : 10.1158/1078-0432.CCR-06-0484

M. Szel?g, A. Czerwoniec, J. Wesoly, and H. Bluyssen, Comparative screening and validation as a novel tool to identify STAT-specific inhibitors, European Journal of Pharmacology, vol.740, pp.417-420, 2014.
DOI : 10.1016/j.ejphar.2014.05.047

J. Yang, J. Huang, and M. Dasgupta, Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes, Proceedings of the National Academy of Sciences, vol.280, issue.43, pp.21499-21504, 2010.
DOI : 10.1074/jbc.M505741200

O. Shea, J. Kanno, Y. Chen, X. Levy, and D. , CELL SIGNALING: Stat Acetylation-A Key Facet of Cytokine Signaling?, Science, vol.307, issue.5707, pp.217-218, 2005.
DOI : 10.1126/science.1108164

S. Ray, I. Boldogh, and A. Brasier, STAT3 NH2-Terminal Acetylation Is Activated by the Hepatic Acute-Phase Response and Required for IL-6 Induction of Angiotensinogen, Gastroenterology, vol.129, issue.5, pp.1616-1632, 2005.
DOI : 10.1053/j.gastro.2005.07.055

Z. Yuan, Y. Guan, D. Chatterjee, and Y. Chin, Stat3 Dimerization Regulated by Reversible Acetylation of a Single Lysine Residue, Science, vol.307, issue.5707, pp.269-273, 2005.
DOI : 10.1126/science.1105166

X. Fan, L. Khaki, and T. Zhu, Notch Pathway Blockade Depletes CD133-Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts, Stem Cells, vol.28, pp.5-16, 2010.
DOI : 10.1002/stem.254

H. Qin, H. Kim, and J. Kim, Activation of Signal Transducer and Activator of Transcription 3 through a Phosphomimetic Serine 727 Promotes Prostate Tumorigenesis Independent of Tyrosine 705 Phosphorylation, Cancer Research, vol.68, issue.19, pp.7736-7741, 2008.
DOI : 10.1158/0008-5472.CAN-08-1125

C. Villalva, S. Martin-lannerée, and U. Cortes, STAT3 is essential for the maintenance of neurosphere-initiating tumor cells in patients with glioblastomas: A potential for targeted therapy?, International Journal of Cancer, vol.109, issue.4, pp.826-838, 2011.
DOI : 10.1182/blood-2006-01-029918

M. Furqan, N. Mukhi, B. Lee, and D. Liu, Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application, Biomarker Research, vol.1, issue.1, pp.2050-7771, 2013.
DOI : 10.1158/1078-0432.CCR-10-3012

Z. Ren, X. Mao, and C. Mertens, Crystal structure of unphosphorylated STAT3 core fragment, Biochemical and Biophysical Research Communications, vol.374, issue.1, 2008.
DOI : 10.1016/j.bbrc.2008.04.049

K. Shuai, G. Stark, I. Kerr, and J. Darnell, A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma, Science, vol.261, issue.5129, pp.1744-1746, 1993.
DOI : 10.1126/science.7690989

E. Caldenhoven, T. Dijk, . Van, and R. Solari, STAT3??, a Splice Variant of Transcription Factor STAT3, Is a Dominant Negative Regulator of Transcription, Journal of Biological Chemistry, vol.12, issue.22, pp.13221-13227, 1996.
DOI : 10.1073/pnas.89.10.4226

A. Chakraborty, S. White, and T. Schaefer, Granulocyte colony-stimulating factor activation of Stat3 alpha and Stat3 beta in immature normal and leukemic human myeloid cells, Blood, vol.88, pp.2442-2449, 1996.

T. Schaefer, L. Sanders, and D. Nathans, Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3., Proceedings of the National Academy of Sciences, vol.92, issue.20, pp.9097-9101, 1995.
DOI : 10.1073/pnas.92.20.9097

T. Hoey, S. Zhang, and N. Schmidt, Distinct requirements for the naturally occurring splice forms Stat4?? and Stat4?? in IL-12 responses, The EMBO Journal, vol.22, issue.16, pp.4237-4248, 2003.
DOI : 10.1093/emboj/cdg393

D. Wang, D. Stravopodis, and S. Teglund, Naturally occurring dominant negative variants of Stat5., Molecular and Cellular Biology, vol.16, issue.11, pp.6141-6148, 1996.
DOI : 10.1128/MCB.16.11.6141

J. Ripperger, S. Fritz, and K. Richter, Transcription Factors Stat3 and Stat5b Are Present in Rat Liver Nuclei Late in an Acute Phase Response and Bind Interleukin, 1995.

B. Patel, J. Pierce, and W. Larochelle, Regulation of interleukin 4-mediated signaling by naturally occurring dominant negative and attenuated forms of human Stat6, Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.172-177, 1998.
DOI : 10.1016/0092-8674(93)90405-F

A. Chakraborty and D. Tweardy, Granulocyte colony-stimulating factor activates a 72-kDa isoform of STAT3 in human neutrophils, J Leukoc Biol, vol.64, pp.675-680, 1998.

M. Azam, C. Lee, I. Strehlow, and C. Schindler, Functionally Distinct Isoforms of STAT5 Are Generated by Protein Processing, Immunity, vol.6, issue.6, pp.691-701, 1997.
DOI : 10.1016/S1074-7613(00)80445-8

E. Caldenhoven, T. Van-dijk, and J. Raaijmakers, Activation of a Functionally Distinct 80-kDa STAT5 Isoform by IL-5 and GM-CSF in Human Eosinophils and Neutrophils, Molecular Cell Biology Research Communications, vol.1, issue.2, pp.95-1010114, 1999.
DOI : 10.1006/mcbr.1999.0114

M. Sherman, D. Powell, and M. Brown, IL-4 Induces the Proteolytic Processing of Mast Cell STAT6, The Journal of Immunology, vol.169, issue.7, pp.3811-3818, 2002.
DOI : 10.4049/jimmunol.169.7.3811

R. Ilaria, R. Hawley, and R. Etten, Dominant Negative Mutants Implicate STAT5 in Myeloid Cell Proliferation and Neutrophil Differentiation, Blood, vol.93, pp.4154-4166, 1999.

F. Piazza, J. Valens, E. Lagasse, and C. Schindler, Myeloid differentiation of FdCP1 cells is dependent on Stat5 processing, Blood, vol.96, pp.1358-1365, 2000.

M. Furqan, A. Akinleye, and N. Mukhi, STAT inhibitors for cancer therapy, Journal of Hematology & Oncology, vol.6, issue.1, pp.90-100, 2013.
DOI : 10.1186/1756-8722-5-43

URL : https://jhoonline.biomedcentral.com/track/pdf/10.1186/1756-8722-6-90?site=jhoonline.biomedcentral.com

A. Lavecchia, D. Giovanni, C. Novellino, and E. , STAT-3 Inhibitors: State of the Art and New Horizons for Cancer Treatment, Current Medicinal Chemistry, vol.18, issue.16, pp.2359-2375, 2011.
DOI : 10.2174/092986711795843218

H. Yu and R. Jove, The STATs of cancer ??? new molecular targets come of age, Nature Reviews Cancer, vol.99, issue.2, pp.97-105, 2004.
DOI : 10.1073/pnas.062036999

R. Catlett-falcone, T. Landowski, and M. Oshiro, Constitutive Activation of Stat3 Signaling Confers Resistance to Apoptosis in Human U266 Myeloma Cells, Immunity, vol.10, issue.1, pp.105-115, 1999.
DOI : 10.1016/S1074-7613(00)80011-4

J. Kim, M. Patel, and J. Ruzevick, STAT3 Activation in Glioblastoma: Biochemical and Therapeutic Implications, Cancers, vol.1836, issue.1, pp.376-395, 2014.
DOI : 10.1084/jem.190.3.355

Z. Zhong, Z. Wen, J. Darnell, and . Jr, Stat3 and Stat4: members of the family of signal transducers and activators of transcription., Proceedings of the National Academy of Sciences, vol.91, issue.11, pp.4806-4816, 1994.
DOI : 10.1073/pnas.91.11.4806

K. Takeda, K. Noguchi, and W. Shi, Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality, Proceedings of the National Academy of Sciences, vol.376, issue.6538, pp.3801-3804, 1997.
DOI : 10.1038/376337a0

R. Buckley, B. Wray, and E. Belmaker, Extreme hyperimmunoglobulinemia E and undue susceptibility to infection, Pediatrics, vol.49, pp.59-70, 1972.

S. Davis, J. Schaller, and R. Wedgwood, Job's Syndrome. Recurrent, " cold " , staphylococcal abscesses, Lancet, vol.1, pp.1013-1015, 1966.

S. Holland, F. Deleo, and H. Elloumi, Mutations in the Hyper-IgE Syndrome, New England Journal of Medicine, vol.357, issue.16, pp.1608-1619, 2007.
DOI : 10.1056/NEJMoa073687

URL : https://hal.archives-ouvertes.fr/pasteur-01375326

A. Kane, E. Deenick, and C. Ma, STAT3 is a central regulator of lymphocyte differentiation and function, Current Opinion in Immunology, vol.28, pp.49-57, 2014.
DOI : 10.1016/j.coi.2014.01.015

Y. Minegishi, M. Saito, and S. Tsuchiya, Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome, Nature, vol.286, issue.7157, pp.1058-1062, 2007.
DOI : 10.1038/nature06096

E. Haapaniemi, M. Kaustio, and H. Rajala, Autoimmunity, hypogammaglobulinemia, lymphoproliferation and mycobacterial disease in patients with dominant activating mutations in STAT3, 2014.

J. Milner, T. Vogel, and L. Forbes, Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations, Blood, vol.125, issue.4, pp.591-599, 2015.
DOI : 10.1182/blood-2014-09-602763

A. Jerez, M. Clemente, and H. Makishima, STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia, Blood, vol.120, issue.15, pp.3048-3057, 2012.
DOI : 10.1182/blood-2012-06-435297

H. Koskela, S. Eldfors, and P. Ellonen, Mutations in Large Granular Lymphocytic Leukemia, New England Journal of Medicine, vol.366, issue.20, pp.1905-1913, 2012.
DOI : 10.1056/NEJMoa1114885

R. Malek and S. Halvorsen, CILIARY NEUROTROPHIC FACTOR AND PHORBOL ESTER EACH DECREASE SELECTED STAT3 POOLS IN NEUROBLASTOMA CELLS BY PROTEASOME-DEPENDENT MECHANISMS, Cytokine, vol.11, issue.3, pp.192-199, 1998.
DOI : 10.1006/cyto.1998.0421

X. Nie, J. Ou-yang, and Y. Xing, Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway, Drug Des Devel Ther, vol.9, pp.5611-5622, 2015.

T. Mandal, A. Bhowmik, and A. Chatterjee, Reduced phosphorylation of Stat3 at Ser-727 mediated by casein kinase 2 ??? Protein phosphatase 2A enhances Stat3 Tyr-705 induced tumorigenic potential of glioma cells, Cellular Signalling, vol.26, issue.8, pp.1725-1734, 2014.
DOI : 10.1016/j.cellsig.2014.04.003

S. Akira, Y. Nishio, and M. Inoue, Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway, Cell, vol.77, issue.1, pp.63-71, 1994.
DOI : 10.1016/0092-8674(94)90235-6

Z. Zhong, Z. Wen, and J. Darnell, Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6, Science, vol.264, issue.5155, pp.95-98, 1994.
DOI : 10.1126/science.8140422

J. Grandis, S. Drenning, and A. Chakraborty, Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro., Journal of Clinical Investigation, vol.102, issue.7, pp.1385-1392, 1998.
DOI : 10.1172/JCI3785

C. Sartor, M. Dziubinski, and C. Yu, Role of Epidermal Growth Factor Receptor and STAT-3 Activation in Autonomous Proliferation of SUM-102PT Human Breast Cancer Cells, Cancer Res, vol.57, pp.978-987, 1997.

M. Vignais, H. Sadowski, and D. Watling, Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins., Molecular and Cellular Biology, vol.16, issue.4, pp.1759-1769, 1996.
DOI : 10.1128/MCB.16.4.1759

C. Yu, D. Meyer, and G. Campbell, Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein, Science, vol.269, issue.5220, pp.81-83, 1995.
DOI : 10.1126/science.7541555

P. Saharinen, N. Ekman, and K. Sarvas, The Bmx Tyrosine Kinase Induces Activation of the Stat Signaling Pathway, Which Is Specifically Inhibited by Protein Kinase C?, Blood, vol.90, pp.4341-4353, 1997.

X. Wen, H. Lin, and H. Shih, Kinase Activation of the Non-receptor Tyrosine Kinase Etk/BMX Alone Is Sufficient to Transactivate STAT-mediated Gene Expression in Salivary and Lung Epithelial Cells, Journal of Biological Chemistry, vol.17, issue.53, pp.38204-38210, 1999.
DOI : 10.1016/0092-8674(95)90405-0

J. Allen, F. Talab, and M. Zuzel, c-Abl regulates Mcl-1 gene expression in chronic lymphocytic leukemia cells, Blood, vol.117, issue.8, pp.2414-2422, 2011.
DOI : 10.1182/blood-2010-08-301176

P. Coppo, I. Dusanter-fourt, and G. Millot, Constitutive and specific activation of STAT3 by BCR-ABL in embryonic stem cells, Oncogene, vol.22, issue.26, pp.4102-4110, 2003.
DOI : 10.1038/sj.onc.1206607

J. Chung, E. Uchida, T. Grammer, and J. Blenis, STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation., Molecular and Cellular Biology, vol.17, issue.11, pp.6508-6516, 1997.
DOI : 10.1128/MCB.17.11.6508

URL : http://mcb.asm.org/content/17/11/6508.full.pdf

C. Lim and X. Cao, Serine Phosphorylation and Negative Regulation of Stat3 by JNK, Journal of Biological Chemistry, vol.15, issue.43, pp.31055-31061, 1999.
DOI : 10.1126/science.7618106

Z. Wen and J. Darnell, Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3, Nucleic Acids Research, vol.25, issue.11, pp.2062-2067, 1997.
DOI : 10.1093/nar/25.11.2062

N. Jain, T. Zhang, and W. Kee, Protein Kinase C ?? Associates with and Phosphorylates Stat3 in an Interleukin-6-dependent Manner, Journal of Biological Chemistry, vol.17, issue.34, 1999.
DOI : 10.1128/MCB.17.6.3418

M. Aziz, B. Hafeez, and J. Sand, Protein kinase C? mediates Stat3Ser727 phosphorylation, Stat3-regulated gene expression and cell invasion in various human cancer cell lines via integration with MAPK cascade (RAF-1, 2010.

M. Aziz, H. Manoharan, and D. Church, Protein Kinase C?? Interacts with Signal Transducers and Activators of Transcription 3 (Stat3), Phosphorylates Stat3Ser727, and Regulates Its Constitutive Activation in Prostate Cancer, Cancer Research, vol.67, issue.18, pp.8828-8838, 2007.
DOI : 10.1158/0008-5472.CAN-07-1604

Y. Xu, Z. Li, and C. Zhang, Knockdown of PKC?? Expression Inhibits Growth, Induces Apoptosis and Decreases Invasiveness of Human Glioma Cells Partially Through Stat3, Journal of Molecular Neuroscience, vol.278, issue.1, pp.12031-12045, 2014.
DOI : 10.1111/j.1742-4658.2010.07965.x

E. Lam, S. Choi, and T. Pareek, Cyclin-dependent kinase 5 represses Foxp3 gene expression and Treg development through specific phosphorylation of Stat3 at Serine 727, Molecular Immunology, vol.67, issue.2, pp.317-341, 2015.
DOI : 10.1016/j.molimm.2015.06.015

J. Turkson, T. Bowman, and R. Garcia, Stat3 Activation by Src Induces Specific Gene Regulation and Is Required for Cell Transformation, Molecular and Cellular Biology, vol.18, issue.5, pp.2545-2552, 1998.
DOI : 10.1128/MCB.18.5.2545

URL : http://mcb.asm.org/content/18/5/2545.full.pdf

M. Miyakoshi, M. Yamamoto, H. Tanaka, and K. Ogawa, Serine 727 phosphorylation of STAT3: An early change in mouse hepatocarcinogenesis induced by neonatal treatment with diethylnitrosamine, Molecular Carcinogenesis, vol.272, issue.1, pp.67-76, 2014.
DOI : 10.1006/excr.2001.5405

M. Sherry, A. Reeves, J. Wu, and B. Cochran, STAT3 Is Required for Proliferation and Maintenance of Multipotency in, Glioblastoma Stem Cells. STEM CELLS, vol.27, pp.2383-2392, 2009.

Y. Jiang, F. Janku, and V. Subbiah, Germline <i>PTPRD</i> Mutations in Ewing Sarcoma: Biologic and Clinical Implications, Oncotarget, vol.4, issue.6, pp.884-889, 2013.
DOI : 10.18632/oncotarget.1021

A. Ostman, C. Hellberg, and F. Böhmer, Protein-tyrosine phosphatases and cancer, Nature Reviews Cancer, vol.1, issue.4, pp.307-320, 2006.
DOI : 10.1128/MCB.16.11.5955

J. Hou, J. Xu, and R. Jiang, Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3, Hepatology, vol.121, issue.2, pp.678-688, 2013.
DOI : 10.1016/j.cell.2005.05.016

I. Lund, J. Hansen, and H. Andersen, Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling, Journal of Molecular Endocrinology, vol.34, issue.2, pp.339-351, 2005.
DOI : 10.1677/jme.1.01694

H. Lee, L. Morales, T. Slaga, and D. Kim, Activation of T-cell Protein-tyrosine Phosphatase Suppresses Keratinocyte Survival and Proliferation following UVB Irradiation, Journal of Biological Chemistry, vol.18, issue.1, pp.13-24, 2015.
DOI : 10.1128/MCB.18.3.1622

T. Yamamoto, Y. Sekine, and K. Kashima, The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation, Biochemical and Biophysical Research Communications, vol.297, issue.4, pp.811-817, 2002.
DOI : 10.1016/S0006-291X(02)02291-X

K. Phromnoi, S. Prasad, and S. Gupta, Dihydroxypentamethoxyflavone Down-Regulates Constitutive and Inducible Signal Transducers and Activators of Transcription-3 through the Induction of Tyrosine Phosphatase SHP-1, Molecular Pharmacology, vol.80, issue.5, pp.889-899, 2011.
DOI : 10.1124/mol.111.073676

S. Yin, H. Wu, and J. Lv, SHP-1 Arrests Mouse Early Embryo Development through Downregulation of Nanog by Dephosphorylation of STAT3, PLoS ONE, vol.27, issue.1, 2014.
DOI : 10.1371/journal.pone.0086330.s004

Y. Bu, F. Su, and X. Wang, Protein tyrosine phosphatase PTPN9 regulates erythroid cell development through STAT3 dephosphorylation in zebrafish, Journal of Cell Science, vol.127, issue.12, pp.2761-2770, 2014.
DOI : 10.1242/jcs.145367

F. Su, F. Ren, and Y. Rong, Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer, Breast Cancer Research, vol.67, issue.2, pp.10-1186, 2012.
DOI : 10.1158/0008-5472.CAN-07-0513

D. Kim, M. Tremblay, and J. Digiovanni, Protein Tyrosine Phosphatases, TC-PTP, SHP1, and SHP2, Cooperate in Rapid Dephosphorylation of Stat3 in Keratinocytes Following UVB Irradiation, PLoS ONE, vol.5, issue.4, 2010.
DOI : 10.1371/journal.pone.0010290.s001

Z. Su, H. Tian, and H. Song, PTPN12 inhibits oral squamous epithelial carcinoma cell proliferation and invasion and can be used as a prognostic marker, Medical Oncology, vol.19, issue.3, pp.618-628, 2013.
DOI : 10.1038/sj.onc.1203483

R. Wakahara, H. Kunimoto, and K. Tanino, Phospho-Ser727 of STAT3 regulates STAT3 activity by enhancing dephosphorylation of phospho-Tyr705 largely through TC45, Genes to Cells, vol.325, issue.2, pp.132-145, 2012.
DOI : 10.1016/j.bbrc.2004.10.075

Z. Xu, H. Zhang, and Y. Zhang, PASD1 promotes STAT3 activity and tumor growth by inhibiting TC45-mediated dephosphorylation of STAT3 in the nucleus, Journal of Molecular Cell Biology, vol.8, issue.3, pp.221-231, 2016.
DOI : 10.1093/jmcb/mjw005

P. Seshacharyulu, P. Pandey, K. Datta, and S. Batra, Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer, Cancer Letters, vol.335, issue.1, 2013.
DOI : 10.1016/j.canlet.2013.02.036

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665613/pdf

J. Zhang, F. Chen, and W. Li, 14-3-3?? Interacts with Stat3 and Regulates Its Constitutive Activation in Multiple Myeloma Cells, PLoS ONE, vol.103, issue.Pt 1, 2012.
DOI : 10.1371/journal.pone.0029554.s002

URL : https://doi.org/10.1371/journal.pone.0029554

F. Ren, F. Su, and H. Ning, SIPAR negatively regulates STAT3 signaling and inhibits progression of melanoma, Cellular Signalling, vol.25, issue.11, pp.2272-2280, 2013.
DOI : 10.1016/j.cellsig.2013.07.023

P. Wang, Y. Xue, and Y. Han, The STAT3-Binding Long Noncoding RNA lnc-DC Controls Human Dendritic Cell Differentiation, Science, vol.489, issue.7414, pp.310-313, 2014.
DOI : 10.1038/nature11245

C. Chung, J. Liao, and B. Liu, Specific Inhibition of Stat3 Signal Transduction by PIAS3, Science, vol.278, issue.5344, pp.1803-1805, 1997.
DOI : 10.1126/science.278.5344.1803

J. Palvimo, PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription: Figure 1, Biochemical Society Transactions, vol.35, issue.6, pp.1405-1408, 2007.
DOI : 10.1042/BST0351405

R. Starr, T. Willson, and E. Viney, A family of cytokine-inducible inhibitors of signalling, Nature, vol.387, issue.6636, pp.917-921, 1997.
DOI : 10.1038/43219

D. Lee, Y. Wang, and D. Kalaitzidis, Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy, Journal of Clinical Investigation, vol.126, issue.4, pp.1300-1310, 2016.
DOI : 10.1172/JCI84620DS1

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811118/pdf

M. Dasgupta, H. Unal, and B. Willard, Critical Role for Lysine 685 in Gene Expression Mediated by Transcription Factor Unphosphorylated STAT3, Journal of Biological Chemistry, vol.65, issue.44, pp.30763-30771, 2014.
DOI : 10.1002/eji.201040540

J. Yang, X. Liao, and M. Agarwal, Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NF??B, Genes & Development, vol.21, issue.11, pp.1396-1408, 2007.
DOI : 10.1101/gad.1553707

J. Gunaje, J. Bhat, and G. , Involvement of Tyrosine Phosphatase PTP1D in the Inhibition of Interleukin-6-Induced Stat3 Signaling by ??-Thrombin, Biochemical and Biophysical Research Communications, vol.288, issue.1, pp.252-2575759, 2001.
DOI : 10.1006/bbrc.2001.5759

S. Lin, N. Saxena, and X. Ding, Leptin Increases Tissue Inhibitor of Metalloproteinase I (TIMP-1) Gene Expression by a Specificity Protein 1/Signal Transducer and Activator of Transcription 3 Mechanism, Molecular Endocrinology, vol.20, issue.12, pp.3376-33882006, 2006.
DOI : 10.1210/me.2006-0177

L. Wang, X. Yang, and X. Zhang, Transcriptional Inactivation of STAT3 by PPAR?? Suppresses IL-6-Responsive Multiple Myeloma Cells, Immunity, vol.20, issue.2, pp.205-218, 2004.
DOI : 10.1016/S1074-7613(04)00030-5

K. Nakashima, M. Yanagisawa, and H. Arakawa, Synergistic Signaling in Fetal Brain by STAT3-Smad1 Complex Bridged by p300, Science, vol.284, issue.5413, pp.479-482, 1999.
DOI : 10.1126/science.284.5413.479

T. Matsuda, A. Junicho, and T. Yamamoto, Cross-Talk between Signal Transducer and Activator of Transcription 3 and Androgen Receptor Signaling in Prostate Carcinoma Cells, Biochemical and Biophysical Research Communications, vol.283, issue.1, pp.179-1874758, 2001.
DOI : 10.1006/bbrc.2001.4758

Z. Yu, W. Zhang, and B. Kone, Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor ??B, Biochemical Journal, vol.367, issue.1, pp.97-105, 2002.
DOI : 10.1042/bj20020588

X. Zhang, M. Wrzeszczynska, C. Horvath, and J. Darnell, Interacting Regions in Stat3 and c-Jun That Participate in Cooperative Transcriptional Activation, Molecular and Cellular Biology, vol.19, issue.10, pp.7138-7146, 1999.
DOI : 10.1128/MCB.19.10.7138

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC84707/pdf

V. Frattini, V. Trifonov, and J. Chan, The integrated landscape of driver genomic alterations in glioblastoma, Nature Genetics, vol.48, issue.10, pp.1141-1149, 2013.
DOI : 10.1038/ncb1727

H. Lo, X. Cao, H. Zhu, and F. Ali-osman, Constitutively Activated STAT3 Frequently Coexpresses with Epidermal Growth Factor Receptor in High-Grade Gliomas and Targeting STAT3 Sensitizes Them to Iressa and Alkylators, Clinical Cancer Research, vol.14, issue.19, pp.6042-6054, 2008.
DOI : 10.1158/1078-0432.CCR-07-4923

C. Chua, Y. Liu, and K. Granberg, IGFBP2 potentiates nuclear EGFR???STAT3 signaling, Oncogene, vol.60, issue.6, pp.738-747, 2016.
DOI : 10.1073/pnas.0506580102

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615268/pdf

G. Chiou, C. Chien, and M. Wang, Epigenetic Regulation of the miR142-3p/Interleukin-6 Circuit in Glioblastoma, Molecular Cell, vol.52, issue.5, pp.693-706, 2013.
DOI : 10.1016/j.molcel.2013.11.009

A. Tchirkov, T. Khalil, and E. Chautard, Interleukin-6 gene amplification and shortened survival in glioblastoma patients, British Journal of Cancer, vol.9, issue.3, pp.474-476, 2007.
DOI : 10.1038/sj.bjc.6600754

URL : http://www.nature.com/bjc/journal/v96/n3/pdf/6603586a.pdf

A. Tchirkov, C. Rolhion, and S. Bertrand, IL-6 gene amplification and expression in human glioblastomas, British Journal of Cancer, vol.85, issue.4, pp.518-522, 1942.
DOI : 10.1054/bjoc.2001.1942

P. Heinrich, I. Behrmann, and G. Muller-newen, Interleukin-6-type cytokine signalling through the gp130, Jak/STAT pathway. Biochem J, vol.334, pp.297-314, 1998.

S. Chen and E. Benveniste, Oncostatin M: a pleiotropic cytokine in the central nervous system, Cytokine & Growth Factor Reviews, vol.15, issue.5, pp.379-391, 2004.
DOI : 10.1016/j.cytogfr.2004.06.002

S. Grant and C. Begley, The oncostatin M signalling pathway: reversing the neoplastic phenotype?, Molecular Medicine Today, vol.5, issue.9, pp.406-412, 1999.
DOI : 10.1016/S1357-4310(99)01540-3

K. Natesh, D. Bhosale, and A. Desai, Oncostatin-M Differentially Regulates Mesenchymal and Proneural Signature Genes in Gliomas via STAT3 Signaling, Neoplasia, vol.17, issue.2, pp.225-237, 2015.
DOI : 10.1016/j.neo.2015.01.001

A. Jahani-asl, H. Yin, and V. Soleimani, Control of glioblastoma tumorigenesis by feed-forward cytokine signaling, Nature Neuroscience, vol.63, issue.6, pp.798-806, 2016.
DOI : 10.1074/jbc.M209494200

H. Wang, J. Lathia, and Q. Wu, Targeting Interleukin 6 Signaling Suppresses Glioma Stem Cell Survival and Tumor Growth, Stem Cells, vol.25, issue.10, pp.2393-2404, 2009.
DOI : 10.1002/stem.188

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.188/pdf

Q. Liu, G. Li, and R. Li, IL-6 promotion of glioblastoma cell invasion and angiogenesis in U251 and T98G cell lines, Journal of Neuro-Oncology, vol.115, issue.2, pp.165-176, 2010.
DOI : 10.1177/153303460600500308

H. Akil, A. Abbaci, and F. Lalloué, IL22/IL-22R Pathway Induces Cell Survival in Human Glioblastoma Cells, PLOS ONE, vol.174, issue.4, 2015.
DOI : 10.1371/journal.pone.0119872.g007

S. Loeffler, B. Fayard, J. Weis, and J. Weissenberger, Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytesin vivo and regulatesVEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1, International Journal of Cancer, vol.18, issue.2, pp.202-213, 2005.
DOI : 10.1128/MCB.18.4.2108

Q. Xu, J. Briggs, and S. Park, Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways, Oncogene, vol.24, issue.36, pp.5552-5560, 2005.
DOI : 10.1038/35060032

URL : http://www.nature.com/onc/journal/v24/n36/pdf/1208719a.pdf

. Ren, Selective inhibition of PDGFR by imatinib elicits the sustained activation of ERK and downstream receptor signaling in malignant glioma cells, International Journal of Oncology, vol.38, issue.2, 2011.
DOI : 10.3892/ijo.2010.861

O. Guryanova, Q. Wu, and L. Cheng, Nonreceptor Tyrosine Kinase BMX Maintains Self-Renewal and Tumorigenic Potential of Glioblastoma Stem Cells by Activating STAT3, Cancer Cell, vol.19, issue.4, pp.498-511, 2011.
DOI : 10.1016/j.ccr.2011.03.004

T. Sharif and M. Sharif, Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples., International Journal of Oncology, 1999.
DOI : 10.3892/ijo.15.2.237

A. Androutsellis-theotokis, R. Leker, and F. Soldner, Notch signalling regulates stem cell numbers in vitro and in vivo, Nature, vol.12, issue.7104, pp.823-826, 2006.
DOI : 10.1016/j.devcel.2005.09.010

J. Garner, M. Fan, and C. Yang, Constitutive Activation of Signal Transducer and Activator of Transcription 3 (STAT3) and Nuclear Factor ??B Signaling in Glioblastoma Cancer Stem Cells Regulates the Notch Pathway, Journal of Biological Chemistry, vol.65, issue.36, pp.26167-26176, 2013.
DOI : 10.1002/bies.20647

E. Brantley, L. Nabors, and G. Gillespie, Loss of PIAS3 Expression in Glioblastoma Multiforme Tumors: Implications for STAT-3 Activation and Gene Expression, Clin Cancer Res Off J Am Assoc Cancer Res, 2008.

H. Yasukawa, A. Sasaki, and A. Yoshimura, Negative Regulation of Cytokine Signaling Pathways, Annual Review of Immunology, vol.18, issue.1, pp.143-164, 2000.
DOI : 10.1146/annurev.immunol.18.1.143

A. Yoshimura, T. Naka, and M. Kubo, SOCS proteins, cytokine signalling and immune regulation, Nature Reviews Immunology, vol.7, issue.6, pp.454-465, 2007.
DOI : 10.4049/jimmunol.175.8.5077

K. Sutherland, G. Lindeman, and D. Choong, Differential hypermethylation of SOCS genes in ovarian and breast carcinomas, Oncogene, vol.23, issue.46, pp.7726-7733, 2004.
DOI : 10.1002/humu.1130

H. Zhou, R. Miki, and M. Eeva, Reciprocal Regulation of SOCS 1 and SOCS3 Enhances Resistance to Ionizing Radiation in Glioblastoma Multiforme, Clinical Cancer Research, vol.13, issue.8, pp.2344-2353, 2007.
DOI : 10.1158/1078-0432.CCR-06-2303

D. Solomon, J. Kim, and J. Cronin, Mutational Inactivation of PTPRD in Glioblastoma Multiforme and Malignant Melanoma, Cancer Research, vol.68, issue.24, pp.10300-10306, 2008.
DOI : 10.1158/0008-5472.CAN-08-3272

S. Veeriah, C. Brennan, and S. Meng, The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers, Proceedings of the National Academy of Sciences, vol.314, issue.5797, pp.9435-9440, 2009.
DOI : 10.1126/science.1133427

B. Ortiz, A. Fabius, and W. Wu, Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis, Proceedings of the National Academy of Sciences, vol.68, issue.7, pp.8149-8154, 2014.
DOI : 10.1158/0008-5472.CAN-07-6350

K. Lee, K. Byun, and W. Hong, Proteome-wide discovery of mislocated proteins in cancer, Genome Research, vol.23, issue.8, pp.1283-1294, 2013.
DOI : 10.1101/gr.155499.113

M. Abou-ghazal, D. Yang, and W. Qiao, The Incidence, Correlation with Tumor-Infiltrating Inflammation, and Prognosis of Phosphorylated STAT3 Expression in Human Gliomas, Clinical Cancer Research, vol.14, issue.24, pp.8228-8235, 2008.
DOI : 10.1158/1078-0432.CCR-08-1329

S. Kohsaka, L. Wang, and K. Yachi, STAT3 Inhibition Overcomes Temozolomide Resistance in Glioblastoma by Downregulating MGMT Expression, Molecular Cancer Therapeutics, vol.11, issue.6, pp.1289-1299, 2012.
DOI : 10.1158/1535-7163.MCT-11-0801

M. Mizoguchi, R. Betensky, and T. Batchelor, Activation of STAT3, MAPK, and AKT in Malignant Astrocytic Gliomas, Journal of Neuropathology and Experimental Neurology, vol.65, issue.12, pp.1181-1188, 2006.
DOI : 10.1097/01.jnen.0000248549.14962.b2

H. Wang, H. Wang, and W. Zhang, Analysis of the activation status of Akt, NF??B and Stat3 in human diffuse gliomas, Laboratory Investigation, vol.3, issue.8, pp.941-951, 2004.
DOI : 10.1016/S0898-6568(99)00077-7

P. Birner, K. Toumangelova-uzeir, S. Natchev, and M. Guentchev, STAT3 tyrosine phosphorylation influences survival in glioblastoma, Journal of Neuro-Oncology, vol.4, issue.3, pp.339-343, 2010.
DOI : 10.4049/jimmunol.180.4.2089

L. Schaefer, Z. Ren, G. Fuller, and T. Schaefer, Constitutive activation of Stat3?? in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2), Oncogene, vol.21, issue.13, pp.2058-2065, 2002.
DOI : 10.1126/science.7541555

H. Aoki, E. Iwado, and M. Eller, Telomere 3' overhang-specific DNA oligonucleotides induce autophagy in malignant glioma cells, The FASEB Journal, vol.21, issue.11, pp.2918-2930, 2007.
DOI : 10.1096/fj.06-6941com

G. Lin, Y. Chen, and Z. Lin, STAT3 serine 727 phosphorylation influences clinical outcome in glioblastoma, Int J Clin Exp Pathol, vol.7, pp.3141-3149, 2014.

Z. Ouédraogo, M. Müller-barthélémy, and J. Kemeny, STAT3 Serine 727 Phosphorylation: A Relevant Target to Radiosensitize Human Glioblastoma, Brain Pathology, vol.264, issue.1, pp.18-30, 2016.
DOI : 10.1126/science.8140422

J. Alvarez, N. Mukherjee, and A. Chakravarti, A STAT3 Gene Expression Signature in Gliomas is Associated with a Poor Prognosis, Transl Oncogenomics, vol.2, pp.99-105, 2007.

M. Carro, W. Lim, and M. Alvarez, The transcriptional network for mesenchymal transformation of brain tumours, Nature, vol.61, issue.7279, pp.318-325, 2010.
DOI : 10.1042/bj20020508

L. Cooper, D. Gutman, and C. Chisolm, The Tumor Microenvironment Strongly Impacts Master Transcriptional Regulators and Gene Expression Class of Glioblastoma, The American Journal of Pathology, vol.180, issue.5, pp.2108-2119, 2012.
DOI : 10.1016/j.ajpath.2012.01.040

G. Lin, L. Yang, and X. Wang, STAT3 Tyr705 phosphorylation affects clinical outcome in patients with newly diagnosed supratentorial glioblastoma, Medical Oncology, vol.28, issue.2, pp.1-7, 2014.
DOI : 10.1002/med.20101

H. Smilowitz, J. Weissenberger, and J. Weis, ???expressing glioma cell lines into immunocompetent mice: establishment of a new transplantable in vivo model for malignant glioma, Journal of Neurosurgery, vol.106, issue.4, pp.652-659, 2007.
DOI : 10.3171/jns.2007.106.4.652

J. Weissenberger, J. Steinbach, and G. Malin, Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice, Oncogene, vol.14, issue.17, 1997.
DOI : 10.1038/sj.onc.1201168

K. Schlessinger and D. Levy, Malignant Transformation but not Normal Cell Growth Depends on Signal Transducer and Activator of Transcription 3, Cancer Research, vol.65, issue.13, pp.5828-5834, 2005.
DOI : 10.1158/0008-5472.CAN-05-0317

J. Bromberg, M. Wrzeszczynska, and G. Devgan, Stat3 as an Oncogene, Cell, vol.98, issue.3, pp.295-303, 1999.
DOI : 10.1016/S0092-8674(00)81959-5

URL : https://doi.org/10.1016/s0092-8674(02)09920-8

T. Dechow, L. Pedranzini, and A. Leitch, Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C, Proceedings of the National Academy of Sciences, vol.10, issue.6, pp.10602-10607, 2004.
DOI : 10.1006/scbi.2000.0379

E. Macias, D. Rao, and S. Carbajal, Stat3 Binds to mtDNA and Regulates Mitochondrial Gene Expression in Keratinocytes, Journal of Investigative Dermatology, vol.134, issue.7, 1971.
DOI : 10.1038/jid.2014.68

C. Capron, K. Jondeau, and L. Casetti, Viability and stress protection of chronic lymphoid leukemia cells involves overactivation of mitochondrial phosphoSTAT3Ser727, Cell Death Dis, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01074546

C. Yu, X. Huo, and A. Agoston, Mitochondrial STAT3 contributes to transformation of Barrett's epithelial cells that express oncogenic Ras in a p53-independent fashion, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.309, issue.3, pp.146-61, 2015.
DOI : 10.1152/ajpgi.00462.2014

N. De-la-iglesia, G. Konopka, and K. Lim, Deregulation of a STAT3-Interleukin 8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness, Journal of Neuroscience, vol.28, issue.23, pp.5870-5878, 2008.
DOI : 10.1523/JNEUROSCI.5385-07.2008

L. Konnikova, M. Kotecki, M. Kruger, and B. Cochran, Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells, BMC Cancer, vol.3, issue.2, pp.23-33, 2003.
DOI : 10.1186/1471-2202-3-18

S. Rahaman, P. Harbor, and O. Chernova, Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells, Oncogene, vol.21, issue.55, pp.8404-8413, 2002.
DOI : 10.1099/0022-1317-83-7-1651

J. Shen, R. Li, and G. Li, Inhibitory effects of decoy-ODN targeting activated STAT3 on human glioma growth in vivo, Vivo Athens Greece, vol.23, pp.237-243, 2009.

A. Dasgupta, B. Raychaudhuri, and T. Haqqi, Stat3 activation is required for the growth of U87 cell-derived tumours in mice, European Journal of Cancer, vol.45, issue.4, pp.677-684, 2009.
DOI : 10.1016/j.ejca.2008.11.027

P. Yue, F. Lopez-tapia, and D. Paladino, Hydroxamic Acid and Benzoic Acid-Based STAT3 Inhibitors Suppress Human Glioma and Breast Cancer Phenotypes In Vitro and In Vivo, Cancer Research, vol.76, issue.3, pp.652-663, 2016.
DOI : 10.1158/0008-5472.CAN-14-3558

T. Peng, L. Zhou, L. Zuo, and Y. Luan, miR-506 functions as a tumor suppressor in glioma by targeting STAT3, Oncology Reports, vol.35, issue.2, 2016.
DOI : 10.3892/or.2015.4406

L. Hong, L. Ya-wei, and W. Hai, MiR-519a functions as a tumor suppressor in glioma by targeting the oncogenic STAT3 pathway, Journal of Neuro-Oncology, vol.111, issue.1, pp.35-45, 2016.
DOI : 10.1007/s11060-012-1017-y

X. Yuan, J. Du, and S. Hua, Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells, Experimental Cell Research, vol.330, issue.2, pp.267-276, 2015.
DOI : 10.1016/j.yexcr.2014.09.006

M. Zou, C. Hu, and Q. You, Oroxylin A induces autophagy in human malignant glioma cells via the mTOR-STAT3-Notch signaling pathway, Molecular Carcinogenesis, vol.1, issue.11, pp.1363-1375, 2015.
DOI : 10.4161/auto.1.1.1536

. Jhanwar-uniyal, Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility, International Journal of Oncology, vol.35, issue.4, pp.10-3892, 2009.
DOI : 10.3892/ijo_00000386

C. Senft, M. Priester, and M. Polacin, Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells, Journal of Neuro-Oncology, vol.21, issue.3, pp.393-403, 2011.
DOI : 10.1038/sj.onc.1205263

. Li, IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1, Oncology Reports, vol.23, issue.6, pp.10-00000795, 2010.
DOI : 10.3892/or_00000795

M. Priester, E. Copanaki, and V. Vafaizadeh, STAT3 silencing inhibits glioma single cell infiltration and tumor growth, Neuro-Oncology, vol.15, issue.7, pp.840-852, 2013.
DOI : 10.1093/neuonc/not025

URL : https://academic.oup.com/neuro-oncology/article-pdf/15/7/840/6205679/not025.pdf

D. Kesanakurti, C. Chetty, and D. Maddirela, Essential role of cooperative NF-??B and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma, Oncogene, vol.6, issue.43, 2013.
DOI : 10.1371/journal.pone.0019341

S. Singh, R. Bhardwaj, and K. Wilczynska, A Complex of Nuclear Factor I-X3 and STAT3 Regulates Astrocyte and Glioma Migration through the Secreted Glycoprotein YKL-40, Journal of Biological Chemistry, vol.180, issue.46, pp.39893-39903, 2011.
DOI : 10.4049/jimmunol.180.5.3492

L. Xu, H. Xiao, and M. Xu, Glioma-derived T Cell Immunoglobulin- and Mucin Domain-containing Molecule-4 (TIM4) Contributes to Tumor Tolerance, Journal of Biological Chemistry, vol.180, issue.42, pp.36694-36699, 2011.
DOI : 10.1016/j.it.2010.04.002

URL : http://www.jbc.org/content/286/42/36694.full.pdf

A. See, J. Han, and J. Phallen, The role of STAT3 activation in modulating the immune microenvironment of GBM, Journal of Neuro-Oncology, vol.71, issue.3, pp.359-368, 2012.
DOI : 10.1038/bjc.1995.162

D. Oosterhoff, S. Lougheed, and R. Van-de-ven, Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition, OncoImmunology, vol.62, issue.5, pp.649-658, 2012.
DOI : 10.1016/S0140-6736(98)07186-4

J. Wei, J. Barr, and L. Kong, Glioblastoma Cancer-Initiating Cells Inhibit T-Cell Proliferation and Effector Responses by the Signal Transducers and Activators of Transcription 3 Pathway, Molecular Cancer Therapeutics, vol.9, issue.1, pp.67-78, 2010.
DOI : 10.1158/1535-7163.MCT-09-0734

A. Wu, J. Wei, and L. Kong, Glioma cancer stem cells induce immunosuppressive macrophages/microglia, Neuro-Oncology, vol.12, issue.11, pp.1113-1125, 2010.
DOI : 10.1093/neuonc/noq082

URL : https://academic.oup.com/neuro-oncology/article-pdf/12/11/1113/16662650/noq082.pdf

M. Fujita, X. Zhu, and K. Sasaki, Inhibition of STAT3 Promotes the Efficacy of Adoptive Transfer Therapy Using Type-1 CTLs by Modulation of the Immunological Microenvironment in a Murine Intracranial Glioma, The Journal of Immunology, vol.180, issue.4, pp.2089-2098, 2008.
DOI : 10.4049/jimmunol.180.4.2089

Y. Yao, H. Ye, and Z. Qi, B7-H4(B7x)-Mediated Cross-talk between Glioma-Initiating Cells and Macrophages via the IL6/JAK/STAT3 Pathway Lead to Poor Prognosis in Glioma Patients, Clinical Cancer Research, vol.22, issue.11, pp.2778-2790, 2016.
DOI : 10.1158/1078-0432.CCR-15-0858

J. Wei, A. Wu, and L. Kong, Hypoxia Potentiates Glioma-Mediated Immunosuppression, PLoS ONE, vol.37, issue.1, 2011.
DOI : 10.1371/journal.pone.0016195.g006

URL : https://doi.org/10.1371/journal.pone.0016195

S. Hussain, L. Kong, and J. Jordan, A Novel Small Molecule Inhibitor of Signal Transducers and Activators of Transcription 3 Reverses Immune Tolerance in Malignant Glioma Patients, Cancer Research, vol.67, issue.20, pp.9630-9636, 2007.
DOI : 10.1158/0008-5472.CAN-07-1243

H. Van-cruijsen, D. Oosterhoff, and J. Lindenberg, precursors is mediated by IL-6 but unaffected by JAK2/STAT3 inhibition, Immunotherapy, vol.149, issue.9, pp.1051-1061, 2011.
DOI : 10.1056/NEJMc0804818

S. Ferguson, V. Srinivasan, and A. Heimberger, The role of STAT3 in tumor-mediated immune suppression, Journal of Neuro-Oncology, vol.6, issue.9, pp.385-394, 2015.
DOI : 10.1158/1078-0432.CCR-10-0279

S. Kang, M. Yu, and K. Park, Activated STAT3 Regulates Hypoxia-Induced Angiogenesis and Cell Migration in Human Glioblastoma, Neurosurgery, vol.67, issue.5, pp.1386-1395, 2010.
DOI : 10.1227/NEU.0b013e3181f1c0cd

G. Yuan, S. Yan, and H. Xue, JSI-124 Suppresses Invasion and Angiogenesis of Glioblastoma Cells In Vitro, PLOS ONE, vol.277, issue.Suppl 3, 2015.
DOI : 10.1371/journal.pone.0118894.s002

T. Miyazaki, Y. Taketomi, and Y. Saito, Calpastatin Counteracts Pathological Angiogenesis by Inhibiting Suppressor of Cytokine Signaling 3 Degradation in Vascular Endothelial CellsNovelty and Significance, Circulation Research, vol.116, issue.7, pp.1170-1181, 2015.
DOI : 10.1161/CIRCRESAHA.116.305363

M. Yu, K. Park, and D. Park, Reactive oxygen species production has a critical role in hypoxia-induced Stat3 activation and angiogenesis in human glioblastoma, Journal of Neuro-Oncology, vol.208, issue.Pt 2, pp.55-63, 2015.
DOI : 10.1084/jem.20102049

O. Chinot, W. Wick, and T. Cloughesy, Bevacizumab for newly diagnosed glioblastoma, N Engl J Med, vol.370, p.2049, 2014.

M. Gilbert, J. Dignam, and T. Armstrong, A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma, New England Journal of Medicine, vol.370, issue.8, pp.699-708, 2014.
DOI : 10.1056/NEJMoa1308573

T. Batchelor, P. Mulholland, and B. Neyns, Phase III Randomized Trial Comparing the Efficacy of Cediranib As Monotherapy, and in Combination With Lomustine, Versus Lomustine Alone in Patients With Recurrent Glioblastoma, Journal of Clinical Oncology, vol.31, issue.26, pp.3212-3218, 2013.
DOI : 10.1200/JCO.2012.47.2464

E. Gerstner, X. Ye, and D. Duda, A phase I study of cediranib in combination with cilengitide in patients with recurrent glioblastoma, Neuro-Oncology, vol.17, issue.10, pp.1386-1392, 2015.
DOI : 10.1093/neuonc/nov085

S. Kaneko, Y. Nakatani, and T. Takezaki, Ceacam1L Modulates STAT3 Signaling to Control the Proliferation of Glioblastoma-Initiating Cells, Cancer Research, vol.75, issue.19, pp.4224-4234, 2015.
DOI : 10.1158/0008-5472.CAN-15-0412

J. Yin, G. Park, and T. Kim, Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells, PLOS Biology, vol.7, issue.5, 2015.
DOI : 10.1371/journal.pbio.1002152.s012

S. Talukdar, S. Das, and A. Pradhan, Novel function of MDA-9/Syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells, Oncotarget, vol.7, issue.34, 2016.
DOI : 10.18632/oncotarget.10851

A. Hossain, J. Gumin, and F. Gao, Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway, STEM CELLS, vol.94, issue.8, pp.2400-2415, 2015.
DOI : 10.3171/jns.2001.94.1.0097

M. Hart, R. Garside, and G. Rogers, Temozolomide for high grade glioma, Cochrane Database Syst. Rev, 1996.
DOI : 10.1002/14651858.cd007415

URL : http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007415/pdf/abstract

S. Kunwar, S. Chang, and M. Westphal, Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma, Neuro-Oncology, vol.12, issue.8, pp.871-881, 2010.
DOI : 10.1093/neuonc/nop054

M. Hegi, A. Diserens, and T. Gorlia, Gene Silencing and Benefit from Temozolomide in Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.997-1003, 2005.
DOI : 10.1056/NEJMoa043331

M. Weller, R. Stupp, and G. Reifenberger, MGMT promoter methylation in malignant gliomas: ready for personalized medicine?, Nature Reviews Neurology, vol.113, issue.1, pp.39-51, 0197.
DOI : 10.1093/jnen/60.8.808

K. Zhang, B. Pang, and T. Xin, Increased Signal Transducer and Activator of Transcription 3 (STAT3) and Decreased Cyclin D1 in Recurrent Astrocytic Tumours Compared with Paired Primary Astrocytic Tumours, Journal of International Medical Research, vol.109, issue.6, pp.2103-2109, 2011.
DOI : 10.1002/ijc.20042

E. Lee, K. Ko, and Y. Joe, Inhibition of STAT3 reverses drug resistance acquired in temozolomide-resistant human glioma cells, Oncol Lett, vol.2, pp.115-121, 2011.

C. Kang, Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and ??-catenin signaling pathways, Oncology Reports, 2011.
DOI : 10.3892/or.2011.1396

Y. Yang, Y. Chang, and P. Huang, Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis, Journal of Cellular Physiology, vol.217, issue.3, pp.976-993, 2012.
DOI : 10.1002/jcp.21541

J. Lau, S. Ilkhanizadeh, and S. Wang, STAT3 Blockade Inhibits Radiation-Induced Malignant Progression in Glioma, Cancer Research, vol.75, issue.20, pp.4302-4311, 2015.
DOI : 10.1158/0008-5472.CAN-14-3331

E. Chautard, G. Loubeau, and A. Tchirkov, Akt signaling pathway: a target for radiosensitizing human malignant glioma, Neuro-Oncol, vol.12, pp.434-443, 2010.

S. Burel, S. Han, and H. Lee, Preclinical Evaluation of the Toxicological Effects of a Novel Constrained Ethyl Modified Antisense Compound Targeting Signal Transducer and Activator of Transcription 3 in Mice and Cynomolgus Monkeys, Nucleic Acid Therapeutics, vol.23, issue.3, pp.213-227, 2013.
DOI : 10.1089/nat.2013.0422

D. Hong, R. Kurzrock, and Y. Kim, AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer, Science Translational Medicine, vol.272, issue.18, 2015.
DOI : 10.1074/jbc.272.18.11994

M. Ogura, T. Uchida, and Y. Terui, Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hematological malignancies, Cancer Science, vol.30, issue.2, pp.896-901, 2015.
DOI : 10.1182/blood-2013-10-534073

A. Wong, R. Soo, and D. Tan, Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies, Annals of Oncology, vol.26, issue.5, pp.998-1005, 2015.
DOI : 10.1093/annonc/mdv026