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Scenario Selection Optimization in System Engineering Projects Under
Uncertainty: A Multi-Objective Ant Colony Method Based on a Learning
Mechanism

M. LachhaB, T. Coudert, C. Bélet
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Abstract — This paper presents a multi-objective Ant System Engineering process
Colony Optimization (MOACO) algorithm based on a ,’F.‘.L.'f“>| spem \ [ D[ e >| "‘mww‘)
learning mechanism (named MOACO-L) for the == /[ C o (L

in a system engineering (SE) process. The objectives to
minimize are the total cost of the project, its total duration

and the global risk. Risk is considered as an uncertainty | Project Time Management process >
about task costs and task durations in the project graph. The
learning mechanism aims to improve the MOACO
algorithm for the selection of optimal project scenarios in a

4

optimization of project scenario selection under uncertainty
T Coupling process

Risk/uncertainty information

Optimization of
selection of scenarios
with a learning

SE project by considering the uncertainties on the project mechenam
objectives. The MOACO-L algorithm is then developed by AP, ,mwﬁi% -

taking into account ants’ past experiences. The learning
mechanism allows a better exploration of the search space

% 4

and an improvement of the MOACO algorithm sy
performance. To validate our approach, some experimental : By
results are pl’esentF.‘d. | Project realization k:i Project planning Scenario selection

Keywords — Ant Colony Optimization, learning, multi- Fig. 1: Graphic representation for the developed problem.

objective optimization, Pareto-optimality, risk, uncertainty,

system engineering project. Our_ firs_t co_ntribution consists in the o_IeveIopment of
a multi-objective ant colony optimization (MOACO)
I. INTRODUCTION algorithm to select optimal scenarios taking into account

) N ) their cost and delay, but also their associated risk
In an increased competitiveness environmentassessment (risks are considered as uncertainties on costs
many companies are investing in design projects of newand delays). The problem is then to optimize the selection
systems to meet customer requirements and the varioys scenarios under uncertainty. The global uncertainty is a
strategic challenges of the market. The  systemhird objective to optimize (alongside cost and delay).
engineering activities are: definition and design (systemndeed, the selected scenario must be optimal regarding
development), production, utilizaton and finally the risk associated with the increased duration and cost
dismantling, recycling and renewing. In project values of this scenario. The algorithm is based on
management, the Project Time Management procesgrtificial ants[4] which go through a task graph and make
completes the system engineering process by determiningndom choices to find a path. These choices are biased
resources that fulfill the project objectives in terms ofpy the global attractivity of the paths already taken by
time, cost, risk, quality, performance, etc. That can bexnts in the previous iterations (experience feedback) and
reached through cooperation between designers —anfle local attractivity of the next task to reach. We adopt
project managers to obtain an integrated design procesie MOACO metaheuristif5] that allows to select high
and project planning process by defining some couplingyuality project scenarios of such relevant combinatorial
points between both procesqé$ [2]. Previous works  optimization problem in a reasonable amount of time. In
have proposed a hybrid multi-objective optimization some works, the multi-objective optimization problems
approach based on Bayesian networks and evolutionaryre handled by aggregating and weighting the multiple
algorithms for an integrated product design and projecpbjectives depending on their relative importarjég
design procesg¢3]. The work presented in this paper However, the goal in this article is to offer to decision
matches this context. The problem we are dealing with ignakers a set of non-dominated Pareto-optimal solutions to
the selection of project scenarios in a resulting orientedelect a project to plan for the realization of the designed
graph using Pareto-front solutions (project scenarios). Theystem. These solutions are optimal in the Pareto sense
graph includes the different design and project planning7] [8]. In [9], the authors propose an ant colony
choices of a new system to deliver. The Fig. loptimization (ACO) algorithm in the case of the bi-
summarizes the considered problem. objective scheduling problem. There are many successful
academic and industrial applications of ACO algorithms
[10]. Some works have proved the power of ACO



algorithms for solving both deterministic and probabilistic II. PROBLEM FORMALIZATION

CPM/PERT networks by producing good optimal and

suboptimal solutionfl1]. Another work demonstrates the ~ The problem addressed in this paper is formulated by
effectiveness of an ACO algorithm based on Ant Colonymeans of an acyclic and oriented project grépfthe
System (ACS) approach and Monte Carlo (MC)graph¢ is defined byG = (N, 4). N is the set of nodes
simulation for the maximization under uncertainty of theand A is the set of arcs connecting these nodes and
expected net present value (NPV) of cash flows in théepresenting the precedence constraints between them. An
case of scheduling multi-mode proje¢i®]. In the case €xample of project graph is represented in Fig. 2.

of handling many objectives in real-world portfolio
problems, the authors ifl3] have developed a hybrid
metaheuristic approach based on ACO and preferenc
incorporation that provides high-quality portfolios in
comparison with the leading metaheuristics that are
dealing with Pareto-front solutions. Recently, the work
presented if14] has shown that a MOACO algorithm
permits to manage the risks inherent to project task
realization. Many risk management methods and tools ar
based on the probability and impact concepts to assess t
risk using qualitative and quantitative approacfi&g. In Fig. 2: Example of project graph.
[16], the authors argue the necessity to improve the . .
management of uncertainty in projects by transformin _The nodes of the graph repre_sent 'Fa_sks, _conjuncnon
the existing project risk management processes intg?9ic@l operatorsAND) and exclusive disjunction ones
project uncertainty management. Indeed, risk exist$XOR). The first and last nodes of the graph are fictive
whenever uncertainty exisfa7]. In [18] [19] [20], the tasks. Each task qode is associated W!th a tr.|plet
risk is regarded as uncertainty about the task durations. (& D, R) corresponding to task cost value, its duration
is taken into account by stochastic models[2t], the and the n;k assoqated with these criterions. In our work,
uncertainty is represented by fuzzy logic based modeldn® risk is considered as an uncertainty about the
Recently, in[22] the authors have proposed a model forachievement of project tasks. This uncertainty is related to

coupling project management, risk management and the occurrence of undesirable events whose impacts

lesson learning system (LLS) methodologies. Howeverjncrease the total cost of the project and/or its total

they have not developed a formal model with theduration. The uncertainties about the values of cost and

corresponding algorithms to enhance experience reuse firation criterions are represented as intervals. We
projects risk management. As noticed in this brief@SSume that each interval has a minimum value being the

panorama, there are no studies addressing the muiflominal value of the criterion and a maximum value
objective optimization of project scenarios selection©Ptained from expert knowledge and/or past experiences
integrating the risks as an objective, particularly in thel23]- A projectP is defined as a set of tasks and/or sub-

case of system engineering projects. projects.P is represented by:
Thus, oursecond contribution consists in developing - o
an approach which allows to improve the MOACO P=T"USP 1)

algorithm performance by a learning mechanism

(MOACO-L). In the standard ACO algorithms, every time Where,T” is the set of tasks of the projgtand SP”is

an ant has to make a choice, it evaluates a probability thhe set of sub-projects &f A sub-project is a sub-graph

reach the next nodes. This probability depends on localf the project graply that starts with a divergence node

attractivity of these next nodes and on global attractivityAND and ends with a convergence nad¥D . A sub-

(i.e. pheromone trails corresponding to experiencedroject is characterized by its cost, duration and the

feedback) but not on previous choices. Therefore, weincertainty about their values. A sub-project consists of

propose to couple the MOACO algorithm with a learningparallel sub-sequences. A sub-sequence may be composed

mechanism (MOACO-L). Thus, the ants can learn usefubf other tasks, and/or other sequential sub-projects, and/or

information from past runs in order to influence the futureconvergence and divergend®R nodes. A scenarié

choices taking into account the previous ones. represents a project graph pathis an ordered sequence
The problem formalization and its associated projecof tasks (;) and/or sub-projectsSg) to realize. It is

graph are given in section Il. The proposed method, basecpresented by:

on MOACO-L algorithm, is presented in section Ill. The S={T, ]

algorithm is developed using Ruby language and the " - @)
resulting tests of the improved MOACO algorithm within brigreU {SP'} SPJESPP

a learning process are discussed in section IV. Finally,

conclusions and perspectives are described in séétio Each taskl; and each sub-projed®, has a rank

corresponding to their orders in a given scenéirid the



projectP. The total cost; of a scenari® of a projectP,
is defined by:

=7 e
Cs [Cr i+l C

TiES i HES SPy

€L 1=16.C0 (3

The total duratiorD; of a scenaric of a projectP, is
defined by:

Ds = IT,-ES[DT,-' Dr]+ ISP}ES[DSP}’ DSP,] =[Ds, DS(Q)

wher

case of occurrence of undesirable events.

-
way, D; and D, are respectively the nominal and

+ +
maximal durations of the scenasio (Cr,, Cr,, Dr, ,Dr,)

and CSP}, CSP}, DSP}, DSP}) correspond respectively to

tasks and sub-projects lower and upper bounds for cost

and delay. LetSH be a sub-project ofy parallel sub-
sequencesQ; (kE{1,-,q}). LetSgo be, a scenario
corresponding to the sub-sequekc&he duration of the
scenaricmSSQ;j is given by:

+

Ds = Trps Wl D1 Dy I+ spips [Dspy Dsp]
7

SQ} SQ}
+
= DS K ,DS . (5)
SQ} SQ}

Then, the duration of a sub-proje§E is given by

.
_ and . are respectively associated with the
nominal cost of’a scenadand its maximum cost in the

[ll. PROPOSED MOACO-L ALGORITHM

The proposed MOACO-L algorithm is based on a
single ant colony that will build solutions in the project
graph by minimizing simultaneously the values of total
cost, total duration and global risk. In each iteration, each
ant builds its solution independently. Each ayg) (of the
graphG contains three pheromone trails for each criterion
of the triplet(C,D,R). The quantity of pheromone on

(i,j) for each criterior0 E {C, D, R} is denoted by,-f.
All the ants of the colony are initialized from tffiest

R e A Al It e et

of i) using the following probability formula:

In the same

c Af DAP RAﬁa cAf D Ap RAﬁ?ﬁ’
t_ i} i} i} X g () @
Pjj < D RT ¢ AL D RT?
4 4 R4 D 1 RA
gleby ) X() A ()
Iien; (g il il a  Ci) il

(8)

For each nodg E N;, we have:

C _ L D _ 4p- R _ 4r

r]U CT} (9) r]l] DT} r]l] RT}

wherer/¢ , r/” andrJR represent respectively the local
attractivity of a nodg¢ regarding a nodg in terms of cost,

duration and, ris%.<pc , <I&D and <p® are constants that

ensure thatj;, r/; andrj; are upper or equal to one.
Theses constants are calculated as follows:

(10) (11)

considering that every task or sub-project will tenped jgg ol W&EET;P%;,) 12)
at their respective earliest starting date:
) (13)
. <pR = MAXT} ETP(RT}) (14)
DSP} = MAXSQ} (DS ), MAX « (DS )
Si . .
kg sp) SQi SQyE SP; Qf The risk measurement for a takks denoted by, and
=[D5P}, DSP[] (6) calculated using the GOWA operator:
z = LT Ea
Dy - Dy
The Generalized Ordered Weighted Averaging operator Cry I
(GOWA) [24] is a class of parametrized operators used to Ry, = weX r +wpX N (15)
3 3

calculate the global
uncertainties:

riskR, of a scenarioS from

z + z + z
Re= WX C T, ey @
*.c
The expressions £ Zs-Ps ) represent
5 ) and (

a and f3 are the weights associated with the global
attractivity of pheromone trails and to the local
attractivity. At the end of each iteration, all the ants of the
colony which have reached the last nagfgthe, graph

d5QBciAtE dNEE SN RHILES oL rIBREFPR) 08K BacH idrc

(i,j) belonging to their path (i.e. their scenario). The

) Cs Dg . . o C D R
respectively the percentages related to the increase of thguantities of pheromone are initialized(ag, ro, ro ) and
nominal values of cost and duration of realization of theare updated at each iteration:

scenarics. we andwp are weights satisfying; + wp =

1, andz is a parameter such that (-oo, +00). In our

model, z = 2 (quadratic mean). Therefor is th
quad?anc meé% 09 the re at|ve)uncerta|nt|ee§son angl

delay.

¢ ri(it+1) = (1 —p)ﬁ’r,-,-(it)+155{s;§ (16)

rPit+1) = (1-p) XrP(it) + I -

ij ij secyg - (A7)



Riit+1) =(1-p) XrR(it) + I 1

I"I] if

(18)
SE{Si) R,

p is the evaporation rate of pheromone trails &g

represents the set of scenarios made by all theo&tite

colony at iteration if). The weightsd;, 4, and4; are
C D R

IV. EXPERIMENTS

A set of experiments has been done to validate our

MBS - B Mg oRtiG. THE aifliGiRE%e RkpaHMmeRISHSTEd

dynamic and vary at each new reached node. They allof/akeé a comparative analysis between MOACO and
to the MOACO-L algorithm to learn. The weights are MOACO-L algorithms. The algorithms were developed in

defined by:

) Cpy

Af = ————= (19)
Cp} +Cp1; +Cp}

< C

=t (20)
Cp} +Cp)% +Cp}

ol (21)

AR _
Ai ~ Tpc+CpD+CPR
b

. C <D R C D R
with A; + A; +A; = 1. Cp;, Cp; andCp; represent the

the Ruby language and executed on desktop computer
(Intel® Core™ {7 3.6 GHz processor). The set of
experiments are made with a graph of 100 nodes
organized following 23 sequential levels. Each level has a
number of nodes that vary between 2 and 9 nodes. Every
node of a level is connected to every node of the next
level. The combinations givé4. 10’ possible scenarios.
The colony has 200 ants and the initial parameter settings

that gj)ée_s jhe begt _r§ults e f_3v§ 1,p= 0.05. e =
R R

2

A C AD
consumed capital percentage of cost, duration and risk téﬁ0_0900f41 7000] , CpDo = [740,790] and Ay = Ap =

guide the anff to reach the nodg¢E N; using the

=", These parameters have beeevaluated

0 3

probability. foymyla (8). The aim of having dynamic empirically. The Fig. 3 represents a comparison between
weights {;, 4, 4;) is to guide the ants in their choices MOACO and MOACO-L algorithms using mean

by learning from their past choices. These percestage
calculated as follows:

performance (Mean Perf) and the standard deviation
(StdDevPerf). MeanPerf and StdDevPerf are defined as
follows:

5
Cpj = CrCo (22) MeanPerf = MeanCX MeanD X MeanR  (31)
b D)? 23) StdDevPerf=StdDevCX StdDevD XStdDevR  (32)
b~ G, These values are calculated from the meanesabf
R P9 rwex DITDI 7 costs, durations and risks of the Pareto-optimal scenarios.
Cp; = WeX gregr— VP epprteph— The Pareto front is calculated at the end of each iteration
o o0 (when the whole colony has reached the last node. T
+ (24) Fig.3 represents the results of the 600 iterations for the
CpCo = [CpCy,CpCp] (25) MOACO and MOACO-L algorithms.
CpDo = [CpDo, CpDo ] (26) o =
CpCy and CpD, are respectively the initial cost and :: '- """" . o

duration capitals and they are represented as intervals £ iz
order to model the capitals about uncertainties on cost an & uss |;

delay capitalsCig 0 andlg:"“ are respectively
the nominal and the maximal
durations at the nogesuch as:

9 -7 G @7 7" =I  ,Cr(29)
Y iEPath, ’g . iEPathy
D! =1  yD; (290 D’ =1  sD{ (30)
iEPath} iEPath}

t
Path; is the path of the ayfithat includes all the visited

nodes. Therefore, giving initial capitals to thesapérmits

to integrate a new bias into the probability formula (8
An ant which has consumed a great part of one of th

cumulated costsl a

8 o
=

1356400

136009

120000
AR2gRYGBARENERABEAIRERES

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Iteration number

TORReERERBARYGBEABLAERER

~—MOACO-L mean performance
—— MOACO-L standard deviation of performance

~ =~~~ MOACO mean performance
«---- MOACO standard deviation of performance

Fig. 3. Mean performance and standard deviation of performance of
MOACO versus MOACO-L algorithms.

As shown in Fig. 3, the proposed MOACO-L
algorithm gives better results than MOACO &t
since it improves the mean performance in a reas®nab

)amount of time. In fact, the MOACO-L algorithm
'generates Pareto-optimal solutions in 120.9

seconds

three capitals will be influenced to choose next nodes théfersrl:s 121.6 ﬁecolnds for the hMQACO lf\lgonthrrr:.
does not penalize this capital. Moreover, one can say thai'thermore, the learning mechanism allows the

the ant learned from the path it uses in order to influenc OACO-L algor_lthm a _better eXp|0I’6tltI_0n Of the search
its future choices. space because it stabilizes from the i@&ration rather

than the MOACO algorithm which stabilizes earlier (from
the 222 iteration). Moreover, MOACO-L algorithm



provides efficient solutions in terms of cost, duration and  International Series in Operations Research & Managéem
risk. In fact, the MOACO-L algorithm is more performant Science, Springer Verlag, New York, vol. 146, pp. 227-263,
than the MOACO algorithm with almost a difference of _2010.

8.84% for mean performance and almost a difference dftllH- Abdallah, H-M. Emara, H-T. Dorrah, and A. Eah,

- “Using Ant Colony Optimization algorithm for solving
0,
2.73% for standard deviation of mean performance. project management problemsExpert Systems  With

Applications, vol. 36, no. 6, pp. 10004-10015, Aug. 2009.
V. CONCLUSION [12] W-N. Chen, and J. Zhang, “Scheduling Multi-Mode
Projects under Uncertainty to Optimize Cash Flows: A
In this article, we have proposed a MOACO-L Monte Carlo Ant Colony System Approachjburnal of
algorithm for the optimization of project scenario Computer Science and Technology, vol. 27, no. 5, pp. 950-
selection under uncertainty by integrating a learning 965, Sept. 2012. _
mechanism. We have shown that MOACO-L algorithm[13] E. Femandez, C. Gomez, G. Rivera, and L. Cruz-Reye
gives better results than the standard one. In future works, YPrid metaheuristic - approach for handling many
we expect to develop a knowledge model that interfere objectives and decisions on partial support in_project

. R . . ortfolio optimisation,”Information Scien ol. 315, pp.
with our proposed optimization model in order to learn in 202_1521 Spelptll 20|15. I 16NCES, v PP

an intelligent manner from previous projects experience$i4] p. Baroso, T. Coudert, E. Villeneuve, and L. Geae
the uncertainties on costs and delays. The knowledge “Multi-objective optimization and risk assessment in
about the events and their impact on delays and costs system engineering project planning by Ant Colony
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expert on risk management has to be learned by a Industrial Engineering Management, pp. 438-442, Kuala-
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Decision Support Systems, vol. 52, no. 3, pp. 635-644, Feb.
REFERENCES 2012.

] [16] S. Ward, and C. Chapman, “Transforming projask r

Abeille, “Proposal for an integrated Case Based Project |nternational Journal of Project Management, vol. 21, no.

Planning and system design process,” Proceedingbeof 2, pp. 97-105, Feb. 2003.
2nd International Conference on Complex Systems Design [17] M. Better, and F. Glover, “Simulation Optimiiat:
& Management, CSDM'2011, Springer Verlag, 7-9 applications in Risk Managementiternational Journal of
September 2011, Paris (France). Information Technology & Decision Making, vol. 7, no. 4,

[2] E. Vareilles, T. Coudert, M. Aldanondo, L. Geregsand J. pp. 571-587, Dec. 2008.
Abeille, “System design and project planning: Model and[1g] w. Sobel, A. Aleskovski, P. Hand, Z. Liu, M. Bispp, A.
rules to manage their interactiondritegrated Computer- Honikman, L. Anderson, and R. Close, “Method and
Aided Engineering, vol. 22, no. 4, pp. 327-342, 2015. apparatus for network-based portfolio management and

[3] P. Pitiot, T. Coudert, L. Geneste, and C. Baron, risk-analysis,” Patent US 7596523 B2, October 2004.
“Hybridization of Bayesian networks and Evolutionary [19] E. Elisa Johanna Maria Creemers, Y-M. Pintod ah

Algorithms for multi-objective optimization in an integrated Johanna Marina Tijsen, “Means and methods for
product design and project management context”  counteracting, preventing and/or determining heart failure,
Engineering Applications of Artificial Intelligence, vol. 33 or a risk of heart failure,” Patent EP 2907879 A3, May
(5), pp. 830-843, 2010. 2012.

[4] M. Dorigo, “Optimization, Learning and Natural [20]J-J. Bourne, C. Annibale, R. Behara, C. Georgenktn
Algorithms” (in Italian), Ph.D. dissertation, Politecnico di Copland, D-P. Ferrick, T. Farrell, and N. Scott, “Method
Milano, Italy, 1992. S and system to determine auto insurance risk,” Patent WO

[5] M. Dorigo, and T. StutzleAnt colony optimization. 2014059208 A3, April 2014.

Cambridge, The MIT Press, 2004, pp. 25-64. [21] I. Kaya, and C. Karhaman, “Development of fuprgcess

[6] M. Dorigo, M. Birattari, and T. Stiitzle, “Ant Cumy accuracy index for decision making problemecial
Optimization, Artificial Ants as a computational Issue on Modelling Uncertainty, vol. 180, no. 6, March
Intelligence Technique,TEEE Computational Intelligence 2010, pp. 861-872.

Magazine, Nov. 2006. o , [22] V. Manotas-Nifio, P. Clermont, L. Geneste, aneX.A

[7] O-L. De Weck, “Multiobjective Optimization: Histy and Halabi, “Towards a Model of Integration between Risk
Promise,” Third China-Japan-Korea Joint Symposium on Management and Lesson Learning System for Project
Optimization of Sructural and Mechanical Systems, 2004. Management,” presented at thesth International

[8] D. Angus, and C. Woodward, “Multiple objective tan Conference on Industrial Engineering and Systems
colony optimisation,”Svarm Intelligence, vol. 3, no. 1, pp. Management, Seville, Spain, 2015.

69-85, Mar. 2009. ) . , [23] E. Villeneuve, C. Béler, F. Peres, L. Genested &

[9] D. Merkle, and M. Middendorf, “Modeling the dymics of Reubrez, “Decision-Support Methodology to Assess Risk in
ant colony optimization algorithms,” Evolutionary End-of-Life Management of Complex SystemdEEE
Computation, vol. 10, n0.3, pp.235-262, 2002. Systems Journal, no. 99, pp. 1-10, ISSN 1932-8184, 2016.

[10] M. Dorigo, and T. Stitzle, “Ant Colony Optimizan:  [24] R. Yager, “Generalized OWA aggregation operators
Overview and Recent Advances,” M. Gendreau and Y. Fuzzy Optimization and Decison Making, Vol. 3 (1),

Potvin (eds.)), Handbook of Metaheuristics, 2nd edition, pp. 93-107. 2004.



