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Abstract

We adapt and apply greedy methods to approximate in an efficient way the optimal controls for
parameterized elliptic control problems. Our results yield an optimal approximation procedure that, in
particular, performs better than simply sampling the parameter-space to compute controls for each pa-
rameter value. The same method can be adapted for parabolic control problems, but this leads to greedy
selections of the realizations of the parameters that depend on the initial datum under consideration.
The turnpike property (which ensures that parabolic optimal control problems behave nearly in a static
manner when the control horizon is long enough) allows using the elliptic greedy choice of the parameters
in the parabolic setting too. We present various numerical experiments and an extensive discussion of
the efficiency of our methodology for parabolic control and indicate a number of open problems arising
when analyzing the convergence of the proposed algorithms.
Keywords: parameterized PDEs, optimal control, turnpike property, greedy algorithms, elliptic equations,
parabolic equations.
MSC2010: 49J20; 49K20; 93C20; 49N05; 65K10

1 Introduction

Optimal control problems play a major role in many fields of science and engineering. These problems
are commonly subject to partial differential equations (PDE) depending on several parameters. While
the PDE describes the underlying system, the parameters are used to identify or specify particular
configurations such as material properties, the position of sensors and actuators, initial conditions, among
others. In applications, it is of interest to explore within different parameter configurations. However,
from the control point of view, this leads to solving a different problem for each new desired configuration
which at a computational level may be rather expensive or prohibitive.

To overcome this expensive task, different techniques have been developed in the past years in order
to speed up the solution of parameterized optimal control problems. First examples of PDE constrained
optimization problems solved by computational reduction techniques have been addressed in [22] using
reduced basis (RB) methods or [33] by means of proper orthogonal decomposition (POD).

In the context of parameterized control problems, POD techniques have been successfully applied in
[2, 26, 27, 36]. In particular, in [36], the authors estimate the distance between the optimal control and
an approximation using perturbation arguments, obtaining an efficient algorithm to solve the optimal
control problem. However, the evaluation of the a posteriori error bounds requires a forward-backward
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solution of the associated state and adjoint equations and, as pointed in [36], this is computationally
expensive.

In the same way, RB techniques have been used in the context of parameter-dependent control
problems, see, for instance, [3, 12, 23, 20, 25, 30]. In such works, reliable error estimates of the reduced
order optimal controls are presented.

More recently, in [28], the authors develop greedy methods in the context of controllability problems.
Their analysis is based on the ideas of reduced modelling and (weak) greedy algorithms for parameter
dependent PDE and abstract equations in Banach spaces (see, e.g., [7, 10]). The method is shown to
be computationally efficient, but it has the drawback that the greedy choice of the parameters depends
on the data to be controlled. The problem of developing greedy methods for controllability problems in
a way that the greedy choice of the parameters is independent of the data to be controlled is an open
problem.

The turnpike theory (see, for instance, [31]) roughly states that optimal control problems, under suit-
able conditions, have the property that in long time-horizons, the optimal trajectories are exponentially
close to the steady state ones during most of the time interval. This means that, in some sense, the
time-dependent control problem allows to study the corresponding elliptic one. In spite of this simpli-
fication, when the system depends on one or more parameters, exploring many configurations becomes
prohibitive and this justifies the relevance of applying an efficient approximation tool.

With this in mind, our main contributions can be summarized as follows. Firstly, we present the ap-
plication of greedy and weak greedy algorithms for elliptic optimal control problems leading to optimal
approximations in the sense of the Kolmogorov width. Although the optimal control problem for pa-
rameterized elliptic equations is well known and has been studied in numerous papers (see, for instance,
[3, 20, 24, 30]), as far as the authors knowledge, this greedy and weak greedy algorithms have not been
developed in the context of optimal control problems.

On the other hand, it is well known that solutions of optimal control problems for elliptic PDEs
can be characterized as the solutions of the corresponding optimality system, which is constituted by
the coupling of two elliptic equations: the one fulfilled by the state and the one corresponding to the
adjoint state. The second contribution consists in developing cheap surrogates allowing to diminish the
computational cost in the offline part of the greedy algorithms.

Lastly, we present a detailed discussion on how the turnpike property may be used for approximating
the solution of parabolic optimal control problems. From the turnpike theory we know that under some
controllability assumption, the control-state pair (u(t), y(t)) converges to the steady one (ū, ȳ), regardless
the stability of the time-dependent problem.

Using our greedy approach, we can compute an optimal approximation (ū?, ȳ?) of (ū, ȳ) and apply the
obtained time-independent approximate control ū? to the corresponding parabolic equation. As observed
during experiments, the efficiency of this method will largely depend on the stability of the parabolic
equation. In the stable case, by applying the control ū? the solution converges to ȳ? , no matter what the
initial datum is. This is a consequence of the stability of the system and the fact that the applied control
is time-independent. On the other hand, the approximated time-independent control is not enough to
control the unstable dynamics. The instability of the system imposes the use of time-dependent controls,
as the ones the turnpike theory yields, in which an initial rapidly varying arc is followed by a long time
period in which the control is nearly steady.

The paper is organized as follows. In section 2, we introduce the optimal control problem for a
parabolic equation and then, by means of the turnpike property, we reduce this problem to study a steady
state system. This will be the starting point to formulate the greedy approach for elliptic optimal control
systems. In Section 3, we present the main results of this paper: firstly, we present a brief summary on
greedy algorithms and then we analyze their application in the optimal control of parameterized elliptic
equations. Section 4 contains several numerical examples and experiments for the greedy approach of
finite-difference discretizations to 2-D elliptic control problems. We devote Section 5 to present the
applicability of the (greedy) steady control in time-dependent problems, while in Section 6 we make a
detailed analysis of the computational cost of our greedy algorithm. Finally, in Section 7 we make some
concluding remarks.
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2 Problem formulation

Let Ω ⊂ Rd be an open and bounded Lipschitz domain and consider the parameter dependent parabolic
equation with Dirichlet boundary conditions

yt − div (a(x, ν)∇y) + c(x, ν)y = χωu in Q = Ω× (0, T ),

y = 0 on Σ = ∂Ω× (0, T ),

y(x, 0) = y0(x) in Ω,

(2.1)

where y = y(x, t; ν) is the state, u = u(x, t) is a control function and y0 is given initial datum. Here ω is
an open subset of Ω and χω denotes the characteristic function of the set ω where the control is being
applied.

In (2.1), a(x, ν) is an elliptic, scalar L∞(Ω) coefficient depending on some parameter ν ∈ Rd and c =
c(x, ν) ∈ L∞(Ω) is parameter dependent potential. To abridge the notation, we will denote aν = a(x, ν)
and cν = c(x, ν)

It is well-known (see, for instance, [15]), that for any initial data y0 ∈ L2(Ω) and u ∈ L2(ω × (0, T )),
systems (2.1) admits a unique weak solution y ∈W (0, T ), where W (0, T ) stands for the Hilbert space

W (0, T ) :=
{
y ∈ L2(0, T ;H1

0 (Ω)), yt ∈ L2(0, T ;H−1(Ω))
}
,

equipped with the norm

‖y‖W (0,T ) =
(
‖y‖2L2(0,T ;H1

0 (Ω)) + ‖yt‖2L2(0,T ;H−1(Ω))

)1/2

.

Moreover, y satisfies an estimate of the form

‖y‖W (0,T ) ≤ C
(
‖y0‖L2(Ω) + ‖u‖L2(ω×(0,T ))

)
,

where C depends on Ω, T , aν and ‖cν‖∞ only.
Now, consider the following associated optimal control problem

min
u∈L2(0,T ;L2(ω))

JT (u) =
1

2

∫ T

0

‖u(t)‖2L2(ω) +
β

2

∫ T

0

‖y(t)− yd‖2L2(Ω), (2.2)

where y is the solution to (2.1), yd ∈ L2(Ω) is a desired observation and β > 0 is given.
It is classical to prove (see e.g., [29]) that the minimization problem (2.2) has a unique optimal

solution that hereinafter we denote by (uT , yT ). This is due to the fact that the functional JT is strictly
convex, continuous and coercive.

Moreover, the optimal control is given by

uT = −χωpT

where pT can be found from the solution (yT , pT ) of the optimality system
yTt − div (aν∇yT ) + cνy

T = −χωpT , in Q,

−pTt − div (aν∇pT ) + cνp
T = β (yT − yd), in Q,

yT = pT = 0, on Σ,

yT (x, 0) = y0(x), pT (x, T ) = 0, in Ω.

(2.3)

From here, it is clear that the optimal control uT also depends on the parameter ν since the state
y equally depends on it. As mentioned before, when studying parameter-dependent problems from the
control point of view, this means that one has to solve the minimization problem (2.2) for each new
choice of the parameter ν. Although theoretically feasible, the computational effort to compute a control
function for every new selection of the parameter is rather expensive and undesirable.

Moreover, the effective computation of optimal controls for problems posed in a long time horizon
can be very expensive since it requires iterative methods to solve the coupled optimality system (2.3)
combining the forward controlled state equation and the backward adjoint one. Particularly, adjoint
equation methods for the solution of control problems posed on long-time intervals may led to the
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storage of huge quantities of information. Memory saving methods, as for instance discussed in [21] and
references within, may help to alleviate this problem.

In this work, we use a combination of (weak) greedy methods and the so-called turnpike property
to determine the most relevant values of a parameter-space (to be precised below) and provide the best
possible approximation of the set of parameter dependent optimal controls.

Firstly, we will use the turnpike property to reduce the problem of computing the time-dependent
optimal controls uT by computing asymptotic simplifications.

To this end, we begin by considering the stationary version of the state equation{
−div (aν∇y) + cνy = χωu in Ω,

y = 0 on ∂Ω.
(2.4)

Using classical Fredholm theory (see, e.g. [6]), one can prove that for fixed aν , cν ∈ L∞(Ω), system
(2.4) has a unique weak solution y ∈ H1

0 (Ω) verifying

α1‖y‖H1
0 (Ω) ≤ ‖u‖H−1(Ω) ≤ α2‖y‖H1

0 (Ω). (2.5)

for some constants α1 and α2 (not depending on u), provided the following condition holds

ker(Lν) = {0}, (2.6)

where Lν is the map defined as

Lν := −div (aν · ) + cI : H1
0 (Ω)→ H−1(Ω).

Hereinafter, we will briefly discuss the turnpike theory from the point of view where condition (2.6)
holds. Observe that when this condition is not fulfilled, the solution to (2.4) is not longer unique and
some modifications to the discussion presented below are necessary (see Section 7 and [31, Remark 3.7]),
but the results remain valid.

Let us consider the corresponding minimization problem

min
u∈L2(ω)

J(u) =
1

2
‖u‖2L2(ω) +

β

2
‖y − yd‖2L2(Ω). (2.7)

As before, one can prove that, since J is strictly convex, continuous and coercive, the minimization
problem (2.7) has a unique optimal solution (ū, ȳ), where the optimal control is characterized by

ū = −χω p̄,

and (ȳ, p̄) solve the optimality system
−div (aν∇ȳ) + cν ȳ = −χω p̄, in Ω,

−div (aν∇p̄) + cν p̄ = β (ȳ − yd), in Ω,

ȳ = p̄ = 0, on ∂Ω.

(2.8)

Also, in this case, it is clear the the optimal control ū depends on ν. Notice that, thanks to condition
(2.6), each control ū can be uniquely determined. This is not the case where ker(Lν) is not trivial, since
the solution p̄ to the adjoint equation is defined up to elements of ker(Lν).

Since each control ū can be uniquely determined, in what follows, we shall write ūν to denote the
dependence of the optimal control with respect to the parameter, and similarly for the optimal states yν
and pν .

A natural question that arises in this context is to which extent the long horizon optimal controls
and states (uT (t), yT (t)) approach the steady ones (ū, ȳ) as T → +∞. According to [31], we have the
following result:

Theorem 2.1 Let us consider the control problem (2.2) and let (uT , yT ) be the optimal control and state.
Then, there exists µ > 0 such that

‖yT (t)− ȳ‖L2(Ω) + ‖uT (t)− ū‖L2(Ω) ≤ K
(
e−µt + e−µ(T−t)

)
, ∀t ∈ [0, T ], (2.9)

where (ū, ȳ) is the optimal control and state corresponding to (2.8).
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This means that we have exponential convergence of the finite horizon control problems to their steady
state version as T tends to infinity. In order to prove (2.9), additional assumptions on stabilizability and
observability for (2.1) and its adjoint are required. Indeed, although these assumptions are not required
when considering solely the optimal control problem (2.2), they are essential for the analysis when the
time horizon tends to infinity.

Remark 2.2 It is important to mention that for Theorem 2.1 to hold, only the controllability of system
(2.1) plays a fundamental role. In other words, positivity or smallness conditions on c(x) guaranteeing
the stability of the parabolic problem are not necessary to prove the exponential convergence of the finite
time horizon control problem to the steady version.

As pointed out in [31], this kind of stationary behavior in the transient time for long horizon control
problems is commonly referred in the literature as turnpike property. Such property has been mostly
investigated in the finite-dimensional case, as well as in connection to Calculus of Variations. We refer
the interested reader to the survey [37] and references therein and to [8, 38] for some results on control
problems in the infinite-dimensional case. We also refer to [35] for a more recent and systemic discussion
on this topic.

Thanks to Theorem 2.1, we now focus our attention on the steady system (2.4) and the approximation
of the family of parameterized controls. We begin by assuming the following hypotheses:

H1 The parameter ν ranges within a compact set K ⊆ Rd.
H2 The coefficient functions aν and cν depend on ν in an analytic manner.

H3 Condition (2.5) holds uniformly for all ν ∈ K.

Then, the main idea is to propose a methodology to determine an optimal selection of a finite num-
ber of realizations of the parameter ν so that all controls, for all possible values of ν, are optimally
approximated. More precisely, the problem can be formulated as follows:

Problem 2.3 Let us consider the set of controls verifying (2.7) for each possible value ν ∈ K. That is,

U = {ūν : ν ∈ K} . (2.10)

This control set is compact in L2(ω).
Given ε > 0, we seek to determine a family of parameters {ν1, . . . , νn} in K, whose cardinality n

depends on ε, so that the corresponding controls, denoted by uν1 , . . . , uνn are such that for every ν ∈ K,
there exists u?ν ∈ span{uν1 , . . . , uνn} such that

‖u?ν − ūν‖L2(ω) ≤ ε.

This problem is motivated by the practical issue of avoiding the computation of a control function
uν for each new parameter value ν. By developing suitable greedy algorithms to solve Problem 2.3, we
look for the most representative values of ν providing a fast and reliable way to compute approximated
optimal controls for any other value of ν.

As noted in [28], Hypotheses H1 and H2 makes this goal feasible and, in particular, allows to
implement a naive approach where the parameter set K is uniformly sampled in a very fine mesh.
Nevertheless, the objective is to minimize the number of spanning controls n and derive the most efficient
approximation. As we will see below, H3 enable us to implement a (weak) greedy approach for solving
Problem 2.3 in an optimal way.

Remark 2.4 We can readily distinguish two classes of coefficients verifying Hypothesis H3. These will
be of interest in the discussion of Sections 4 and 5.

1. The case where a1 ≤ aν ≤ a2 and cν ≥ 0, for some positive constants a1, a2 and all ν ∈ K. Under
these assumptions we can recover (2.5) by Lax-Milgram theorem and classical energy estimates.

2. The case where aν ≡ const and cν ∈ [−λi+1+ε,−λi−ε], where λi, λi+1 are two adjacent eigenvalues
of the constant Laplacian. In this case, (2.6) holds and since we are away from the eigenvalues, Lν
is invertible with bounded inverse.
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3 Greedy optimal control for elliptic problems

3.1 Preliminaries on (weak) greedy algorithms

In this section, we present a short introduction about linear approximation theory of parametric problems
based on (weak) greedy algorithms. For a more detailed read, we refer, for instance, to [11, 13]. We
will apply this theory systematically to deal with the optimal control problem of parameterized elliptic
equations.

In general, the goal is to approximate a compact set K in a Banach space X by a sequence of finite
dimensional subspaces Vn of dimension n. Increasing n improves the accuracy of the approximation.

Although constructing this subspace within a given precision error commonly implies a high computa-
tional effort, this process is performed only once as an offline procedure. Then, with a good approximated
subspace at hand, one can easily compute online approximations for every vector from K.

Vectors xi, i = 1, ..., n spanning the space Vn are called snapshots of K.
The goal of (weak) greedy algorithms is to construct a family of finite dimensional spaces Vn ≤ X

approximating the set K in the best possible way. The algorithm reads as follows.

Algorithm 1: Weak greedy algorithm

initialize: fix γ ∈ (0, 1] and a tolerance parameter ε > 0;
1 In the first step, choose x1 ∈ K such that

2 ‖x1‖X ≥ γmaxx∈K ‖x‖X ;

3 At the general step, having found x1, . . . , xn denote

4 Vn = span{x1, . . . , xn} and σn(K) := maxx∈K dist(x, Vn) ; (3.1)

5 repeat
6 choose xn+1 such that

7 dist(xn+1, Vn) ≥ γσn(K);

8 until σn(K) < ε;

The algorithm produces a finite dimensional space Vn that approximates the set K within precision
ε. As mentioned in [13], it is important to notice that the weak greedy algorithm does not give unique
sequences (xn)n≥1 and (σn(K))n≥1. However, every chosen sequence decays at the same rate, which
under certain assumptions (see Theorem 3.1), is close to the optimal one. Therefore, the algorithm
optimizes the number of steps required to satisfy the given tolerance as well as the dimension of the
approximated space Vn.

The pure greedy algorithm corresponds to the case γ = 1. As noted in [13], the relaxation of the
pure greedy method (γ = 1) to a weak greedy one (γ ∈ (0, 1]) will not significantly reduce the efficiency
of the algorithm, making it, by the contrary, much easier for implementation.

When using the (weak) greedy algorithm one has to choose the elements of the approximation space
by exploring the distance defined in (3.1) for all possible values x ∈ K. Two main difficulties arises:

1. the set K in general consists of infinitely many vectors,

2. in practical implementations, the set K is often unknown, e.g., it represents the family of solutions
to parameter dependent problems.

The first problem can be avoided by searching over some finite discrete subset of K. Here we use
the fact that K, being a compact set, can be covered by a finite number of balls of an arbitrary small
radius. To circumvent the second one, instead of considering the distance appearing in (3.1), one uses
some surrogate, which is easier to compute.

In order to estimate the efficiency of the weak greedy algorithm we compare its approximation rates
σn(K) with the best possible ones.

The best choice of an approximating space Vn is the one producing the smallest approximation error.
This smallest error for a compact set K is called the Kolmogorov n-width of K, and is defined as

dn(K) := inf
dimY=n

sup
x∈K

inf
y∈Y
‖x− y‖X .
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It measures how well K can be approximated by a subspace in X of a fixed dimension n.
In the sequel we want to compare σn(K) with the Kolmogorov width dn(K), which represents the

best possible approximation of K by a n dimensional subspace of the referent Banach space X. A precise
estimate in that direction was provided by [4] in the Hilbert space setting, and later improved and
extended to the case of a general Banach space X in [14].

Theorem 3.1 (Corollary 3.3 of [14]) For the weak greedy algorithm with constant γ in a Hilbert space
X we have the following: If the compact set K is such that, for some α > 0 and C0 > 0

dn(K) ≤ C0n
−α, n ∈ N,

then
σn(K) ≤ C1n

−α, n ∈ N,
where C1 := γ−225α+1C0.

This theorem implies that the weak greedy algorithms preserve the polynomial decay rates of the
approximation errors. A similar estimate also holds for exponential decays (cf. [14]).

3.2 Definition of the residual

As mentioned before, one of the main goals of this paper is to apply the greedy approach described above
to the family of parameter dependent steady state optimal control problems

(P) min
u∈L2(ω)

{Jν(u)} , (3.2)

where J is the cost functional given by

Jν(u) =
1

2
‖u‖2L2(ω) +

1

2
‖yν(u)− yd‖2L2(Ω),

while yν(u) is the solution to (2.4).
As stated in Problem 2.3, the aim is to choose the most representative set of parameter values νi,

whose associated controls ui will provide a good approximation of the control manifold (2.10). Essential
for an effective application of a greedy algorithm is the construction of a residual by which one can
estimate the distance between two (possible unknowns) controls by some easily computable quantity.

To construct an appropriate residual, we begin by computing the optimality condition to the mini-
mization problem (3.2). More precisely, for given ν ∈ K, the optimality condition read as follows

ūν + S∗ν (Sν ūν − yd) = 0 (3.3)

where Sν : L2(ω)→ L2(Ω) is an operator that assigns to the control u the solution yν(u) of the problem
(2.4), while S∗ν : L2(Ω)→ L2(ω) is its adjoint operator defined by

S∗ν y = χωp

where p is the solution to the adjoint problem with the right-hand side equal to βy. As mentioned in the
previous section, this leads to the following optimality system

ūν = −χω p̄ν ,
−div (aν∇ȳν) + cν ȳν = χωūν ,

−div (aν∇p̄ν) + cν p̄ν = β (ȳν − yd),
(3.4)

where ȳν stands for the optimal state, while p̄ν for the optimal dual variable. As before, H3 plays a key
role to define uniquely thesolution to the optimality system (3.4).

To this effect one can consider ∇Jν as a candidate for the residual. Indeed, one can readily verify
that

‖ūν − u‖L2(ω) ≈ ‖∇Jν(u)‖L2(ω).

This allows to estimate the distance between the given control u from the (unknown) optimal one ū
by checking the minimization performance of the first , i.e, by calculating ∇Jν(u). However, as ∇Jν is
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expressed in terms of S and S∗, that calculation requires solving both the primal and dual problems,
which, in general, is expensive (cf. [36]).

In order to reduce the cost of computing the surrogate, we can rewrite the cost functional in terms
of the dual variable p and state variable y. Namely, the gradient of the cost functional is expressed as

∇Jν(u) = u+ χωp(u),

where the dual variable p is related to the control by the relation 1ωp(u) = S∗ν (Sνu− yd), i.e.

−div (aν∇y(u)) + cνy(u) = χωu

−div (aν∇p(u)) + cνp(u) = β
(
y(u)− yd

)
.

In what follows, to abridge the notation, for any z ∈ H1
0 (Ω) and any parameter ν ∈ K, we will use

the notation
Lνz := −div (aν∇z) + cνz

In this way, we introduce the residual operator as

Rν(p, y) :=

(
Lνy + χωp

Lνp− β
(
y − yd

)) . (3.5)

Of course, for optimal variables (p̄ν , ȳν) the value of the residual equals zero, and the residual can be
equivalently written as

Rν(p, y) :=

(
Lν(y − ȳν) + χω(p− p̄ν)
Lν(p− p̄ν)− β (y − ȳν)

)
. (3.6)

By means of the introduced operator we shall try to perform greedy approximation of the manifold

P̄ × Ȳ = {(p̄ν , ȳν) : ν ∈ K} ⊂ H1
0 (Ω)×H1

0 (Ω).

We will show that for an arbitrary (p, y) ∈ H1
0 (Ω) × H1

0 (Ω) the residual Rν(p, y) provides a good
measure of the distance of (p, y) from the optimal pair (p̄ν , ȳν). To this end, from definition (3.6), we
easily obtain that

H−1(Ω)

〈
Rν(p, y),

(
p− p̄ν
−(y − ȳν)

)〉
H1(Ω)

= ‖χω(p− p̄ν)‖2L2(Ω) + β‖y − ȳν‖2L2(Ω)

≥ 2
√
β〈χω(p− p̄ν), y − ȳν〉L2(Ω).

(3.7)

Similarly, one gets∣∣∣∣
H−1(Ω)

〈
Rν(p, y),

(
y − ȳν

0

)〉
H1(Ω)

∣∣∣∣ ≥ α1‖y − ȳν‖2H1(Ω) −
∣∣〈χω(p− p̄ν), y − ȳν〉L2(Ω)

∣∣ (3.8)

where α1 is the uniform bound from (2.5).
Combining the last inequality with (3.7) we obtain

c̃1‖y − ȳν‖2H1(Ω) ≤ ‖Rν(p, y)‖H−1(Ω)(‖p− p̄ν‖H1(Ω) + ‖y − ȳν‖H1(Ω)),

where c̃1 depends on α1 and β only.
In order to obtain a similar bound for the dual variable, we consider the following product

H−1(Ω)

〈
Rν(p, y),

(
y − ȳν
p− p̄ν

)〉
H1(Ω)

=
H−1(Ω)

〈
Lν(y − ȳν), (y − ȳν)

〉
H1(Ω)

+ 〈χω(p− p̄ν), y − ȳν〉L2(Ω)

+
H−1(Ω)

〈
Lν(p− p̄ν), (p− p̄ν)

〉
H1(Ω)

− β〈y − ȳν , p− p̄ν〉L2(Ω)

≥ α1‖y − ȳ‖2H1(Ω) −
∣∣∣〈χω(p− p̄ν), y − ȳν〉L2(Ω)

∣∣∣
+ α1‖p− p̄ν‖2H1(Ω) − β|〈y − ȳν , p− p̄ν〉L2(Ω)|.
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In order to estimate the last term, note that for an arbitrary ε > 0 we have

|〈y − ȳν , p− p̄ν〉L2(Ω)| ≤
1

2ε
‖y − ȳν‖2L2(Ω) +

ε

2
‖p− p̄ν‖2L2(Ω).

By taking ε = α1
β

from (3.8), we obtain

α1

2
(‖y − ȳν‖2H1(Ω) + ‖p− p̄ν‖2H1(Ω)) ≤ ‖Rν(p, y)‖H−1(Ω)(‖p− p̄ν‖H1(Ω) + ‖y − ȳν‖H1(Ω))

+
∣∣∣〈χω(p− p̄ν), y − ȳν〉L2(Ω)

∣∣∣+
1

2α1
‖y − ȳν‖2H1(Ω).

Finally, combining the last estimate with (3.7) and (3.8) we obtain

c1(‖y − ȳν‖H1(Ω) + ‖p− p̄ν‖H1(Ω)) ≤ ‖Rν(p, y)‖H−1(Ω), (3.9)

for some constant c1 > 0 only depending on α1 and β.
This shows, in particular, that the introduced residual provides a good estimate of the distance of

(p, y) from the optimal pair (p̄ν , ȳν).
In order to obtain a reverse type inequality, we explore the regularity estimates (2.5). Combining it

with the inclusion of H1
0 (Ω) into H−1(Ω), we obtain

‖Rν(p, y)‖H−1(Ω) ≤ c2(‖y − ȳν‖H1(Ω) + ‖p− p̄ν‖H1(Ω)), (3.10)

with the constant c2 > 0 depending on α2 and β only.
The last two inequalities enable us to apply a weak greedy procedure for the approximation of the

manifold P̄ × Ȳ (see Algorithm 2 below).

3.3 The greedy algorithm

The residual Rν(p, y) introduced in the previous subsection enable us to construct a weak greedy algo-
rithm for an effective construction of an approximating linear space of the control manifold U .

The precise description of the offline part of the algorithm is given below in Algorithm 2. This
algorithm results in the approximating space (Pn,Yn) = span{(p̄1, ȳ1) . . . , (p̄n, ȳn)}, where n is a number
of chosen snapshots (specially (Pn,Yn) = {0} for n = 0). In particular, the obtained bounds on the
residual (3.9)–(3.10) ensure that Algorithm 2 satisfies the requirements of the weak greedy procedure.
More precisely, the following result holds.

Theorem 3.2 For a given ε > 0 take the discretisation constant δ such that

δ ≤ ε/(2CLc1). (3.11)

Then the Algorithm 2 provides a weak greedy approximation of the manifold (P,Y) with the constant

γ =
c1
2c2

, (3.12)

and the approximation error less than ε/c1. Here CL is the Lipschitz constant of the mapping ν →
(p̄ν , ȳν), while c1 and c2 are constants appearing in estimates (3.9) and (3.10), respectively.

Remark 3.3 Note that the infimum appearing in (3.17) can be expressed as a distance from a suitable
space determined by the residual Rν . More precisely, denote by Gν the linear part of the residual Rν , i.e.

Gν(p, y) :=

(
Lνy + χωp
Lνp− βy

)
, (3.13)

implying

Rν(p, y) = Gν(p, y) +

(
0

βyd

)
.

Denoting by Gν(Pj ,Yj) the space spanned by Gν(pi, yi), i = 1, . . . , j, we obtain

|| inf
(p,y)∈(Pj ,Yj)

Rν̃(p, y)||H−1(Ω) = dist

((
0

−βyd
)
, Gν(Pj ,Yj)

)
. (3.14)

The last relation enables practical computation of the infimum appearing in (3.17) which can be performed

by projecting vector

(
0

−βyd
)

to the space Gν(Pj ,Yj).
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Algorithm 2: Greedy control algorithm - offline part

Initialize: Fix the approximation error ε > 0.
1 STEP 1: (discretisation)

2 Choose a finite subset K̃ such that

(∀ ν ∈ K) dist(ν, K̃) < δ,

3 where δ > 0 is a constant determined by (3.11).
4 STEP 2: (Choosing ν1)
5 Check the inequality

max
ν̃∈K̃
‖βydν‖H−1(Ω) <

ε

2
. (3.15)

6 If it is satisfied, stop the algorithm. Otherwise, choose the first parameter value as

ν1 ∈ argmax
ν̃∈K̃
{‖ydν‖H−1(Ω)}. (3.16)

7 and find corresponding optimal primal and dual states ȳ1, p̄1;
8 STEP 3: (Choosing νj+1)

9 Having chosen ν1, . . . , νj calculate Rν̃(p̄j , 0) and Rν̃(0, ȳj) for each ν̃ ∈ K̃.
10 Check the approximation criteria

max
ν̃∈K̃
|| inf

(p,y)∈(Pj ,Yj)
Rν̃(p, y)||H−1(Ω) <

ε

2
. (3.17)

11 If the inequality is satisfied, stop the algorithm. Otherwise, determine the next parameter value as

νj+1 ∈ argmax
ν̃∈K̃
|| inf

(p,y)∈(Pj ,Yj)
Rν̃(p, y)||H−1(Ω), (3.18)

12 Find the corresponding optimal primal and dual states ȳj+1, p̄j+1 and repeat Step 3.

Remark 3.4 Observe that the above algorithm definitely stops after finite, n ∈ N0 number of iterations
due to the compactness assumption on the parameter set K. In the sequel we exclude the case n = 0,
occurring when inequality (3.15) holds, which results in a null approximating space for which the statement
trivially holds

Proof of Theorem 3.2. We will adapt the weak greedy procedure presented in Algorithm 1. For this
particular problem, we have to show that

i) the selected optimal states (p̄i, ȳi) associated to the parameter values determined by (3.16) and
(3.18) satisfy

‖(p̄ν1 , ȳν1)‖H1(Ω) ≥ γmax
ν∈K
‖(p̄ν , ȳν)‖H1(Ω)

dist
(

(p̄νj+1 , ȳνj+1), (P̄i, Ȳi)
)
≥ γmax

ν∈K
dist

(
(p̄ν , ȳν), (P̄i, Ȳi)

)
, j = 1, . . . , n− 1

with the constant γ given by (3.12),

ii) the approximation error, defined as

σ
(

(p̄, ȳ)(K)
)

:= max
ν

dist
(

(ȳν , p̄ν), (P̄i, Ȳi)
)

obtained at the end of the algorithm is less than ε/c1.
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In order to prove i), we begin by noting that from estimate (3.9) and the definition of the residual
Rν , the following inequality holds

‖(p̄ν , ȳν)‖H1(Ω) = dist
(

(p̄ν , ȳν), (0, 0)
)
≤
∥∥∥∥ 1

c1
Rν(0, 0)

∥∥∥∥
H−1(Ω)

=

∥∥∥∥ 1

c1

(
0

βydν

)∥∥∥∥
H−1(Ω)

,

for all ν ∈ K. From the choice of the first snapshot (3.16) for every parameter ν̃ from the discretised set
K̃ the above inequality readily implies

‖(p̄ν̃ , ȳν̃)‖H1(Ω) ≤
∥∥∥∥ 1

c1

(
0

βydν1 ,

)∥∥∥∥
H−1(Ω)

,

=

∥∥∥∥ 1

c1
Rν1(0, 0)

∥∥∥∥
H−1(Ω)

≤ c2
c1
‖(p̄ν1 , ȳν1)‖H1(Ω),

(3.19)

where in the last line we have used the estimate (3.10).
In order to obtain a similar inequality for every ν ∈ K, by taking ν̃ ∈ K̃ such that |ν − ν̃| < δ, by

means of (3.11) and (3.19) we have

‖(p̄ν , ȳν)‖H1(Ω) ≤ ‖(p̄ν − p̄ν̃ , ȳν − ȳν̃)‖H1(Ω) + ‖(p̄ν̃ , ȳν̃)‖H1(Ω)

≤ ε

2c1
+
c2
c1
‖(p̄ν1 , ȳν1)‖H1(Ω).

Having excluded the case (3.15), we have

ε

2
≤ ‖Rν1(0, 0)‖H−1(Ω) ≤ c2‖(p̄ν1 , ȳν1)‖H1(Ω),

implying the first inequality in i).
The same arguments can be employed for the general j-th iteration. Recall that the stopping criterion

(3.17) is not fulfilled for iterations j < n. Suppose that we have selected ν1, . . . , νi different parameters.
From inequalities (3.9), (3.10) and the definition of the next snapshot (see eq. (3.18)), for each ν̃ ∈ K̃
we readily obtain

dist
(

(p̄ν̃ , ȳν̃), (P̄i, Ȳi)
)
≤ || 1

c1
inf

(p,y)∈(Pi,Yi)
Rν̃(p, y)||H−1(Ω)

≤ || 1

c1
inf

(p,y)∈(Pi,Yi)
Rνj+1(p, y)||H−1(Ω) ≤

c2
c1

dist
(

(p̄νj+1 , ȳνj+1), (P̄i, Ȳi)
)
.

As before, the above inequality can be generalized to all ν ∈ K by employing Lipschitz continuity of the
mapping ν → (p̄, ȳ), particularly implying the second inequality in i).

To prove ii), it is straightforward to see from equation (3.9) that after n iterations and for any ν ∈ K
by selecting ν̃ ∈ K̃ such that |ν − ν̃| < δ, the following holds

dist
(

(p̄ν , ȳν), (P̄n, Ȳn)
)
≤ ‖(p̄ν − p̄ν̃ , ȳν − ȳν̃)‖H1(Ω) + dist

(
(p̄ν̃ , ȳν̃), (P̄n, Ȳn)

)
≤ ε

2c1
+

1

c1
‖Rν̃(P̄n, Ȳn)‖H−1(Ω) <

ε

c1
,

since the stopping condition (3.17) has been reached. This ends the proof of Theorem 3.2.
It remains to check the effect of the approximation of the manifold P̄ × Ȳ on the control manifold Ū

and, in the end, the approximation of the cost functional Jν .
In the next step we want to explore the approximation space constructed in the offline part of the

algorithm with the aim of an effective construction of an approximating states and controls for an
arbitrary given parameter value. This is the step of the greedy method usually referred to as the online
part.

To this effect we propose the following algorithm for the online part of the greedy procedure.
Using the above proposed definition of the approximative optimal control (3.20) and the approxima-

tion performance of the offline part of the algorithm we immediately obtain

‖u?ν − ūν‖L2(ω) ≤ ‖p
?
ν − p̄ν‖H1(Ω) ≤

ε

c1
, (3.22)
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Algorithm 3: Greedy control algorithm - online part

Initialize: A parameter value ν ∈ K is given.
1 STEP 1:

2 Project the vector

(
0
−βyd

)
to Gν(Pn,Yn), the space spanned by Gν(pi, yi), i = 1, . . . , n.

3 Here {(pi, yi), i = 1, . . . , n} are snapshots selected in the offline part of the algorithm, while Gν is the
linear part of the residual given by (3.13).

4 Denote the projection by Pn

(
0
−βyd

)
.

5 STEP 2:
6 Solve the system

Pn

(
0
−βyd

)
=
∑

αiGν(pi, yi).

7 STEP 3:
8 Define the approximating dual state as

p∗ν =
∑

αipi.

9 STEP 4:
10 Define the approximating optimal control as

u∗ν = −χωp∗ν . (3.20)

STEP 5:
11 Define the approximating optimal state y?ν as the solution to

Lνy
?
ν = χωu

?
ν . (3.21)

which provides the required estimate proposed by Problem 1 (up to a scaling factor c1).
Similarly, from the regularity bound (2.5) it follows

‖y?ν − ȳν‖H1(Ω) ≤
1

α1
‖u?ν − ūν‖L2(ω) ≤

ε

α1c1
, (3.23)

which provides the estimate on the approximative optimal state obtained by the greedy procedure.
Finally, we obtain the estimate for the error in the cost functional. Note that

|J(u?ν)− J(ūν)| = 1

2

(
‖ūν‖2L2(Ω) − ‖u

?
ν‖2L2(Ω) + ‖ȳν − yd‖2L2(Ω) − ‖y

?
ν − yd‖2L2(Ω)

)
. (3.24)

The first two terms on the right hand side can be bounded as follows:∫
Ω

|ūν |2 − |u?ν |2dx =

∫
Ω

(|ūν | − |u?ν |)(|ūν |+ |u?ν |)dx

≤
∫

Ω

|ūν − u?ν |(|ūν − u?ν |+ 2|ūν |)dx

≤ ‖ūν − u?ν‖L2(Ω)

(
‖ūν − u?ν‖L2(Ω) + 2‖ūν‖L2(Ω)

)
.

(3.25)

By using optimality condition (3.3) one easily obtains the bound

‖ūν‖L2(Ω) ≤ ‖S
∗yd‖L2(Ω), (3.26)

which together with (3.22) enables the first difference in (3.25) to be estimated in terms of the approxi-
mation error ε and the given problem data.
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Similarly, for the last two terms in (3.24) one gets

‖ȳν − yd‖2L2(Ω) − ‖y
?
ν − yd‖2L2(Ω) ≤ ‖ȳν − y

?
ν‖L2(Ω)

(
‖ȳν − y?ν‖L2(Ω) + 2‖ȳν − yd‖L2(Ω)

)
≤ ‖ȳν − y?ν‖L2(Ω)

(
‖ȳν − y?ν‖L2(Ω) +

2

α1
‖S∗yd‖L2(Ω) + 2‖yd‖L2(Ω)

)
where the last inequality follows from the regularity assumptions (2.5), the definition of the optimal state
(3.4)2 and the estimate (3.26).

Thus, combining estimates on the error on approximate control (3.22) and the approximate state
(3.23), one obtains bound on the approximation of the minimal cost functional value in terms of the
approximation error ε and the desired trajectory yd.

We can summarise the obtained results in the following theorem

Theorem 3.5 The proposed greedy algorithm provides the following estimates on the approximate con-
trol, approximate optimal state and approximate minimal value of the cost functional

• ‖u?ν − ūν‖L2(Ω) ≤ ε,

• ‖y?ν − ȳν‖H1(Ω) ≤
(
ε

α1

)
,

• |J(u?ν)− J(ūν)| ≤ ε
c1

(
ε
c1

(
1 + 1

α2
1

)
+ 2

(
1 + 1

α2
1

)
‖S∗yd‖L2(Ω) + 2

α1
‖yd‖L2(Ω)

)
,

where u?ν and y?ν are given by (3.20) and (3.21), respectively, while α1 is the elliptic bound appearing in
(2.5).

3.4 Optimal approximation rates

One of main advantages of the greedy procedure is that it provides optimal approximation rates in terms
of Kolmogorov widths. However, although the Kolmogorov widths of a set of admissible parameters (set
K in our problem) is usually easy to estimate, this is not the case for the corresponding set of controls
(Ū in our setting).

Fortunately, a result in that direction has been provided recently for holomorphic mappings ([10])
under the assumption of a polynomial decay of Kolmogorov widths.

Theorem 3.6 For a pair of complex Banach spaces X and V assume that u is a holomorphic map from
an open set O ⊂ X into V with uniform bound. If K ⊂ O is a compact subset of X then for any α > 1
and C0 > 0

dn(K) ≤ C0n
−α =⇒ dn(u(K)) ≤ c1n−β , n ∈ N,

for any β < α− 1 and the constant C1 depending on C0, α and the mapping u.

Remark 3.7 The proof of the theorem provides an explicit estimate of the constant C1 in dependence
on C0, α and the mapping u. However, due to its rather complicated form we do not expose it here.

Going back to our problem, Theorem 3.6 can be applied if we proved that the mapping ν → ūν is
analytic, which in terms of the optimality equations (3.4) provides that the mapping K to P̄ × Ȳ is
analytic as well.

To this effect we explore analytic version of the implicit function theorem and apply it to the mapping

DuJν(u) = u+ S∗ν (Sνu− yd) .

Of course, for an optimal control it holds DuJν(ūν) = 0, and in order to employ the implicit function
theorem we have to check if the operator Du(DuJν)(ūν) is an isomorphism. As

Du(DuJν)(ūν) = I + S∗νSν

and using that S∗νSν is positive semi-definite it follows that Du(DuJν)(ūν) is coercive, bounded operator,
thus allowing for the inverse.

Furthermore, the operator Sν inhertis regulrity properties of the coefficients aν , cν in its dependence
with respect on ν, and this on all levels. Specially, assuming the mappings ν → aν and ν → cν are
analytic the same holds for the map ν → Sν , and similarly for S∗ν . Thus the implicit function theorem
implies that the unique mapping ν → ūν is analytic.

Combining this result with Theorem 3.6 we obtain the following one.
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Corollary 3.8 Let O ∈ Rd be an open domain containing the parameter set K and let the mappings
aν , cν : O → L∞(Ω) be analytic. Then the greedy control algorithm ensures a polynomial decay of
arbitrary order of the approximation rates.

The last result can be extend to the case of infinite number of parameters as well, provided the Kol-
mogorov widths of the set K decay polynomially.

4 Numerical experiments

We devote this section to present two numerical examples where the greedy approach is applied. To
illustrate the procedure, we consider the two dimensional domain Ω = (0, 1)2. In order to approximate
the solution of the elliptic problem (2.4) we use the elementary finite difference (FD) method.

We shall use uniform meshes, i.e., meshes with constant discretization steps in each direction. That
is, for given Nx1 , Nx2 ∈ N∗, we set

x1,i = ihx1 , i ∈ [0, Nx1 + 1], hx1 =
1

Nx1 + 1
,

x2,j = jhx2 j ∈ [0, Nx2 + 1], hx2 =
1

Nx2 + 1
.

Thus, by abuse of notation, we denote by yi,j an approximate value of the solution to (2.4) at the grid
points (x1,i, x2,j).

We will approximate the elliptic operator Aν = −div(aν∇·) with homogeneous Dirichlet boundary
conditions, by using the standard 5-point discretization given by

(Aνhy)i,j =− aνi+ 1
2
,j

yi+1,j − yi,j
h2
x1

+ aνi− 1
2
,j

yi,j − yi−1,j

h2
x1

− aνi,j+ 1
2

yi,j+1 − yi,j
h2
x2

+ aνi,j− 1
2

yi,j − yi,j−1

h2
x2

(4.1)

where we set aν
i± 1

2
,j

= aν(xi±hx1/2, yj) and so on. Observe that the boundary conditions are taken into

account in those formulas by imposing that y0,j = yNx1+1,j = 0, 1 ≤ j ≤ Nx2 and yi,0 = yi,Ny+1 = 0,
1 ≤ i ≤ Nx1 .

The linear system of algebraic equations derived from the FD discretization (4.1) in N×N grid points
for an elliptic PDE has O(N2) equations, so the coefficient matrix has O(N2 ×N2) entries. Even for a
small number N = 200, the resulting matrix cannot be stored and handled in most computers. However,
the matrix for a self adjoint elliptic operator as in (2.4) obtained from (4.1) is sparse with number of
non-zero entries ∼ 5N2. Thus, sparse matrix techniques will be used in what follows. We refer to Section
6 for a more detailed description of the computational cost of implementing the greedy approach.

4.1 Greedy test # 1

Let us consider a coefficient aν of the form

aν(x) = 1 + ν(x2
1 + x2

2)

where we assume that
ν ∈ [1, 10] = K. (4.2)

In this way, we can readily verify that aν satisfies H1 and H2.
On the other hand, we take the coefficient c as

c(x) = sin(πx1) sin(πx2).

which clearly fulfills the condition c ≥ 0. For the discretization of the elliptic problem, we choose
Nx1 = Nx2 = 400 to have a uniform, equally sized mesh in both directions. Finally, for the optimal
control problem, we set the parameter β = 104 while the desired target is the x2-independent function

yd(x) = sin(2πx1).
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Figure 1: Numerical results of the greedy test #1.

We take ω as the region (0.2, 0.5)× (0, 5, 0.9) ∪ (0.5, 0.9)× (0.1, 0.9) in the x1x2-plane (see Figure 2b).
Since the functional Jν is quadratic and coercive, a standard conjugate gradient (CG) algorithm is a

quite natural and simple choice to solve the minimization problem (2.7). In fact, for a given ν ∈ K one
can directly solve the minimization problem (3.2). The average time for computing the corresponding
control up to a given tolerance of 10−8 using the CG is around six seconds.

As mentioned in [28], Hypotheses H1 and H2 allow us to implement a naive approach for approx-
imating the parameterized control set Ū(K). This approach consists in discretizing the parameter set
in a very fine mesh, that we denote it by K̃, and then computing the corresponding control for each
parameter in this finite-dimensional set. If the number of parameters in K̃ is rather small, or the desired
precision ε is large enough, one can directly use the naive approach.

For instance, in this particular test, let us take K̃ as the uniform discretization of the interval (4.2)
in k = 100 values. Then, the naive approach amounts to solve 100 different times the minimization
problem (3.2). The whole process takes around 600 seconds and requires to store all the computed
controls. Therefore, one expects that the greedy approach will help us to reduce the computing effort.

We apply the greedy procedure described in Algorithm 2 over the set K̃ and choosing a precision of
ε = 0.005. The algorithm stops after seven iterations selecting 7 (out of 100) parameter values. The
corresponding optimal states (p̄νi , ȳνi) associated to each selected parameter are stored in memory.

The time needed to finish the offline part of the greedy algorithm takes 476 seconds. Compared to
the time that takes the naive approach, this might seem as a marginal gain. As shown in Section 6, the
offline part is costly. However, this test being an academic example, does not exhibit all of the potential
of the greedy theory. In fact, in real life applications where simulation time may take hours, it is indeed
much cheaper to compute a residual as (3.5) than solving a large number of control problems associated
to that many parameters.

The way the parameters are chosen for this test is illustrated in Figure 1a. One can see that the
selected values are taken from different parts of the parameter set in a zig-zag manner, leading to the best
possible approximation. Indeed, in Figure 1b, we plot the approximation rate of the greedy algorithm
corresponding to

σn(K̃) = max
ν∈K̃

dist
(

(p̄ν , ȳν), (P̄n, Ȳn)
)
.

Such plot suggests an exponential decay of the approximation rate σn, which is in accordance with
Corollary 3.8 that provides a polynomial decay at any rate.

Following the discussion in Section 3, once the offline part is completed, we can construct (approxi-
mate) optimal controls by choosing a suitable combination of the optimal states p̄νi . The methodology
to construct such approximations is described in Algorithm 3.
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Figure 2: Approximated control by greedy methods.

In Figure 2, we plot the approximation of the real control with the greedy algorithm for ν =
√

2. The
approximated control is nearly identical to the obtained, for instance, by minimizing directly functional
(2.7) for the associated value ν =

√
2. In fact, one can obtain for this particular experiment that

‖ū√2 − u
?√

2‖L2(Ω) ≈ 4.61× 10−5.

In spite of obtaining almost the same solution, the convergence of conjugate gradient method takes 5.4 s
compared to 0.488 s in the online greedy part. This fact also shows the computational efficiency of the
proposed algorithm.

In Figure 3a, we plot the solution to (2.4) using the approximated control u?√
2
. As for the control, we

can compute the difference between the real optimal state against the approximate optimal state ȳ?√
2
.

In this particular test, we obtain the following estimate

‖ȳ√2 − y
?√

2‖L2(Ω) ≈ 7.14× 10−7.

Note, however, that the approximation of the state to the desired target (see figure 3b) is quite different
from what one may expect. This fact is not related with the greedy procedure. Actually, it is closely
related to the geometry of the domain ω and the penalization parameter β. One can obtain a better
approximation of the desired target yd by taking a larger value of β, but at the price of increasing the
L2-norm of the control, or by taking a bigger control set ω, leading to an increasing number of degrees
of freedom.

4.2 Greedy test # 2

Here, we present a series of experiments for the case that fit the setting of example 2 in Remark 2.4. As
mentioned before, this will be of interest when discussing the applicability of the method for the turnpike
problem.

To this end, let us consider the case where a(x) ≡ 1 for every parameter ν. It is well-known that the
eigenvalues of the Laplacian on a square are given by

λnm = π2(n2 +m2), n,m ∈ N.

Hence, a straightforward example for testing our greedy methodology is the case where

c(x, ν) = ν

with ν ∈ [−5π2 + ε,−2π2− ε] and ε > 0. We see that in this case, H3 holds as long as we are sufficiently
far from the eigenvalues.
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Figure 3: Controlled solution.
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Figure 4: Control region for the second test.

For simulation purposes, let us take Nx1 , Nx2 and β as in the previous test. In addition, we consider

ν ∈ [−45,−20] = K

and the desired target
yd(x) = sin(πx1)

We will use as a control region the shape depicted in Figure 4. For this particular test, the average
time for computing the optimal control for different values of ν is around 10 seconds. Implementing
the naive approach for the refined mesh K̃ implies that at least 1000 seconds are needed to finish this
process. We will see that by means of the greedy approach we can reduce the computational effort.

Using our computational tool, we choose again the approximation tolerance ε = 0.005. The greedy
algorithm stops after five iterations. We present in figure 5a the selected parameters in the order they were
chosen by the program. As in the previous test, the selection of the parameters leads to an exponential
decay of the approximation rates σn (see figure 5b). The elapsed time for completing the offline process is
389 seconds. This shows a clear improvement of almost 60% less time with respect to the time consumed
in naive approach.

In Figure 6, we plot the approximation of the optimal control obtained by the greedy method for a
chosen value of ν = −5π2/2, while in Figure 7 we show corresponding controlled state and a comparison
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Figure 5: Numerical results of the greedy test #2.

with the target yd. For this particular test, the elapsed time to compute the online control is 0.406
seconds while computing the optimal control directly by means of the CG method takes 15.9 seconds.
The approximation error with respect to the real control is

‖ū−5π2/2 − u
?
−5π2/2‖L2(Ω) ≈ 5.81× 10−4,

while the approximation error for the state using the real and approximated control is

‖ȳ−5π2/2 − y
?
−5π2/2‖L2(Ω) ≈ 6.69× 10−5.

In Figure 7, we observe that the approximation to the desired target yd is (to a certain extent) better
than the one we obtain in greedy test #1. This is because the chosen yd does not change sign in the
domain Ω (cf. Figure 3b). This also translates into a less effort by the control (see Figure 6), even if the
control set ω is smaller than in the previous case (cf. Figure 2).
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Figure 6: The approximated control x 7→ ū?−5π2/2(x).
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5 Connection with turnpike problems

We devote this section to discuss the utility and limitations of the greedy approach for elliptic equations
in the control of evolution problems.

For the moment, let us turn our attention to the time dependent optimization problem

min
u∈L2(0,T ;L2(ω))

JT (u) =
1

2

∫ T

0

‖u(t)‖2L2(ω) +
β

2

∫ T

0

‖y(t)− yd‖2L2(Ω), (5.1)

where y is solution to the parabolic problem
yt − div (aν∇y) + cνy = 1ωu, in Ω× (0, T ),

y = 0, on ∂Ω× (0, T ),

y(x, 0) = y0(x), in Ω.

(5.2)

As stated in Section 2, the turnpike property through Theorem 2.1 ensures that the optimal state
and control (uT (t), yT (t)) solution to (5.1) both simplify exponentially in time large to their steady
counterpart (ū, ȳ). From this fact, a first intuitive experiment is to put the control ū in (5.2) and test its
capability to control the system.

Here, we present a series of experiments related to the (approximated) optimal steady controls in
Sections 4.1 and 4.2. We use them to control the corresponding evolution equation and test their
efficiency. We will differentiate two main cases to be studied.

5.1 The case c(x) ≥ 0

In addition to the parameters already set in the greedy test #1 (see Section 4.1), let us take

• T = 3,

• y0(x) ≡ 0.

In this stage, we are going to use the optimal control ū?√
2

as a time-independent control for system
(5.2). More precisely, we take

u(x, t) = ū?√2(x) for t ∈ (0, T ). (5.3)

We recall that this control is shown in Figure 2. Now, by plugging such control into equation (5.2), we
obtain the controlled solution displayed in Figure 8. We see that this control steers y away from the
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initial condition at time t = 0 and reaches in a short amount of time a region near the optimal steady
state ȳ?√

2
(cf. Figure 8c).

For this experiment, the efficiency of the time-independent control is closely related to the fact that
c(x) ≥ 0. In particular, the conditions on the coefficients aν and c allow to prove that the uncontrolled
system (5.2) is exponentially stable regardless of the initial datum.
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(c) t ∈ (0.1, 3)

Figure 8: Evolution in time for a stable system controlled with the steady control approximated by greedy
procedure.

In Figure 9, we illustrate the efficiency of the steady control by plotting different curves representing
the time evolution of the L2-norm of y solution to (5.2) with different initial datums and taking (5.3) as
a control. To compare, we have computed the time-dependent solution yT (t) associated to the optimal
control uT (t), obtained by minimizing (5.1), for the given parameter ν =

√
2 and y0(x) = 0. Note that

we have split the time horizon in two different intervals for the sake of clarity.
The solid line corresponds to the trajectory obtained by using the turnpike control uT (t) and exhibits

the prototypical behavior expected from the turnpike theory. For most of the time, except at the
beginning and end, the solution remains exponentially close to corresponding steady state ȳ.

On the other hand, the discontinuous lines represent the trajectories of the system controlled with
the steady control (5.3) and differential initial datums. We see that this control drives the solution y
to the same region (up to an approximation error inherited from the greedy procedure) and maintains
the solution there during the whole time interval independently of the initial data. For more that 95%
percent of the time, both solutions are almost indistinguishable (up to the end of the interval, where
they are superimposed).

To some extent, the turnpike property, together with the greedy procedure for elliptic optimal control
problems, gives a partial answer on how to propose a greedy methodology that is independent of the
initial datum for the system under consideration (cf. [28]).

5.2 The case c(x) < 0

In spite of the above conclusions, it is important to mention that the same behavior cannot be expected
for all coefficients c(x) < 0. In fact, if c(x) < −λ1 where λ1 if the first eigenvalue of the operator
−div (aν∇·), then system (5.2) is shown to be unstable.

As an example, let us take the parameters and results in the greedy test #2 shown in Section 4.2
together with y0(x) = 0 and T = 3. As before, we can put the (approximated) steady control ū?−5π2/2(x)

in system (5.2) and test its performance. Recall that we have chosen cν ≡ −5π2/2, which clearly satisfies
cν < −λ1. Thus, in this case, the uncontrolled evolution equation is shown to be unstable.

We show in Figure 10 the solution to the evolution problem using the steady control ū?−5π2/2 for
t ∈ [0, 0, 3]. We see that in this case, the steady control lacks to stabilize the system around the steady
state shown in figure 7a and, moreover, continues growing exponentially during the remainder of the
time interval.
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Figure 10: Evolution in time for an unstable system controlled with the steady control approximated by
means of the greedy approach.
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In Figure 11, we present further experiments showing that for some initial data the controlled solution
y grows exponentially in time. In fact, only for y0(x) = ȳ?−5π2/2 and a sufficiently small neighborhood of
this initial datum, the steady control is effective to control the underlying system.

Note however that this behavior is compatible with the fulfillment of the turnpike property which
relies on the controllability of the system and not on its the stability. In Figure 12, we plot the time
evolution of the optimal controlled state and control (obtained by minimizing (5.1)) and, as expected,
we can see the asymptotic simplification towards the state and control for most of the time horizon.
However, we can also see that the control makes a large effort at the beginning of the temporal interval
to move the system to this steady state. Thus we conclude that unlike the case c(x) ≥ 0, the steady
turnpike controls, and in particular the approximated controls derived from the greedy approach, are in
general not enough to control an unstable evolution system (5.2).

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.5

1

1.5

2

time (sec)

‖y
(t

)‖
L

2
(Ω

)

Figure 11: Time evolution comparison for an unstable system controlled with steady control with different
initial data: y0(x) = ȳ?−5π2/2(x) ( ), y0(x) = 0 ( ) and ỹ0(x) = χ(0.4,0.9)2(x) ( ).
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Figure 12: Turnpike property for an unstable system.
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Figure 13: Quasi-optimal trajectories (for different T0) passing through the steady state ȳ to emulate the
turnpike property.

Remark 5.1 The piecewise control strategy bellow allows to build quasi-turnpike control strategies and
trajectories, for which the initial arc is particularly relevant when the system under consideration is
unstable. More precisely, given the steady solution ȳ to (2.7) and using the property of controllability to
trajectories of (5.2) (see, for instance, [16],[17, Remark 6.1]), one can construct, for any given T0 > 0,
a control v0 steering the system to y(T0) = ȳ. Then, at t = T0, one can switch to the steady control to
remain there. The same idea can be used to exit the steady state. In this way, we can approximate the
real turnpike behavior with a quasi-optimal trajectory (see Figure 13).

Note however that in this strategy T0 is a new design parameter, since the null controllability for
parabolic problems holds for any time. The cost of controllability depends on T0 in a non-trivial and very
sensitive way, so that it diverges exponentially when T0 → 0 (see, for instance, [18]). Thus the optimal
way to choose T0 such that this strategy emulates as close as possible the turnpike property is an open
and interesting problem.

6 Computational cost

In this section, we make a more detailed analysis on the computational cost of the greedy algorithm
versus the naive approach. We rely on classic numerical linear algebra results (see, for instance, [5, 32]).
The analysis is restricted to 2-D problems for which numerical results are presented.

During numerical implementation of Algorithm 2, two main basic problems arise systematically:
matrix-vector multiplication and solving the set of linear equations

Ax = b, A ∈ RM×M . (6.1)

For a given matrix A and any vector x, the cost of computing the product between them is 2M2 operations
and standard methods for solving the linear system (6.1) have a computational cost that grows as O(M3).
As we mentioned before, the finite difference discretization of the operator A = −div (aν∇·) on a N ×N
grid can be written as a system of O(N2) equations. Arranging them in the form (6.1) yields a coefficient
matrix with O(N2 ×N2) entries. In particular, since M = N2 for our case, even for a small number N
of grid points the standard methods become unsuitable.

By arranging equations (4.1) in a natural row order, one can see that the non zero entries of the
resulting matrix are distributed along 5 diagonals of the matrix. In figure 14, we see an example of the
distribution pattern for the nonzero entries of Ah for N = 10 grid points.

These kind of matrices are called sparse matrices and have the feature that their number of nonzero
entries is of order N instead of N2.
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Figure 14: Sparsity pattern of matrix Ah with n = 10. The total number of nonzero elements is 460 (out of
10000).

The matrix-vector multiplication for sparse matrices can be carried out in 2s operations where s is
the number of nonzero entries of the matrix. For this particular problem, matrix Ah has a maximum
number of 5N2 nonzero entries, thus the computational cost is 10N2.

Moreover, for our problem, Ah is an special case of sparse matrices with a defined structure called
banded matrices. The bandwidth µ is the number such that ai,j = 0 if |i− j| > µ. It can be readily seen
that for the general case, the FD matrix associated for a given problem, the bandwidth of Ah is µ = N .
This special structure will allow us to make a precise (but conservative) estimation of the computational
cost for the greedy procedure presented here.

6.1 Cost of the offline part

The offline part of the greedy algorithm consists of two main ingredients. On one hand, the search
for distinguised parameter values νj by examining the residual (3.5) over the set K̃ and, on the other,
the computation of the corresponding snapshots (p̄νj , ȳνj ). We will estimate the computational cost by
differentiating three main steps.

Step 1. Choosing ν1. The first parameter is distinguished by maximizing over all of the possible

targets ydν . To do this, one has to the compute k = card(K̃) times the Euclidian norm in RN
2

and look
for the maximum value. The implementation cost is

2kN2.

Step 2. Computing (p̄ν1 , ȳν1). In order to determine the first snapshot one has to solve the minimiza-
tion problem (3.2) with the selected ν1 in the previous step. As we mentioned before, we are using a
standard CG method to compute the optimal control.

The dominating computations during an iteration of the CG are matrix-vector products and the
computation of the operator S∗S (see eq. (3.3)). The computation of S∗Sv for any v ∈ L2(ω) amounts
first to solve the system of cascade equations

Ay + c y = χωv, in Ω

A∗p+ c p = β(y − yd), in Ω

y = p = 0 on ∂Ω.

and then we can take S∗Sv = p|ω.
Since A is self-adjoint both equations can be solved at the numerical level by taking Lh = Ah + cIh

and then finding for y and p. Since this has to be done during many iterations of the CG, we can exploit
the nature of the matrix Lh (observe that the term cI only contributes to the diagonal and the sparsity
pattern of Ah is preserved) and take the LU factorization of Lh once at the beginning of the process.
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For the matrix Lh, which has a bandwidth µ = N , the LU factorization gives matrices L and U with
the same lower and upper bandwidth, respectively (see [32, Property 3.4]). The computational cost is

2N4 .

Once the LU factors are known, we can solve for either y or p by forward-backward substitution in
4N2µ = 4N3 operations.

Finally, the maximum number of iterations of the CG to achieve a given tolerance δ (see, for instance,
[34]) for this particular case is

` ≤
⌈

1

2

√
κ ln

(
2

δ

)⌉
where κ is the condition number of S∗S.

Gathering all together, we see that the cost for computing an optimal control ū for a given parameter
ν is

Copt = 2N4 + `
(
4N3 +O(N2)

)
(6.2)

where the last term involves all related matrix-vector operations of one iteration of the CG.

Remark 6.1 The cost provided here is rather conservative and far from being optimal. Observe that,
even if Ah has a banded pattern, the band itself is sparse (see Figure 14). LU factorization in this
case gives matrices L and U which are filled in the band and have more nonzero elements than Ah itself.
Different order schemes or matrix compacting techniques can lead to a better performance than computing
the corresponding LU matrices. In general, the computational cost for solving large sparse system depends
on a complicated way of the Ah, the number of nonzero elements, its sparsity pattern and the particular
algorithm used. We refer the interested reader to [19] for a more detailed discussion.

Step 3. Choosing νj+1. Suppose that we have determined the first j snapshots and have constructed
the approximating space (Pj ,Yj). The basis of the approximating space has been determined gradually
through the previous iterations up to the last vector (p̄νj , ȳνj ). As explained in the previous step, each
vector requires Copt operations.

According to Algorithm 2, the next parameter value is chosen by computing

|| inf
(p,y)∈(Pj ,Yj)

Rν̃(p, y)||H−1(Ω) (6.3)

For any given parameter ν̃, equations (3.13) and (3.14) enable the practical implementation of this
infimum. First, the residual Gν̃ can be build just by vector and scalar multiplication of sparse matrices,
see (3.13). The computational cost of this part can be estimated as 45N2.

As stated in Remark 2, the infimum appearing in (6.3) can be computed by projecting the vector(
0

−βyd
)

to the space Gν̃(Pj ,Yj). Indeed, one can compute by means of the Gram-Schmidt procedure an

orthonormal basis for the space (Pj ,Yj) and then finding the projection just by vector multiplications.
To improve the efficiency, this basis is orthonormalized iteratively just by adding the last computed
vector to the already orthonormal base. This has a cost of 4N2j. Finding the actual projection can be
carried out by merely matrix-vector multiplication, which also has a total cost of 4N2j.

Adding up, the total cost of this part of the algorithm equals to

(k − j)(45N2 + 8N2j)

Remark 6.2 Observe that at the numerical level, the residual Rν can be implemented at the very low
cost of O(N2) operations, since it is only composed by matrix-vector multiplications. In other works
(see, e.g., [28]), where the surrogate is obtained by solving coupled forward-backward systems, the cost is
dominated by LU-factorization which (for banded sparse matrices) has a cost of 2N4 (see Step 2 above).
The idea of obtaining cheaper surrogates is, of course, not new and has been successfully explored within
the framework of optimal control for elliptic and parabolic equations, see, for instance, [20, 24, 25].
The difference between these works and the approach presented in this mansucript is in the way the
greedy procedure is implemented. In the cited papers the authors employ Galerkin projections in order to
determine the next snapshot, while we use orthogonal projection to the constructed space. However, the
cost of both approaches is similar.

Step 4. Calculating (p̄j+1, ȳj+1). To compute the new snapshot it suffices to solve the optimal control
problem for νj+1. As before, the cost is given in (6.2).
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Total cost

Summing the above cost for j = 1, . . . , n, the tocal cost of the algorithm results in

Ctotal = 2kN2 +
45

2
N2n (2k − n− 1) +

4

3
N2n(n+ 1) (3k − 2n− 1)) + nCopt

As the cost Copt of solving the optimal control problem is O(N4), this part contributes with most of
the computational cost of the greedy algorithm. As the number of chosen snapshots n approaches the
number of eligible parameters k = card(K̃), this part converges, up to lower order terms, to the cost
of computing ūν for all the possible values k. This proves that the application of the greedy control
algorithm is always cheaper than a naive approach that consists of computing controls for all values of
the parameter from a very refined uniform mesh on K.

6.2 Cost of the online part

Here, we will estimate the computational cost of the online part of the greedy procedure, which is
described in Algorithm 3. Observe that only the first four steps of this algorithm contribute to the total
cost of computing the approximated control ū? with the greedy procedure.

• Step 1. In the first step, we have to project the vector(
0

−βyd
)

to Gν(Pn,Yn)

where Gν(Pn,Yn) denotes the space spanned by Gν(pi, yi), i = 1, . . . , n and {(pi, yi), i = 1, . . . , n}
are the snapshots selected in the offline part. To this effect we first build the linear part of the
residual, Gν , for each pair (p̄i, ȳi), i = 1, . . . , n, with a computational cost of 45N2 for each one.
Then we orthonormalize the set {Gν(pi, yi), i = 1, . . . , n} with the Gram-Schmidt procedure, which
can be achieved in 2N2n2 operations. Finally, the projection can be carried out by by adding and
multiplying vectors in this new orthonormal basis with a total cost of 4N2n.

• Step 2. Denoting the projection by Pn

(
0

−βyd
)

, we solve for the system

Pn

(
0

−βyd
)

=
∑

αiGν(pi, yi).

Solving this system with QR decomposition has a cots of 8N2n2 − 16
3
n3 operations.

• Step 3. This step can be achieved by scalar-vector multiplications with a total cost of N2n.

• Step 4. The computational cost of this part is negligible with respect to the rest of the algorithm.

Adding up these contributions, the total cost for obtaining an approximative control ū?ν for some
parameter value equals to

10N2n2 + 50N2n− 16

3
n3

Recall that the the computational cost of obtaining the optimal control by the conjugate gradient
method for some parameter ν is Copt (see eq. (6.2)) is of order N4. The cost for computing the ū?ν
only depends on n and, in particular, since no iterations are required the total cost of obtaining an
approximation of the control by the greedy procedure is less than the cost of obtaining it, for instance,
by the CG method.

Finally, Step 5 of the online algorithm amounts to solve the corresponding system with control ū?ν
and, as mentioned before, we can solve it by computing the LU factors and then by forward-backward
subsstitution in 2N4 + 4N3 operations.
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7 Additional comments and open problems

We devote this section to present some concluding remarks and state some open problems regarding the
turnpike property as well as the greedy approach.

1. Robust control of the evolution equation. The application of the turnpike property and the reduc-
tion of the optimal control problem for parabolic equations to the steady state one allows us to
employ greedy procedure and construct an approximating space for parameterized controls which
is independent of the initial datum. This allows for a robust approach which is not datum sensitive.
Thus we provide partial answers to the questions arising in [28] in the context of finite-dimensional
systems, as well as in [9], where greedy approach for elliptic problems is explored in a robust manner
independently of the given source terms.

2. Stable vs unstable. From the results presented in [31], it is clear that we can expect the asymptotic
simplification of the time-dependent controls towards their steady version if time large. However,
from the practical point of view, two main cases have to be differentiated. As discussed in Section
5, the possibility to use the steady control in the evolution problem largely depends on its stability.
If the system is stable, one can effectively use the time independent control to steer the system
near the turnpike and remain there indefinitely. When the system is unstable, one can use the
approach discussed in Section 5.2 to first control the system to the steady state and then use the
steady control to remain there. In this way, the original problem of computing an optimal control
in a large time horizon is reduced to an exact controllability problem in a small time interval plus
a steady optimal control one.

3. On hypothesis H3. In Section 2, we assumed that the mapping Lν is uniformly elliptic with respect
to ν. hold for all ν ∈ K. This condition allowed us to define the residual Rν (and also to employ
systematically (2.5)), which in turn is at the heart of the proof of Theorem 3.2 and the greedy
procedure described in Algorithm 2.

In the general case, when hypothesis H3 is not fulfilled, there might be some ν ∈ K such that
ker(Lν) = {0}. For that parameter value the solutions to system (2.4) are not uniquely determined
and can be written as

y = z + e with z ∈ ker(Lν)⊥, e ∈ ker(Lν). (7.1)

and the minimization problem (2.7) has to be replaced by the more general one

min

{
J(u) =

1

2
‖u‖2L2(ω) +

β

2
‖y − yd‖2L2(Ω), u ∈ L2(ω), y ∈ H1

0 (Ω) verifying (7.1)

}
. (7.2)

In this case, the functional J appearing in (7.2) is again strictly convex, continuous and coercive
and therefore the minimization problem is well posed and the optimal control ū and the optimal
state ȳ can be identified. However, from the definition of the residual (3.5), we see that the operator
Lν is involved, and if H3 is not fulfiled the residual is not longer a reliable way to measure the
distance between two possiblly unknown controls. Thus for the general case in which H3 is not
satisfied a more careful analysis is needed and it remains as an open problem.

4. Wave equations. When the free dynamics of the system under consideration enjoys some stability
property, it is expected for the turnpike property to hold. For wave-like models, where solutions of
the free dynamics are of oscillatory nature and do not enjoy the property of asymptotic simplifi-
cation, is less clear. However, as shown in [31, 39], the turnpike property still holds for wave-like
models under suitable controllability assumptions. More precisely, except for an initial time layer
[0, τ ] and a final one [0, T − τ ] during the rest of the time interval the solutions are exponentially
close to the steady state ones. Therefore, the greedy methodology and the robust control approach
discussed above applies for such models without major changes. In the same line as the unstable
parabolic case, it remains to show what is the best strategy to control the system in the initial and
final layer.

5. Finite element methods. The numerical simulations presented here were implemented by using finite
differences methods. As usual, these methods are suitable for analyzing examples posed in simple
cartesian geometries with regular enough meshes and are known to be easily programmable. One
can use finite element methods to study more complex problems arising in applications and the

27



same results presented in this work are expected. In particular, for problems where the cost of
computing one solution to the optimal control problem is very large, the greedy approach and, in
general, reduced bases techniques, are reliable tools to speed up the simulations, allowing to explore
different parameter configuration within a reasonable amount of time.

6. Greedy controllability for parabolic equations. In this paper we generalize the greedy approach for
controllability problems presented in [28] for ODEs to the PDE setting. Nevertheless, to quantify
the convergence rate of greedy algorithms, the analytic dependence of the controls with respect to
the parameters plays a key role. For heat and parabolic equations, when the unknown parameters
enter in the principal part of the diffusion operator, the analytic dependence can be expected (this
is not the case for wave equations, see, e.g. [1]). However, the functional setting in which the
controls are analytically dependent of the parameters is not clear. Moreover, classical observability
inequalities fail to provide good upper and lower bounds for a residual (surrogate) that allows to
measure the distance between to possible unknown controls.

By exploring the turnpike property, we can bypass the difficulties of analytical dependence for the
controls of parabolic problems and reduce the problem to the elliptic setting where we have an
appropriate functional setting (cf. subsection 3.4), which provides optimal approximation rates
in terms on Kolmogorov widths. Furthermore, unlike other papers in which the affine parameter
dependence is required for efficient implementation of a greedy sampling procedure ([11, 20, 24, 25]),
here no special dependence of the coefficients with respect to the parameter is required.
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