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MULTIPLE HOPF BIFURCATIONS IN COUPLED NETWORKS OF
PLANAR SYSTEMS

Guillaume Cantin, M.A. Aziz-Alaoui, Nathalie Verdiere, Valentina Lanza *

Abstract. In this communication, we study coupled networks built
with non-identical instances of a dynamical system exhibiting a
Hopf bifurcation. We first show how the coupling generates the
birth of multiple limit cycles. Next, we project those coupled net-
works in the real plane, and construct a polynomial Hamiltonian
system of degree n, admitting O(n2) non-degenerate centers. We
explore various perturbations of that Hamiltonian system and im-
plement an algorithm for the symbolic computation of the Melnikov
coefficients.
Keywords. Limit cycle, Hopf bifurcation, Hamiltonian system,

Melnikov coefficients, coupled network.

1 Sequence of Hopf bifurcations
in a directed chain of oscillators

Let us consider a directed chain of oscillators, built with
the normal form of a Hopf bifurcation

=1, (1)
where (p, 0) denote the polar coordinates of a generic

point (z, y) in R2. The whole coupled network is given
by

p = P()\ - p2)>

p1=p1(M = pf) —em
Pk = pe(A\k — pp) +epp1 —epr,2 <k <n—1
Pn = pn(An — P%) + Epn-1.

(2)

We consider that the cells have the same angular veloc-
ity, that is = 1, so we omit it in the equations of the
network. For n = 3 and A3 < 0 < A1 < Ag, in absence
of coupling (¢ = 0), cells 1 and 2 each admit one unsta-
ble equilibrium point, and one stable limit cycle whose
respective radius pi, ps satisfy p; < pa. Cell 3 admits a
unique stable equilibrium point. If the coupling strength
€ weakly increases, we observe the appearance of a second
cycle in cell 2, and simultaneously the appearance of two
different cycles in cell 3. If £ keeps increasing, the cycle
of greater radius first vanishes, and finally the other cy-
cle vanishes too. Finally, the three cells present the same
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dynamic only for quite large values of €. The bifurcation
diagrams for cells 2 and 3 are depicted in Figure [I] This
shows that a very simple network can also generate new
limit cycles.

Figure 1: Bifurcation diagrams for a three non identical
cells directed chain.

In order to prove that the chain exhibits this sequence
of Hopf bifurcations, we can make a local analysis based
on the calculation of the first Lyapunov coefficient in the
Poincaré normal form of the Hopf bifurcation [2, 4]. After
basic computations, the first Lyapunov coefficient is given
by

(20 + 3p)*

El(:u’) = - (/\1 —u)2 5

3)

where § = Ao — A1 measures the difference of the dynam-
ics of each node, and p = Ay — ¢ is a translation of the
coupling strength introduced in order to lighten the com-

putations. In particular, we have ¢1(0) = ;;‘ﬁ7 thus the
1

Hopf bifurcation that occurs in the network is supercrit-
ical, and degenerates into a Bautin bifurcation point if
A1 = Ao

A longer chain can present a greater number of Hopf
bifurcations. Such coupled networks have been applied to
the study of neural networks or electric circuits networks
[5]. It is remarkable that the number of limit cycles in-
creases, but the degree of the polynomial involved in the
system is constant. In the following, we investigate
the effect of projecting such a coupled network in the real
plane.
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2 Near-hamiltonian planar poly-
nomial systems of degree n ad-
mitting n? limit cycles

In this section, we consider a Hamiltonian system admit-

ting n? centers, and build a perturbation of that system.

We show some examples for which the perturbed system

admits n3 limit cycles. To that aim, we introduce the
following Hamiltonian system:

&=FE
(Zn,m) {y _ _j’%

with n,m € N*|

E=> E [ +y* -0} (5)
k=1 =1
Ik

where p; < pa < -+ < P,

n

Be=5 [T [ —2i0)?+ (= wir)?]

=1

(6)

2im
et

2im
n

with z; = pi cos and y; 1 = px sin

Proposition 2.1. For any n,m € N*, the system (Z,,,m)
is Hamiltonian, invariant under rotation of center (0, 0)
and angle 27” Furthermore, it is polynomial of degree
O(n+m), and it admits n x m non-degenerate centers at

(‘ri,ka yi,k); 1 S { S n, 1 S k S m.

Figure 2: Energy levels of (X53) .

Now the difficult question is to find a polynomial per-
turbation of (X, ,,), of low degree, so that each center
bifurcates into a given number a limit cycles. Thus we
introduce for ¢ > 0 and r € N* the near-Hamiltonian
system:

€
(En,m,r

) {x = E, +eP(z,y,0) -

y = _Ew + SQ(I7ya6)a

with

(@ +y* o), (8)

s

P(mayvé) = Zpk(x7yv6)
k=1

~ e~

]
T =

where

n
Pi(z,y,0) = ) —sin 2% py (—sin 2%z + cos 2y)
=1

n
X [H(—sin%x—i—cos%y)},

it

<

<
.

T
and pg(u) = Z&k’su%” for 1 <k <m.

s=0
Proposition 2.2. For any n,m,r € N* the near-
Hamiltonian system (Efl’mm) is polynomial of degree
On+m+r).

Finally, we present some examples for which we have
computed the Melnikov coefficients [I] at each non-
degenerate center, in order to show that (Ei’m’r) can
admit n x m x r limit cycles (see Table[[). It is a work
in progress to prove it in the general case. Such a general
theorem would constitute a new lower bound for Hilbert’s
number, that is H(n) > O(n?) (see [3] and the references
therein).

Table 1: Some examples of system (Efumﬂn) admitting
n X m X r limit cycles.

n m r Number of limit cycles
3 2 2 12
3 3 3 27
3 3 4 36
3 4 3 36
3 4 4 48
3 5 3 45
5 2 2 20
5 3 2 30
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