A. Grx, A. Pltp, H. , and A. , Supplemental Data The following supplemental materials are available

S. Supplemental-figure, Comparison between the profile of expression of the most induced and repressed genes by apo-pyo in the roots in irondeficiency medium (log 2 ratio $ 1 3 or # 2 3) to the profiles of other transcriptomic data

S. Supplemental-figure, Comparison between the profile of expression of the most induced and repressed genes by apo-pyo in the roots in irondeficiency medium (log 2 ratio $ 1 3 or # 2 3) to the profiles of other transcriptomic data

S. Supplemental-figure, Growth phenotypes of mutants overexpressing or impaired in genes involved in iron homeostasis (bhlh100, bhlh39, ov. fer.) or defense responses or/and growth (cer4, grx, ltp3, and pltp) in response to apo-pyo in iron sufficient or in iron deficient medium

S. Supplemental-figure, Rosette macroscopic phenotype of A. thaliana plantlets exposed to apo-pyo or inoculated with the C7R12 or PL1 strains in iron-sufficient or iron-deficient conditions

S. Supplemental-figure, Comparison between the profile of expression of the genes modulated by apo-pyo in the roots in iron-containing medium (log 2 ratio $ 1 1.5 or #5 2 1.5) to the profiles of other transcriptomic data (most similar perturbations)

S. Supplemental-table, Genes modulated by apo-pyo (log 2 ratio $ 1 1.5 or # 21.5) in iron containing medium in the shoots

S. Supplemental-table, Genes modulated by apo-pyo (log 2 ratio $ 1.5 or # 21.5) in iron deficient medium in the shoots

S. Supplemental-table, Genes modulated by apo-pyo (log 2 ratio $ 1.5 or # 21.5) in iron containing medium in the roots

S. Supplemental-table, Genes modulated by apo-pyo (log 2 ratio $ 1.5 or # 21.5) in iron deficient medium in the roots

S. Supplemental-table, Genes related to iron homeostasis modulated by apo-pyo (Log 2 ratio $ 1.5 or # 21.5) in iron deficient conditions in roots or in shoots

S. Supplemental-table, Genes related to defense modulated by apo-pyo (Log 2 ratio $ 1.5 or # 21.5) in iron deficient conditions in roots or in shoots

S. Supplemental-table, Genes related to the trade-off growth/defense mediated by HBI1 modulated by apo-pyo (Log 2 ratio $ 1.5 or # 21.5) in iron deficient conditions in roots or in shoots

S. Supplemental-table, Comparison between the root genes modulated by apo-pyo in iron-containing medium (Log 2 ratio # 21.5 or $ 1 1.5) and the genes modulated by iron deficiency in roots in the study of Schuler, 2011.

S. Supplemental-table, List of the primers used for the characterization of the mutants lines

S. Supplemental-table, List of the primers used in the RT-qPCR analyses. ACKNOWLEDGMENTS We thank Carine Fournier for the preparation of B. cinerea spores; Pascal Tillard and Alain Gojon from the Analytical Platform of the Biochimie et Physiologie Moléculaire des Plantes; Cyril Zipfel for the gift of HBI1-ox and HBI1 (L214E)-ox lines; and Olivier Lamotte, Rosnoblet , and Hoai-Nam Truong for careful reading of the article. LITERATURE CITED

E. Ahmed and S. Holmström, Siderophores in environmental research: roles and applications, Microbial Biotechnology, vol.47, issue.273, pp.196-208, 2014.
DOI : 10.1016/j.ejsobi.2010.11.001

URL : http://onlinelibrary.wiley.com/doi/10.1111/1751-7915.12117/pdf

A. Albrecht-gary, S. Blanc, R. N. Ocaktan, A. Abdallah, and M. , Bacterial Iron Transport: Coordination Properties of Pyoverdin PaA, a Peptidic Siderophore of Pseudomonas aeruginosa, Inorganic Chemistry, vol.33, issue.26, pp.6391-6402, 1994.
DOI : 10.1021/ic00104a059

URL : https://hal.archives-ouvertes.fr/hal-01458140

A. Aznar, N. Chen, M. Rigault, N. Riache, D. Joseph et al., Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores, PLANT PHYSIOLOGY, vol.164, issue.4, pp.2167-2183, 2014.
DOI : 10.1104/pp.113.233585

URL : https://hal.archives-ouvertes.fr/hal-01204049

A. Aznar, N. Chen, S. Thomine, and A. Dellagi, Immunity to plant pathogens and iron homeostasis, Plant Science, vol.240, pp.90-97, 2015.
DOI : 10.1016/j.plantsci.2015.08.022

URL : https://hal.archives-ouvertes.fr/hal-01401768

A. Aznar and A. Dellagi, New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals?, Journal of Experimental Botany, vol.66, issue.11, pp.3001-3010, 2015.
DOI : 10.1093/jxb/erv155

URL : https://hal.archives-ouvertes.fr/hal-01204186

M. Bai, M. Fan, E. Oh, and Z. Wang, A Triple Helix-Loop-Helix/Basic Helix-Loop-Helix Cascade Controls Cell Elongation Downstream of Multiple Hormonal and Environmental Signaling Pathways in Arabidopsis, The Plant Cell, vol.24, issue.12, pp.4917-4929, 2012.
DOI : 10.1105/tpc.112.105163

P. Bakker, C. Pieterse, and L. Van-loon, spp., Phytopathology, vol.97, issue.2, pp.239-243, 2007.
DOI : 10.1094/PHYTO-97-2-0239

URL : https://hal.archives-ouvertes.fr/hal-01333709

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

K. Carson, J. Meyer, and M. Dilworth, Hydroxamate siderophores of root nodule bacteria, Soil Biology and Biochemistry, vol.32, issue.1, pp.11-21, 2000.
DOI : 10.1016/S0038-0717(99)00107-8

B. Chu, A. Garcia-herrero, T. Johanson, K. Krewulak, C. Lau et al., Siderophore uptake in bacteria and the battle for iron with the host; a bird???s eye view, BioMetals, vol.13, issue.4, pp.601-611, 2010.
DOI : 10.1074/jbc.270.45.26723

E. Colangelo and M. Guerinot, The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency Response, THE PLANT CELL ONLINE, vol.16, issue.12, pp.3400-3412, 2004.
DOI : 10.1105/tpc.104.024315

D. Crowley, Microbial siderophores in the plant rhizosphere Iron Nutrition in Plants and Rhizospheric Microorganisms, pp.169-189, 2006.

A. Dellagi, M. Rigault, D. Segond, C. Roux, Y. Kraepiel et al., Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection, The Plant Journal, vol.136, issue.2, pp.262-272, 2005.
DOI : 10.1104/pp.102.3.967

URL : https://hal.archives-ouvertes.fr/hal-00086157

A. Dellagi, D. Segond, M. Rigault, M. Fagard, C. Simon et al., Microbial Siderophores Exert a Subtle Role in Arabidopsis during Infection by Manipulating the Immune Response and the Iron Status, PLANT PHYSIOLOGY, vol.150, issue.4, pp.1687-1696, 2009.
DOI : 10.1104/pp.109.138636

D. Vleesschauwer, D. Djavaheri, M. Bakker, P. Höfte, and M. , Pseudomonas fluorescens WCS374r-Induced Systemic Resistance in Rice against Magnaporthe oryzae Is Based on Pseudobactin-Mediated Priming for a Salicylic Acid-Repressible Multifaceted Defense Response, PLANT PHYSIOLOGY, vol.148, issue.4, pp.1996-2012, 2008.
DOI : 10.1104/pp.108.127878

D. Vleesschauwer, D. Höfte, and M. , Chapter 6 Rhizobacteria-Induced Systemic Resistance, Adv Bot Res, vol.51, pp.223-281, 2009.
DOI : 10.1016/S0065-2296(09)51006-3

B. Duijff, G. Recorbet, P. Bakker, J. Loper, and P. Lemanceau, WCS358, Phytopathology, vol.89, issue.11, pp.1073-1079, 1999.
DOI : 10.1094/PHYTO.1999.89.11.1073

M. Fan, M. Bai, J. Kim, T. Wang, E. Oh et al., The bHLH Transcription Factor HBI1 Mediates the Trade-Off between Growth and Pathogen-Associated Molecular Pattern-Triggered Immunity in Arabidopsis, The Plant Cell, vol.26, issue.2, pp.828-841, 2014.
DOI : 10.1105/tpc.113.121111

I. Finkemeier, M. Goodman, P. Lamkemeyer, A. Kandlbinder, L. Sweetlove et al., under Stress, Journal of Biological Chemistry, vol.269, issue.13, pp.12168-12180, 2005.
DOI : 10.1073/pnas.252641899

P. Fourcroy, P. Sisó-terraza, D. Sudre, M. Savirón, G. Reyt et al., roots in response to iron deficiency, New Phytologist, vol.257, issue.1, pp.155-167, 2014.
DOI : 10.1006/abio.1997.2522

URL : https://hal.archives-ouvertes.fr/hal-00921475

T. Franza and D. Expert, Role of iron homeostasis in the virulence of phytopathogenic bacteria: an ????? la carte??? menu, Molecular Plant Pathology, vol.187, issue.4, pp.429-438, 2013.
DOI : 10.1128/JB.187.23.8088-8103.2005

URL : https://hal.archives-ouvertes.fr/hal-01003310

M. Guerinot and Y. Yi, Iron: Nutritious, Noxious, and Not Readily Available, Plant Physiology, vol.104, issue.3, pp.815-820, 1994.
DOI : 10.1104/pp.104.3.815

URL : http://www.plantphysiol.org/content/plantphysiol/104/3/815.full.pdf

D. Haas and G. Défago, Biological control of soil-borne pathogens by fluorescent pseudomonads, Nature Reviews Microbiology, vol.94, issue.4, pp.307-319, 2005.
DOI : 10.1146/annurev.phyto.39.1.103

N. Kieu, A. Aznar, D. Segond, M. Rigault, E. Simond-côte et al., Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea, Molecular Plant Pathology, vol.17, issue.8, pp.816-827, 2012.
DOI : 10.1094/MPMI.2004.17.4.357

E. King, M. Ward, and D. Raney, Two simple media for the demonstration of pyocyanin and fluorescin, J Lab Clin Med, vol.44, pp.301-307, 1954.

E. Koen, A. Besson-bard, C. Duc, J. Astier, A. Gravot et al., Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure, Plant Science, vol.209, pp.1-11, 2013.
DOI : 10.1016/j.plantsci.2013.04.006

URL : https://hal.archives-ouvertes.fr/hal-00967003

E. Koen, P. Trapet, D. Brulé, A. Kulik, A. Klinguer et al., : Link with Iron Homeostasis, Molecular Plant-Microbe Interactions, vol.27, issue.11, pp.1226-1240, 2014.
DOI : 10.1094/MPMI-05-14-0142-R

P. Lemanceau and C. Alabouvette, Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium, Crop Protection, vol.10, issue.4, pp.279-286, 1991.
DOI : 10.1016/0261-2194(91)90006-D

P. Lemanceau, P. Bakker, D. Kogel, W. Alabouvette, C. Schippers et al., Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47, Appl Environ Microbiol, vol.58, pp.2978-2982, 1992.

P. Lemanceau, P. Bakker, D. Kogel, W. Alabouvette, C. Schippers et al., Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi, Appl Environ Microbiol, vol.59, pp.74-82, 1993.

L. Roux, C. , D. Prete, S. Boutet-mercey, S. Perreau et al., The hnRNP-Q protein LIF2 participates in the plant immune response The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots, PLoS ONE Plant Cell, vol.9, issue.22, pp.2219-2236, 2010.

J. Loper and M. Henkels, Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene, Appl Environ Microbiol, vol.63, pp.99-105, 1997.

R. Lozano-durán and C. Zipfel, Trade-off between growth and immunity: role of brassinosteroids, Trends in Plant Science, vol.20, issue.1, pp.12-19, 2015.
DOI : 10.1016/j.tplants.2014.09.003

C. Lurin, C. Andrés, S. Aubourg, M. Bellaoui, F. Bitton et al., Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis, THE PLANT CELL ONLINE, vol.16, issue.8, pp.2089-2103, 2004.
DOI : 10.1105/tpc.104.022236

F. Malinovsky, M. Batoux, B. Schwessinger, J. Youn, L. Stransfeld et al., Antagonistic Regulation of Growth and Immunity by the Arabidopsis Basic Helix-Loop-Helix Transcription Factor HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH INCREASED LEAF INCLINATION1 BINDING bHLH1, PLANT PHYSIOLOGY, vol.164, issue.3, pp.1443-1455, 2014.
DOI : 10.1104/pp.113.234625

S. Mazurier, M. Lemunier, S. Siblot, C. Mougel, and P. Lemanceau, Distribution and diversity of type III secretion system-like genes in saprophytic and phytopathogenic fluorescent pseudomonads, FEMS Microbiology Ecology, vol.49, issue.3, pp.455-467, 2004.
DOI : 10.1016/j.femsec.2004.04.019

J. Meyer and M. Abdallah, The Fluorescent Pigment of Pseudomonas fluorescens: Biosynthesis, Purification and Physicochemical Properties, Journal of General Microbiology, vol.107, issue.2, pp.319-328, 1978.
DOI : 10.1099/00221287-107-2-319

H. Meziane, I. Van-der-sluis, L. Van-loon, M. Höfte, and P. Bakker, WCS358 involved in inducing systemic resistance in plants, Molecular Plant Pathology, vol.3, issue.2, pp.177-185, 2005.
DOI : 10.1016/S1097-2765(00)80265-8

P. Mirleau, S. Delorme, L. Philippot, J. Meyer, S. Mazurier et al., Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake, FEMS Microbiology Ecology, vol.34, issue.1, pp.35-44, 2000.
DOI : 10.1111/j.1574-6941.2000.tb00752.x

T. Nagata, T. Oobo, and O. Aozasa, Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants, Journal of Bioscience and Bioengineering, vol.115, issue.6, pp.686-690, 2013.
DOI : 10.1016/j.jbiosc.2012.12.018

M. Nairz, D. Haschka, E. Demetz, and G. Weiss, Iron at the interface of immunity and infection, Frontiers in Pharmacology, vol.67, issue.e2061, p.152, 2014.
DOI : 10.1001/jama.2013.277129

S. Ong, J. Ho, B. Ho, and J. Ding, Iron-withholding strategy in innate immunity, Immunobiology, vol.211, issue.4, pp.295-314, 2006.
DOI : 10.1016/j.imbio.2006.02.004

L. Rizhsky, H. Liang, J. Shuman, V. Shulaev, S. Davletova et al., When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress, PLANT PHYSIOLOGY, vol.134, issue.4, pp.1683-1696, 2004.
DOI : 10.1104/pp.103.033431

A. Robin, G. Vansuyt, P. Hinsinger, J. Meyer, J. Briat et al., Chapter 4 Iron Dynamics in the Rhizosphere, Adv Agron, vol.99, pp.183-225, 2008.
DOI : 10.1016/S0065-2113(08)00404-5

N. Robinson, C. Procter, E. Connolly, and M. Guerinot, A ferric-chelate reductase for iron uptake from soils, Nature, vol.265, issue.6721, pp.694-697, 1999.
DOI : 10.1126/science.8091210

R. Saha, N. Saha, R. Donofrio, and L. Bestervelt, Microbial siderophores: a mini review, Journal of Basic Microbiology, vol.17, issue.4, pp.303-317, 2013.
DOI : 10.1016/j.chembiol.2010.02.010

M. Schuler, A. Keller, C. Backes, K. Philippar, H. Lenhof et al., Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana, BMC Plant Biology, vol.11, issue.1, p.87, 2011.
DOI : 10.1126/science.1153795

A. Sivitz, V. Hermand, C. Curie, and G. Vert, Arabidopsis bHLH100 and bHLH101 Control Iron Homeostasis via a FIT-Independent Pathway, PLoS ONE, vol.7, issue.9, p.44843, 2012.
DOI : 10.1371/journal.pone.0044843.s009

URL : https://hal.archives-ouvertes.fr/hal-00777667

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, 2004.
DOI : 10.2202/1544-6115.1027

J. Storey and R. Tibshirani, Statistical significance for genomewide studies, Proceedings of the National Academy of Sciences, vol.23, issue.1, pp.9440-9445, 2003.
DOI : 10.1002/gepi.1124

URL : http://www.pnas.org/content/100/16/9440.full.pdf

S. Teng, J. Keurentjes, L. Bentsink, M. Koornneef, and S. Smeekens, Sucrose-Specific Induction of Anthocyanin Biosynthesis in Arabidopsis Requires the MYB75/PAP1 Gene, PLANT PHYSIOLOGY, vol.139, issue.4, pp.1840-1852, 2005.
DOI : 10.1104/pp.105.066688

L. Van-loon, P. Bakker, W. Van-der-heijdt, D. Wendehenne, and A. Pugin, Early Responses of Tobacco Suspension Cells to Rhizobacterial Elicitors of Induced Systemic Resistance, Molecular Plant-Microbe Interactions, vol.21, issue.12, pp.1609-1621, 2008.
DOI : 10.1094/MPMI-21-12-1609

S. Van-wees, S. Van-der-ent, and C. Pieterse, Plant immune responses triggered by beneficial microbes, Current Opinion in Plant Biology, vol.11, issue.4, pp.443-448, 2008.
DOI : 10.1016/j.pbi.2008.05.005

G. Vert, N. Grotz, F. Dédaldéchamp, F. Gaymard, M. Guerinot et al., IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth, THE PLANT CELL ONLINE, vol.14, issue.6, pp.1223-1233, 2002.
DOI : 10.1105/tpc.001388

H. Wang, J. Wang, J. Jiang, S. Chen, Z. Guan et al., Reference genes for normalizing transcription in diploid and tetraploid Arabidopsis, Scientific Reports, vol.37, issue.1, p.6781, 2014.
DOI : 10.1038/ng1543

URL : http://www.nature.com/articles/srep06781.pdf

D. Weller, Biocontrol Agents of Soilborne Pathogens: Looking Back Over 30 Years, Phytopathology, vol.97, issue.2, pp.250-256, 2007.
DOI : 10.1094/PHYTO-97-2-0250

Y. Yang, S. Dudoit, P. Luu, D. Lin, V. Peng et al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Research, vol.30, issue.4, p.15, 2002.
DOI : 10.1093/nar/30.4.e15

URL : https://academic.oup.com/nar/article-pdf/30/4/e15/9901208/3000e15.pdf

X. Yu, C. Ai, L. Xin, and G. Zhou, The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper, European Journal of Soil Biology, vol.47, issue.2, pp.138-145, 2011.
DOI : 10.1016/j.ejsobi.2010.11.001

Y. Yuan, H. Wu, N. Wang, J. Li, W. Zhao et al., FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis, Cell Research, vol.6, issue.3, pp.385-397, 2008.
DOI : 10.1073/pnas.81.7.1991

C. Zamioudis, J. Hanson, and C. Pieterse, roots, New Phytologist, vol.21, issue.2, pp.368-379
DOI : 10.1105/tpc.108.063321

C. Zamioudis, J. Korteland, J. Van-pelt, M. Van-hamersveld, N. Dombrowski et al., expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses, The Plant Journal, vol.58, issue.2, pp.309-322, 2015.
DOI : 10.1111/j.1365-313X.2009.03803.x

Z. Zhai, S. Gayomba, H. Jung, N. Vimalakumari, M. Piñeros et al., OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis, The Plant Cell, vol.26, issue.5, pp.2249-2264, 2014.
DOI : 10.1105/tpc.114.123737