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Abstract – This paper presents a multi-objective Ant 
Colony Optimization (MOACO) algorithm based on a 
learning mechanism (named MOACO-L) for the 
optimization of project scenario selection under uncertainty 
in a system engineering (SE) process. The objectives to 
minimize are the total cost of the project, its total duration 
and the global risk. Risk is considered as an uncertainty 
about task costs and task durations in the project graph. The 
learning mechanism aims to improve the MOACO 
algorithm for the selection of optimal project scenarios in a 
SE project by considering the uncertainties on the project 
objectives. The MOACO-L algorithm is then developed by 
taking into account ants’ past experiences. The learning 
mechanism allows a better exploration of the search space 
and an improvement of the MOACO algorithm 
performance. To validate our approach, some experimental 
results are presented. 

Keywords – Ant Colony Optimization, learning, multi-  
objective optimization, Pareto-optimality, risk, uncertainty, 
system engineering project. 

I. INTRODUCTION 

In an increased competitiveness environment, 
many companies are investing in design projects of new 
systems to meet customer requirements and the various 
strategic challenges of the market. The  system 
engineering activities are: definition and design (system 
development), production, utilization and finally 
dismantling, recycling and renewing. In project 
management, the Project Time Management process 
completes the system engineering process by determining 
resources that fulfill the project objectives in terms of 
time, cost, risk, quality, performance, etc. That can be 
reached through cooperation between designers  and 
project managers to obtain an integrated design process 
and project planning process by defining some coupling 
points between both processes [1] [2] . Previous works 
have proposed a hybrid multi-objective optimization 
approach based on Bayesian networks and evolutionary 
algorithms for an integrated product design and project 
design process [3]. The work presented in this paper 
matches this context. The problem we are dealing with is 
the selection of project scenarios in a resulting oriented 
graph using Pareto-front solutions (project scenarios). The 
graph includes the different design and project planning 
choices of a new system to deliver. The Fig. 1 
summarizes the considered problem. 

Fig. 1: Graphic representation for the developed problem. 
 

Our first contribution consists in the development of 
a multi-objective ant colony optimization (MOACO) 
algorithm to select optimal scenarios taking into account 
their cost and delay, but also their associated risk 
assessment (risks are considered as uncertainties on costs 
and delays). The problem is then to optimize the selection 
of scenarios under uncertainty. The global uncertainty is a 
third objective to optimize (alongside cost and delay). 
Indeed, the selected scenario must be optimal regarding 
the risk associated with the increased duration and cost 
values of this scenario. The algorithm is based on 
artificial ants [4] which go through a task graph and make 
random choices to find a path. These choices are biased 
by the global attractivity of the paths already taken by 
ants in the previous iterations (experience feedback) and 
the local attractivity of the next task to reach. We adopt 
the MOACO metaheuristic [5] that allows to select high 
quality project scenarios of such relevant combinatorial 
optimization problem in a reasonable amount of time. In 
some works, the multi-objective  optimization problems 
are handled by aggregating and weighting the multiple 
objectives depending on their relative importance [6]. 
However, the goal in this article is to offer to decision 
makers a set of non-dominated Pareto-optimal solutions to 
select a project to plan for the realization of the designed 
system. These solutions are optimal in the Pareto sense 
[7] [8] . In [9], the authors propose an ant colony 
optimization (ACO) algorithm in the case of the bi- 
objective scheduling problem. There are many successful 
academic and industrial applications of ACO algorithms 
[10].  Some  works  have  proved  the  power  of  ACO 
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algorithms for solving both deterministic and probabilistic 
CPM/PERT networks by producing good optimal and 
suboptimal solutions [11]. Another work demonstrates the 
effectiveness of an ACO algorithm based on Ant Colony 
System (ACS) approach and Monte Carlo (MC) 
simulation for the maximization under uncertainty of the 
expected net present value (NPV) of cash flows in the 
case of scheduling multi-mode projects [12]. In the case 
of handling many objectives in real-world portfolio 
problems, the authors in [13] have developed a hybrid 
metaheuristic approach based on ACO and preference 
incorporation that provides high-quality portfolios in 
comparison with the leading metaheuristics that are 
dealing with Pareto-front solutions. Recently, the work 
presented in [14] has shown that a MOACO algorithm 
permits to manage the risks inherent to project tasks 
realization. Many risk management methods and tools are 
based on the probability and impact concepts to assess the 
risk using qualitative and quantitative approaches [15]. In 
[16], the authors argue the necessity to improve the 
management of uncertainty in projects by transforming 
the existing project risk management processes into 
project uncertainty management. Indeed, risk exists 
whenever uncertainty exists [17]. In [18] [19] [20], the 
risk is regarded as uncertainty about the task durations. It 
is taken into account by stochastic models. In [21], the 
uncertainty is represented by fuzzy logic based models. 
Recently, in [22] the authors have proposed a model for 
coupling project management, risk management and a 
lesson learning system (LLS) methodologies. However, 
they have not developed a formal model with the 
corresponding algorithms to enhance experience reuse in 
projects risk management. As noticed in this brief 
panorama, there are no studies addressing the multi- 
objective optimization of project scenarios selection 
integrating the risks as an objective, particularly in the 
case of system engineering projects. 

Thus, our second contribution consists in developing 
an approach which allows to improve the MOACO 
algorithm performance by a learning mechanism 
(MOACO-L). In the standard ACO algorithms, every time 
an ant has to make a choice, it evaluates a probability to 
reach the next nodes. This probability depends on local 
attractivity of these next nodes and on global attractivity 
(i.e. pheromone trails corresponding to experience 
feedback) but not on previous choices. Therefore, we 
propose to couple the MOACO algorithm with a learning 
mechanism (MOACO-L). Thus, the ants can learn useful 
information from past runs in order to influence the future 
choices taking into account the previous ones. 

The problem formalization and its associated project 
graph are given in section II. The proposed method, based 
on MOACO-L algorithm, is presented in section III. The 
algorithm  is  developed  using  Ruby  language  and  the 

II. PROBLEM FORMALIZATION

The problem addressed in this paper is formulated by 
means of an acyclic and oriented project graph G. The 
graph G is defined by G = (N, A). N is the set of nodes 
and A is the set of arcs connecting these nodes and 
representing the precedence constraints between them. An 
example of project graph is represented in Fig. 2. 

Fig. 2: Example of project graph. 

The nodes of the graph represent tasks, conjunction 
logical operators (AND) and exclusive disjunction ones 
(XOR). The first and last nodes of the graph are fictive 
tasks.  Each  task  node   is   associated   with   a   triplet 
(C, D, R) corresponding to task cost value,  its  duration 
and the risk associated with these criterions. In our work, 
the risk is considered as an uncertainty about the 
achievement of project tasks. This uncertainty is related to 
the occurrence of undesirable events whose impacts 
increase the total cost of the project and/or its total 
duration. The uncertainties about the values of cost and 
duration criterions are represented as  intervals.  We 
assume that each interval has a minimum value being the 
nominal value of the criterion and a maximum value 
obtained from expert knowledge and/or past experiences 
[23]. A project P is defined as a set of tasks and/or sub- 
projects. P is represented by: 

P = TP U SPP (1) 

where, TP is the set of tasks of the project P and SPP is 
the set of sub-projects of P. A sub-project is a sub-graph 
of the project graph G that starts with a divergence node 
AND and ends with a convergence node AND . A sub- 
project is characterized by its cost, duration and the 
uncertainty about their values. A sub-project consists of 
parallel sub-sequences. A sub-sequence may be composed 
of other tasks, and/or other sequential sub-projects, and/or 
convergence and divergence XOR nodes. A scenario S 
represents a project graph path. S is an ordered sequence 
of tasks (Ti ) and/or sub-projects (SPj ) to realize. It is 
represented by: 

S = {Ti j

resulting tests of the improved MOACO algorithm within 
a learning process are discussed in section IV. Finally, 

r}T ETPU {SPr} SP}ESPP (2) 

conclusions and perspectives are described in section V. Each  task Ti   and  each  sub-project SPj   has  a  rank r
corresponding to their orders in a given scenario S of the 
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project P. The total cost Cs  of a scenario S of a project P, 
is defined by: 

Cs = I [CT , C
+ ]+I [C , C+   ] = [CS , C

+] (3) 
TiES i Ti SP}ES SP} SP} S

The total duration Ds  of a scenario S of a project P , is 
defined by: 

III. PROPOSED MOACO-L ALGORITHM

The proposed MOACO-L algorithm is based on a 
single ant colony that will build solutions in the project 
graph by minimizing simultaneously the values of total 
cost, total duration and global risk. In each iteration, each 
ant builds its solution independently. Each arc (i, j) of the 
graph G contains three pheromone trails for each criterion 
of  the  triplet (C, D, R) .  The  quantity  of  pheromone  on 

+ + + 0
Ds = ITiES [DTi

, DTi
] + I SP}ES [DSP}

, DSP}
] = [DS , DS ]

(4) 
(i, j) for each criterion O E {C, D, R} is denoted by rij . 
All the ants of the colony are initialized from the first 

where C-
+

and CS are  respectively  associated  with  the node of the project graph. Each ant f makes a choice from 
a node i to reach a node j E N (N is the set of neighbors 

nominal cost of a scenario S and its maximum cost in the i i

case  of  occurrence  of  undesirable  events.  In  the  same 
of i) using the following probability formula: 
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tasks and sub-projects lower and upper bounds for cost 
and delay. Let SPj  be a sub-project of  q  parallel  sub- 

k 
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(8) 
sequences SQj ( k E {1, . , q} ). Let SSQk  be, a scenario For each node j E Ni , we have: 
corresponding to the sub-sequence k. The duration of the 

C  = 
q;  D  = 

q;  R  = 
q;  

scenario SSQk is given by: rJij C (9) rJij 
T}

D (10) rJij 
T}

RT}

(11) 

+ + where rJC , rJD  and rJR  represent respectively the local 
DS = IT  ES [DT  , DT  ]+I SPlES k  

[DSPl
, DSPl

] ij ij ij
SQ} SQ}

+

SQ} attractivity of a node j regarding a node i, in terms of cost, 
duration  and  risk. <pC , <pD  and <pR  are  constants  that =  DS k , DS (5) C D R 

SQ} SQ} ensure  that rJij , rJij  and rJij  are  upper  or  equal  to  one. 
Theses constants are calculated as follows: 

Then,  the  duration  of  a  sub-project  SPj   is  given  by 
considering that every task or sub-project will be planned 
at their respective earliest starting date: 

<pC  = MAXT  ETP  (C   ) (12) 
} } <pD  = MAXT  ETP(DT 

 ) (13) 
} } 

<pR  = MAXT  ETP(RT   ) (14) 
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The risk measurement for a task Tj  is denoted by RT} and 

= [DSP}
, DSP}

] (6) calculated using the GOWA operator: 
z + zz 

+ - CT 

DT  - DT 

The Generalized Ordered Weighted Averaging operator CT} } } }

(GOWA) [24] is a class of parametrized operators used to 
calculate   the   global   risk   Rs    of   a   scenario  S  from 

RT} =   wC X 
C   

T}

+ wD X 
D  

T}

(15) 

uncertainties: 

Rs =

a and f3 are the weights associated with the global 
attractivity of pheromone trails and to the local 
attractivity. At the end of each iteration, all the ants of the 
colony which have reached the last node of  the  graph 

C D R 

+- C
DS - DS 

drop off three quantities of pheromone (rij, rij , rij ) associated  to  the  three  criterions (C, D, R) on  each  arc
The  expressions  ( 

CS
+S     ) and  ( 

)  represent (i, j) belonging  to  their  path  (i.e.  their  scenario).  The 

CS DS C     D     R
respectively the percentages related to the increase of the 
nominal values of cost and duration of realization of the 
scenario S. wC  and wD are weights satisfying wC + wD =

quantities of pheromone are initialized as (rO , rO , rO ) and 
are updated at each iteration: 

C C 1  
1, and z is a parameter such that z E (-oo, +oo). In our 
model, z = 2  (quadratic mean). Therefore,Rs   is the 

rij(it + 1) = (1 - p) X rij(it) + ISE{Sit} 
S 

(16) 

quadratic mean of the relative uncertainties on cost and rD(it + 1) = (1 - p) X rD(it) + I 
1  

delay. ij ij SE{Sit}  
S

(17) 

z +         z +  z

wC 
X (

CS - CS )  + w
C  DS 

X (
DS - DS )D S 

(7) 
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(18) IV. EXPERIMENTS
rij ij SE{Sit} Rs

p   is the evaporation rate of pheromone trails and {Sit}
represents the set of scenarios made by all the ants of the 

A set of experiments has been done to validate our 
method   and   attest   the   efficiency   of   our   proposed 

colony  at  iteration  (it).  The  weights Àj  , Àj and Àj are 
MOACO-L algorithm. The aim of these experiments is to 

C D R

dynamic and vary at each new reached node. They allow 
to the MOACO-L algorithm to learn. The weights are 
defined by: 

Cpc
C  = } (19) 

Cp} +Cp} +Cp} 

D CpD

À   = (20) 
Cp} +Cp} +Cp} 

R CpR

À   = (21) Cp  +Cp  +Cp 

make  a  comparative  analysis  between  MOACO  and 
MOACO-L algorithms. The algorithms were developed in 
the Ruby language and executed on desktop computer 
(Intel® Core™ i7 3.6 GHz processor). The set of 
experiments are made with a graph of 100 nodes 
organized following 23 sequential levels. Each level has a 
number of nodes that vary between 2 and 9 nodes. Every 
node of a level is connected to every node of the next 
level. The combinations give 44. 1012 possible scenarios. 
The colony has 200 ants and the initial parameter settings C 

} } } that gives the best results are a = f3 = 1, p = 0.05, rO   = D = rR = 1   , z = 2   , w  = w  = 
1

 , CpC  =
C D R C D R rO O C D O

with Àj  + Àj + Àj = 1. Cpj , Cpj and Cpj represent the 2

C D 

consumed capital percentage of cost, duration and risk to 
guide  the  ant f to  reach  the  node j E Ni   using  the 
probability formula (8). The aim of having dynamic 

[400000, 417000] , CpDO = [740, 790] and À O = ÀO =
ÀR  = 

1    
. These parameters have been evaluated

3

empirically. The Fig. 3 represents a comparison between C D R 

weights (Àj , Àj  , Àj ) is to guide the ants in their choices 
by learning from their past choices. These percentages are 
calculated as follows: 

g 

MOACO   and   MOACO-L   algorithms   using   mean 
performance (Mean Perf) and the standard deviation 
(StdDevPerf). MeanPerf and StdDevPerf are defined as 
follows: 

CpC

CpD

= 
C} (22) 

0
g 

= 
D} (23) 

0

MeanPerf = MeanC X MeanD X MeanR (31) 
StdDevPerf = StdDevC X StdDevD X StdDevR (32) 

These  values  are  calculated  from  the  mean  values  of 
z g+ R } – Cg z g+  Dg z costs, durations and risks of the Pareto-optimal scenarios. 

Cpj =   w  X CpC    CpC
+ wD X  

CpD+ CpD The Pareto front is calculated at the end of each iteration 
0 0 0

+

0

(24) 
(when the whole colony has reached the last node). The 
Fig.3 represents the results of the 600 iterations for the 

CpCO = [CpCO , CpCO ] (25) MOACO and MOACO-L algorithms. + 

CpDO = [CpDO , CpDO ] (26) 

CpCO and CpDO are respectively the initial cost and 
duration capitals and they are represented as intervals in 
order to model the capitals about uncertainties on cost and 
delay capitals. Cg 

 , Dg  , Cg+  and Dg+
 are respectively

the  nominal  and  the  maximal  cumulated  costs  and 
durations at the node j, such as: 

g  = I f Ci (27) Cg+ = I f Ci (28) 
iEPath}g  

iEPath} g+ + Fig. 3. Mean performance and standard deviation of performance of 
Dj = I f Di (29) Dj = I f Di (30) MOACO versus MOACO-L algorithms. 

iEPath}

t

iEPath}

As   shown   in   Fig.   3,   the   proposed   MOACO-L 
Pathj is the path of the ant f that includes all the visited algorithm  gives  better  results  than  MOACO  algorithm 

nodes. Therefore, giving initial capitals to the ants permits 
to integrate a new bias into the probability formula (8). 
An ant which has consumed a great part of one of the 
three capitals will be influenced to choose next nodes that 
does not penalize this capital. Moreover, one can say that 
the ant learned from the path it uses in order to influence 
its future choices. 

since it improves the mean performance in a reasonable 
amount of time. In fact, the MOACO-L algorithm 
generates Pareto-optimal solutions in 120.9  seconds 
versus 121.6 seconds for the MOACO algorithm. 
Furthermore, the learning mechanism allows the 
MOACO-L algorithm a better exploration of the search 
space because it stabilizes from the 426th iteration rather 
than the MOACO algorithm which stabilizes earlier (from 
the  222th    iteration).  Moreover,  MOACO-L  algorithm 

À 



provides efficient solutions in terms of cost, duration and 
risk. In fact, the MOACO-L algorithm is more performant 
than the MOACO algorithm with almost a difference of 
8.84% for mean performance and almost a difference of 
2.73% for standard deviation of mean performance. 

V. CONCLUSION 

In this article, we have proposed a MOACO-L 
algorithm for the optimization of project scenario 
selection under uncertainty by integrating a learning 
mechanism. We have shown that MOACO-L algorithm 
gives better results than the standard one. In future works, 
we expect to develop a knowledge model that interfere 
with our proposed optimization model in order to learn in 
an intelligent manner from previous projects experiences 
the uncertainties on costs and delays. The knowledge 
about the events and their impact on delays and costs 
capitalized during previous projects or defined by an 
expert on risk management has to be learned by a 
simulation method and introduced into the MOACO-L 
algorithm in order to guide the optimization. 
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