Image-based Street-side City Modeling

Abstract : We propose an automatic approach to generate street-side 3D photo-realistic models from images captured along the streets at ground level. We first develop a multi-view semantic segmentation method that recognizes and segments each image at pixel level into semantically meaningful areas, each labeled with a specific object class, such as building, sky, ground, vegetation and car. A partition scheme is then introduced to separate buildings into independent blocks using the major line structures of the scene. Finally, for each block, we propose an inverse patch-based orthographic composition and structure analysis method for facade modeling that efficiently regularizes the noisy and missing reconstructed 3D data. Our system has the distinct advantage of producing visually compelling results by imposing strong priors of building regularity. We demonstrate the fully automatic system on a typical city example to validate our methodology.
Type de document :
Article dans une revue
ACM Transactions on Graphics, Association for Computing Machinery, 2009, 28 (5), pp.114. 〈10.1145/1618452.1618460〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01635654
Contributeur : Maxime Lhuillier <>
Soumis le : mercredi 15 novembre 2017 - 14:54:39
Dernière modification le : mardi 9 octobre 2018 - 09:44:11
Document(s) archivé(s) le : vendredi 16 février 2018 - 14:24:52

Fichier

Sig09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jianxiong Xiao, Tian Fang, Peng Zhao, Maxime Lhuillier, Long Quan. Image-based Street-side City Modeling. ACM Transactions on Graphics, Association for Computing Machinery, 2009, 28 (5), pp.114. 〈10.1145/1618452.1618460〉. 〈hal-01635654〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

131