Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion

Abstract : Local Bundle Adjustments were recently introduced for visual SLAM (Simultaneous Localization and Mapping). In Monocular Visual SLAM, the scale factor is not observable and the reconstruction scale drifts as time goes by. On long trajectory, this problem makes absolute localisation not usable. To overcome this major problem, data fusion is a possible solution. In this paper, we describe Weighted Local Bundle Adjustment(W-LBA) for monocular visual SLAM purposes. We show that W-LBA used with local covariance gives better results than Local Bundle Adjustment especially on the scale propagation. Moreover W-LBA is well designed for sensor fusion. Since odometer is a common sensor and is reliable to obtain a scale information, we apply W-LBA to fuse visual SLAM with odometry data. The method performance is shown on a large scale sequence.
Type de document :
Communication dans un congrès
British Machine Vision Conference, Sep 2010, Dundee, United Kingdom
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01635623
Contributeur : Maxime Lhuillier <>
Soumis le : mercredi 15 novembre 2017 - 14:33:42
Dernière modification le : mardi 9 octobre 2018 - 09:44:11
Document(s) archivé(s) le : vendredi 16 février 2018 - 14:55:20

Fichier

pBmvc10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01635623, version 1

Citation

Alexandre Eudes, Sylvie Naudet-Collette, Maxime Lhuillier, Michel Dhome. Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion. British Machine Vision Conference, Sep 2010, Dundee, United Kingdom. 〈hal-01635623〉

Partager

Métriques

Consultations de la notice

142

Téléchargements de fichiers

65