F. Yu and W. Catterall, Overview of the voltage-gated sodium channel family, Genome Biology, vol.4, issue.3, pp.207-12620097, 2003.
DOI : 10.1186/gb-2003-4-3-207

R. An, X. Wang, B. Kerem, J. Benhorin, A. Medina et al., Novel LQT-3 Mutation Affects Na+ Channel Activity Through Interactions Between ??- and ??1-Subunits, Circulation Research, vol.83, issue.2, pp.141-147, 1998.
DOI : 10.1161/01.RES.83.2.141

J. Smits, L. Eckardt, V. Probst, C. Bezzina, J. Schott et al., Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non???SCN5A-related patients, Journal of the American College of Cardiology, vol.40, issue.2, pp.350-356, 2002.
DOI : 10.1016/S0735-1097(02)01962-9

S. Petitprez, T. Jespersen, E. Pruvot, D. Keller, C. Corbaz et al., Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome, Cardiovascular Research, vol.78, issue.3, pp.494-504, 2008.
DOI : 10.1093/cvr/cvn023

G. Millat, P. Chevalier, L. Restier-miron, D. Costa, A. Bouvagnet et al., Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome, Clinical Genetics, vol.348, issue.Suppl, pp.214-241, 2006.
DOI : 10.1161/01.CIR.97.7.640

S. Priori, C. Napolitano, M. Gasparini, C. Pappone, D. Bella et al., Natural History of Brugada Syndrome: Insights for Risk Stratification and Management, Circulation, vol.105, issue.11, pp.1342-1349, 2002.
DOI : 10.1161/hc1102.105288

D. Darbar, P. Kannankeril, B. Donahue, G. Kucera, T. Stubblefield et al., Cardiac Sodium Channel (SCN5A) Variants Associated with Atrial Fibrillation, Circulation, vol.117, issue.15, pp.1927-1962, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.757955

V. Shah, T. Wingo, K. Weiss, C. Williams, J. Balser et al., Calcium-dependent regulation of the voltage-gated sodium channel hH1: Intrinsic and extrinsic sensors use a common molecular switch, Proceedings of the National Academy of Sciences, vol.409, issue.6823, pp.3592-3599, 2006.
DOI : 10.1038/35059090

T. Wingo, V. Shah, M. Anderson, T. Lybrand, W. Chazin et al., An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability, Nature Structural & Molecular Biology, vol.11, issue.3, pp.219-244, 2004.
DOI : 10.1038/nsmb737

J. Kim, S. Ghosh, H. Liu, M. Tateyama, R. Kass et al., Sensitivity of Sodium Channels, Journal of Biological Chemistry, vol.79, issue.43, pp.45004-45016, 2004.
DOI : 10.1021/bi00699a002

M. Sarhan, F. Van-petegem, and C. Ahern, A Double Tyrosine Motif in the Cardiac Sodium Channel Domain III-IV Linker Couples Calcium-dependent Calmodulin Binding to Inactivation Gating, Journal of Biological Chemistry, vol.16, issue.48, pp.33265-74, 2009.
DOI : 10.1038/nature06529

B. Chagot, F. Potet, J. Balser, and W. Chazin, 1.5, Journal of Biological Chemistry, vol.102, issue.10, pp.6436-6481, 2009.
DOI : 10.1074/jbc.M605473200

URL : https://hal.archives-ouvertes.fr/hal-00018558

F. Potet, B. Chagot, M. Anghelescu, P. Viswanathan, S. Stepanovic et al., Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin, Journal of Biological Chemistry, vol.276, issue.13, pp.8846-54, 2009.
DOI : 10.1161/01.RES.61.3.352

URL : https://hal.archives-ouvertes.fr/hal-01637798

D. Wishart and B. Sykes, The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data, Journal of Biomolecular NMR, vol.4, issue.2, pp.171-80, 1994.
DOI : 10.1007/BF00175245

D. Halling, D. Georgiou, D. Black, G. Yang, J. Fallon et al., Sensitivity of Bound Calmodulin, Journal of Biological Chemistry, vol.16, issue.30, pp.20041-51, 2009.
DOI : 10.1038/nature06529

J. Fallon, D. Halling, S. Hamilton, and F. Quiocho, Structure of Calmodulin Bound to the Hydrophobic IQ Domain of the Cardiac Cav1.2 Calcium Channel, Structure, vol.13, issue.12, pp.1881-1887, 2005.
DOI : 10.1016/j.str.2005.09.021

F. Van-petegem, F. Chatelain, D. Minor, and . Jr, Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain???Ca2+/calmodulin complex, Nature Structural & Molecular Biology, vol.6, issue.12, pp.1108-1123, 2005.
DOI : 10.1021/bi00859a010

M. Mori, V. Kooi, C. Leahy, D. Yue, and D. , Crystal Structure of the CaV2 IQ Domain in Complex with Ca2+/Calmodulin: High-Resolution Mechanistic Implications for Channel Regulation by Ca2+, Structure, vol.16, issue.4, pp.607-627, 2008.
DOI : 10.1016/j.str.2008.01.011

E. Kim, C. Rumpf, Y. Fujiwara, E. Cooley, F. Van-petegem et al., Structures of CaV2 Ca2+/CaM-IQ Domain Complexes Reveal Binding Modes that Underlie Calcium-Dependent Inactivation and Facilitation, Structure, vol.16, issue.10, pp.1455-67, 2008.
DOI : 10.1016/j.str.2008.07.010

M. Ikura, G. Clore, A. Gronenborn, G. Zhu, C. Klee et al., Solution structure of a calmodulin-target peptide complex by multidimensional NMR, Science, vol.256, issue.5057, pp.632-640, 1992.
DOI : 10.1126/science.1585175

Y. Shen, N. Zhukovskaya, Q. Guo, F. J. Tang, and W. , Calcium-independent calmodulin binding and two-metal???ion catalytic mechanism of anthrax edema factor, The EMBO Journal, vol.266, issue.5, pp.929-970, 2005.
DOI : 10.1073/pnas.95.23.13899

I. De-diego, J. Kuper, N. Bakalova, P. Kursula, and M. Wilmanns, Molecular Basis of the Death-Associated Protein Kinase-Calcium/Calmodulin Regulator Complex, Science Signaling, vol.3, issue.106, p.6, 2010.
DOI : 10.1126/scisignal.2000552

A. Houdusse, J. Gaucher, E. Krementsova, S. Mui, K. Trybus et al., Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features, Proceedings of the National Academy of Sciences, vol.50, issue.Pt 5, pp.19326-19357, 2006.
DOI : 10.1107/S0907444998003254

P. Guntert, Automated NMR Structure Calculation With CYANA, Methods Mol Biol, vol.278, pp.353-78, 2004.
DOI : 10.1385/1-59259-809-9:353

D. Case, T. Cheatham, T. Darden, H. Gohlke, R. Luo et al., The Amber biomolecular simulation programs, Journal of Computational Chemistry, vol.124, issue.16, pp.1668-88, 2005.
DOI : 10.1021/j100785a001

K. Nordquist, Y. Dimitrova, P. Brzovic, W. Ridenour, K. Munro et al., Structural and Functional Characterization of the Monomeric U-Box Domain from E4B, Biochemistry, vol.49, issue.2, pp.347-55, 2010.
DOI : 10.1021/bi901620v

R. Laskowski, J. Rullmannn, M. Macarthur, R. Kaptein, and J. Thornton, AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR, Journal of Biomolecular NMR, vol.8, issue.4, pp.477-86, 1996.
DOI : 10.1007/BF00228148

I. Davis, A. Leaver-fay, V. Chen, J. Block, G. Kapral et al., MolProbity: all-atom contacts and structure validation for proteins and nucleic acids, Nucleic Acids Research, vol.35, issue.Web Server, pp.375-83, 2007.
DOI : 10.1093/nar/gkm216

A. Rhoads and F. Friedberg, Sequence motifs for calmodulin recognition, FASEB J, vol.11, pp.331-371, 1997.

M. Bahler and A. Rhoads, Calmodulin signaling via the IQ motif, FEBS Letters, vol.140, issue.1, pp.107-120, 2002.
DOI : 10.1083/jcb.140.3.627

M. Osawa, H. Tokumitsu, M. Swindells, H. Kurihara, M. Orita et al., A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase, Nat Struct Biol, vol.6, pp.819-843, 1999.

H. Ishida, M. Rainaldi, and H. Vogel, Structural Studies of Soybean Calmodulin Isoform 4 Bound to the Calmodulin-binding Domain of Tobacco Mitogen-activated Protein Kinase Phosphatase-1 Provide Insights into a Sequential Target Binding Mode, Journal of Biological Chemistry, vol.15, issue.41, pp.28292-305, 2009.
DOI : 10.1074/jbc.M705875200

L. Holm and P. Rosenstrom, Dali server: conservation mapping in 3D, Nucleic Acids Research, vol.38, issue.suppl_2, pp.545-554, 2010.
DOI : 10.1093/nar/gkq366

J. Bosch, S. Turley, C. Roach, T. Daly, L. Bergman et al., The Closed MTIP-Myosin A-Tail Complex from the Malaria Parasite Invasion Machinery, Journal of Molecular Biology, vol.372, issue.1, pp.77-88, 2007.
DOI : 10.1016/j.jmb.2007.06.016

M. Mukherjea, P. Llinas, H. Kim, M. Travaglia, D. Safer et al., Myosin VI Dimerization Triggers an Unfolding of a Three-Helix Bundle in Order to Extend Its Reach, Molecular Cell, vol.35, issue.3, pp.305-320, 2009.
DOI : 10.1016/j.molcel.2009.07.010

H. Kuboniwa, N. Tjandra, S. Grzesiek, H. Ren, C. Klee et al., Solution structure of calcium-free calmodulin, Nature Structural & Molecular Biology, vol.2, issue.9, pp.768-76, 1995.
DOI : 10.1107/S0021889891004399

M. Schumacher, M. Crum, and M. Miller, Crystal Structures of Apocalmodulin and an Apocalmodulin/SK Potassium Channel Gating Domain Complex, Structure, vol.12, issue.5, pp.849-60, 2004.
DOI : 10.1016/j.str.2004.03.017

Y. Saimi and C. Kung, Calmodulin as an Ion Channel Subunit, Annual Review of Physiology, vol.64, issue.1, pp.289-311, 2002.
DOI : 10.1146/annurev.physiol.64.100301.111649

K. Young and J. Caldwell, Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin, The Journal of Physiology, vol.95, issue.2, pp.349-70, 2005.
DOI : 10.1073/pnas.95.6.3287

H. Tan, S. Kupershmidt, R. Zhang, S. Stepanovic, D. Roden et al., A calcium sensor in the sodium channel modulates cardiac excitability, Nature, vol.415, issue.6870, pp.442-449, 2002.
DOI : 10.1038/415442a

A. Malmendal, J. Evenas, S. Forsen, and M. Akke, Structural dynamics in the C-terminal domain of calmodulin at low calcium levels 1 1Edited by P. E. Wright, Journal of Molecular Biology, vol.293, issue.4, pp.883-99, 1999.
DOI : 10.1006/jmbi.1999.3188

K. Henzler-wildman and D. Kern, Dynamic personalities of proteins, Nature, vol.124, issue.7172, pp.964-72, 2007.
DOI : 10.1038/nature06522

J. Trewhella, D. Blumenthal, S. Rokop, and P. Seeger, Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase, Biochemistry, vol.29, issue.40, pp.9316-9340, 1990.
DOI : 10.1021/bi00492a003

A. Houdusse, M. Silver, and C. Cohen, A model of Ca2+-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch, Structure, vol.4, issue.12, pp.1475-90, 1996.
DOI : 10.1016/S0969-2126(96)00154-2

M. Nelson and W. Chazin, An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins, Protein Science, vol.2, issue.150, pp.270-82, 1998.
DOI : 10.1002/pro.5560020316

L. Lian, D. Myatt, and A. Kitmitto, Apo calmodulin binding to the L-type voltage-gated calcium channel Cav1.2 IQ peptide, Biochemical and Biophysical Research Communications, vol.353, issue.3, pp.565-70, 2007.
DOI : 10.1016/j.bbrc.2006.12.070

M. Rook, B. Alshinawi, C. Groenewegen, W. Van-gelder, I. Van-ginneken et al., Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome, Cardiovascular Research, vol.44, issue.3, pp.507-524, 1999.
DOI : 10.1016/S0008-6363(99)00350-8

J. Bankston, K. Sampson, S. Kateriya, I. Glaaser, D. Malito et al., A Novel LQT-3 Mutation Disrupts an Inactivation Gate Complex with Distinct Rate-Dependent Phenotypic Consequences, Channels, vol.1, issue.4, pp.273-80, 2007.
DOI : 10.4161/chan.4956

H. Motoike, H. Liu, I. Glaaser, A. Yang, M. Tateyama et al., Channel Inactivation Gate Is a Molecular Complex, The Journal of General Physiology, vol.62, issue.2, pp.155-65, 2004.
DOI : 10.1073/pnas.91.26.12785

A. Yamniuk, M. Rainaldi, and H. Vogel, -Dependent Adaptor Protein, Plant Signaling & Behavior, vol.7, issue.5, pp.354-361, 2007.
DOI : 10.1074/jbc.M509886200

J. Sheehan, C. Bunick, H. Hu, P. Fagan, S. Meyn et al., Structure of the N-terminal Calcium Sensor Domain of Centrin Reveals the Biochemical Basis for Domain-specific Function, Journal of Biological Chemistry, vol.8, issue.5, pp.2876-81, 2006.
DOI : 10.1021/bi0484419

M. Voehler, G. Collier, J. Young, M. Stone, and M. Germann, Performance of cryogenic probes as a function of ionic strength and sample tube geometry, Journal of Magnetic Resonance, vol.183, issue.1, pp.102-111, 2006.
DOI : 10.1016/j.jmr.2006.08.002

J. Cavanagh, W. Fairbrother, A. Palmer, and N. Skelton, Protein NMR Spectroscopy: Principles and Practice, 1996.

N. Farrow, O. Zhang, J. Forman-kay, and L. Kay, A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium, Journal of Biomolecular NMR, vol.1, issue.5, pp.727-761, 1994.
DOI : 10.1007/BF00404280

T. Goddard, D. Kneller, and . Sparky, University of California

T. Herrmann, P. Gã¼ntert, and K. Wã¼thrich, Protein NMR Structure Determination with Automated NOE Assignment Using the New Software CANDID and the Torsion Angle Dynamics Algorithm DYANA, Journal of Molecular Biology, vol.319, issue.1, pp.209-227, 2002.
DOI : 10.1016/S0022-2836(02)00241-3

G. Cornilescu, F. Delaglio, and A. Bax, Protein backbone angle restraints from searching a database for chemical shift and sequence homology, Journal of Biomolecular NMR, vol.13, issue.3, pp.289-302, 1999.
DOI : 10.1023/A:1008392405740

C. Notredame, D. Higgins, J. Heringa, and . T-coffee, T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. Thornton, Journal of Molecular Biology, vol.302, issue.1, pp.205-222, 2000.
DOI : 10.1006/jmbi.2000.4042

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Research, vol.36, issue.Web Server, pp.465-474, 2008.
DOI : 10.1093/nar/gkn180

URL : https://hal.archives-ouvertes.fr/lirmm-00324099

R. Koradi, M. Billeter, and K. Wuthrich, MOLMOL: A program for display and analysis of macromolecular structures, Journal of Molecular Graphics, vol.14, issue.1, pp.51-56, 1996.
DOI : 10.1016/0263-7855(96)00009-4

W. Delano, The PyMOL Molecular Graphics System DeLano Scientific, 2002.

M. Berjanskii, S. Neal, and D. Wishart, PREDITOR: a web server for predicting protein torsion angle restraints, Nucleic Acids Research, vol.34, issue.Web Server, pp.63-72, 2006.
DOI : 10.1093/nar/gkl341

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.377, issue.6547, pp.10037-10041, 2001.
DOI : 10.1038/377309a0

T. Hopp and K. Woods, Prediction of protein antigenic determinants from amino acid sequences., Proceedings of the National Academy of Sciences, vol.78, issue.6, pp.3824-3832, 1981.
DOI : 10.1073/pnas.78.6.3824

J. Kyte and R. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-137, 1982.
DOI : 10.1016/0022-2836(82)90515-0

A. Keeble, L. Joachimiak, M. Mate, N. Meenan, N. Kirkpatrick et al., Experimental and Computational Analyses of the Energetic Basis for Dual Recognition of Immunity Proteins by Colicin Endonucleases, Journal of Molecular Biology, vol.379, issue.4, pp.745-59, 2008.
DOI : 10.1016/j.jmb.2008.03.055

E. Ulrich, H. Akutsu, J. Doreleijers, Y. Harano, Y. Ioannidis et al., BioMagResBank, Nucleic Acids Research, vol.36, issue.Database, pp.402-410, 2008.
DOI : 10.1093/nar/gkm957

URL : https://academic.oup.com/nar/article-pdf/36/suppl_1/D402/7635401/gkm957.pdf

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-277, 2000.
DOI : 10.1093/nar/28.1.235