A Fast Algorithm Based on a Sylvester-like Equation for LS Regression with GMRF Prior
Qi Wei, Emilie Chouzenoux, Jean-Yves Tourneret, Jean-Christophe Pesquet

To cite this version:
Qi Wei, Emilie Chouzenoux, Jean-Yves Tourneret, Jean-Christophe Pesquet. A Fast Algorithm Based on a Sylvester-like Equation for LS Regression with GMRF Prior. CAMSAP 2017- IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Dec 2017, Curaçao, Netherlands Antilles. hal-01635601

HAL Id: hal-01635601
https://hal.archives-ouvertes.fr/hal-01635601
Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Fast Algorithm Based on a Sylvester-like Equation for LS Regression with GMRF Prior

Qi Wei
Dept. of ECE
Duke University
Durham, USA 27710
qi.wei@duke.edu

Emilie Chouzenoux
LIGM, Université
Champs-sur-Marne, France 77454
emilie.chouzenoux@univ-mlv.fr

Jean-Yves Tourneret
IRIT/INP-ENSEEIHT
Université de Toulouse
Toulouse, France 31071
jyt@enseeiht.fr

Jean-Christophe Pesquet
Center for Visual Computing
CentraleSupelec-University Paris-Saclay
France 92295
jean-christophe@pesquet.eu

Abstract—This paper presents a fast approach for penalized least squares (LS) regression problems using a 2D Gaussian Markov random field (GMRF) prior. More precisely, the computation of the proximity operator of the LS criterion regularized by different GMRF potentials is formulated as solving a Sylvester-like matrix equation. By exploiting the structural properties of GMRFs, this matrix equation is solved column-wise in an analytical way. The proposed algorithm can be embedded into a wide range of proximal algorithms to solve LS regression problems including a convex penalty. Experiments carried out in the case of a constrained LS regression problem arising in a multichannel image processing application, provide evidence that an alternating direction method of multipliers performs quite efficiently in this context.

I. INTRODUCTION

Constrained or penalized least squares (LS) problems have been widely encountered in various signal/image processing applications, such as spectral unmixing [1]–[3], supervised source separation [4], image classification [5], material quantification [6] or subpixel detection [7]. The LS problem often results from the following linear model which has been successfully used in the applications mentioned above:

\[Y = WH + N \] (1)

where \(Y \in \mathbb{R}^{m \times n} \) is the observed data matrix (each row of \(Y \) is the vectorized version of an image), \(W \in \mathbb{R}^{m \times d} \) is a basis matrix that will be assumed to be known in this work, \(H \in \mathbb{R}^{d \times n} \) is a matrix containing the regression coefficients, and \(N \in \mathbb{R}^{m \times n} \) is the noise term which can be assumed to follow a multivariate Gaussian distribution. Note that LS can be classically interpreted as projecting the observed data onto the subspace spanned by the columns of \(W \).

As the LS problem associated with (1) is usually ill-posed, e.g., some columns of \(W \) may be similar, it is necessary to introduce priors/regularizations for \(H \) to make the problem well-conditioned [8]. Enforcing spatial regularization on the matrix \(H \) is a strategy for incorporating prior information, e.g., total variation (TV), Markov random field (MRF) penalty, sparsity constraints in the wavelet domain, etc. Among these, a powerful and important way of exploiting the correlations between pixels of an image is to consider Gaussian Markov random fields (GMRFs), which have been extensively used in image processing applications such as denoising [9], super-resolution [10], segmentation [11] and spectral unmixing [12]. Constructing a GMRF amounts to define a finite-dimensional random vector with a multivariate normal distribution having nontrivial conditional Markov dependence properties. GMRFs allow us to exploit analytical results obtained for the Gaussian distribution and to enforce Markovian properties, leading to computationally efficient algorithms. In general, different images can be characterized by GMRFs with different parameters. For example, the distributions of water and soil in a remote sensing image can be modeled by two different GMRF distributions based upon their physical locations. Mathematically, the GMRF regularizations associated with the two rows of \(H \) corresponding to water and soil should obviously be different. This diversity makes the corresponding optimization problem quite challenging, leading to the solution of a tensor equation. A number of efficient sampling algorithms such as those based on Markov chain Monte Carlo (MCMC) algorithms have been designed for statistical inference, which are effective but generally time consuming [12], [13].

In this paper, we adopt a proximal approach [14] to address this variational problem. We start by showing that the computation of the proximity operator of the LS criterion with GMRF regularization can be performed by solving a Sylvester-like matrix equation and propose an algorithm to solve it analytically by taking advantage of the properties of stationary 2D GMRFs. More specifically, the block circulant properties of the covariance matrix of such a field is exploited to simplify the associated matrix equation. The resulting closed-form solution is easy to implement and very fast to compute.

This paper is organized as follows. Section II formulates the regularized LS regression for the considered class of linear models and GMRF priors. Section III addresses the problem of computing the associated proximity operator by solving in a fast manner a Sylvester-like matrix equation. Section IV shows the benefit of this approach for solving more challenging convex optimization problems. Simulation results are presented in Section V showing the good performance of the proposed approach, whereas conclusions are reported in Section VI.
II. PROBLEM FORMULATION

A. Observation model

Decomposing the matrices \(W \) and \(H \) as \(W = [w_1, \ldots, w_d] \) and \(H^T = [h_1, \ldots, h_d] \), where \(w_k \) is the \(k \)th column of \(W \) and \(h_i^T \) is the \(i \)th row of \(H \), (1) can be rewritten as

\[
Y = \sum_{i=1}^{d} w_i h_i^T + \mathbf{N}. \tag{2}
\]

Note that each pixel (column) of the image (matrix) \(Y \) is the linear combination of \(d \) basis vectors \(w_1, \ldots, w_d \) (e.g., \(d \) materials whose signatures are the columns of \(W \)). Estimating the matrix \(H \) from the observed matrix \(Y \) with possible constraints about the vectors \(h_i \) is a classical LS problem that has been considered in particular in source separation [15] and spectral unmixing [1], [16].

B. Gaussian Markov Random Fields

According to the Hammersley-Clifford theorem [13], [17], an MRF can equivalently be characterized by a Gibbs distribution. More specifically, a zero-mean Gaussian random field \(h \) (GMRF). The distribution of \(h \) is generally unknown. Equivalently, (4) reads

\[
p(h) = \frac{1}{c} \exp \left(-\frac{\lambda}{2} \sum_{k=1}^{n} (h_k - \sum_{\ell \in \mathcal{N}_k} \alpha_k h_\ell)^2 \right)
\]

where \(\lambda > 0 \) is a scale parameter and the normalizing constant \(c > 0 \) is the partition function of this probability distribution, which is generally unknown. Equivalently, (4) reads

\[
p(h) = \frac{1}{c} \exp \left(-\frac{\lambda}{2} \|h - Qh\|_2^2 \right)
\]

where \(\lambda(I - Q)^T(I - Q) \) is the precision matrix, \(I \) denotes the identity matrix and, in the 2D stationary case with periodic boundary condition, \(Q \) is a block circulant matrix with circulant blocks (BCCB) with its first column built from the coefficient vector \(\alpha = (\alpha_1, \ldots, \alpha_q)^T \), \(q = |\mathcal{N}_k| \) being the number of elements in the neighborhood of \(h_k \).

III. FAST COMPUTATION OF THE PROXIMITY OPERATOR OF THE LEAST SQUARES CRITERION WITH GMRF PRIOR

Assuming that the columns of \(H \) are independent and assigned a GMRF prior and considering the likelihood term from (1) leads to the following LS regression problem:

\[
\min_{H \in \mathbb{R}^{d \times n}} f(H) \tag{6}
\]

where

\[
f(H) = \frac{1}{2} \|Y - \sum_{i=1}^{d} w_i h_i^T\|_F^2 + \sum_{i=1}^{d} \frac{\lambda_i}{2} \|h_i^T - h_i^T Q_i\|_2^2.
\]

Hereabove, \(\| \cdot \|_F \) denotes the Frobenius norm, and for every \(i \in \{1, \ldots, d\} \), \(\lambda_i \) is a positive parameter and \(Q_i \) is a BCCB matrix constructed from the MRF coefficients associated with the \(i \)th row of \(H \). Thus, \(Q_i \) enforces possible different spatial structures to \(h_1, \ldots, h_d \). Note that, because of its form, \(Q_i \) can be diagonalized in the frequency domain, i.e., \(Q_i = F D_i F^H \), where \(F \) is the 2D FFT matrix and \(F^H \) is its inverse.

In the following, we will be interested in the following more general optimization problem:

\[
\min_{H \in \mathbb{R}^{d \times n}} f(H) + \frac{\gamma}{2} \|H - \overline{H}\|_F^2 \tag{7}
\]

where \(\gamma \geq 0 \) and the second term means that \(H \) is close to \(\overline{H} \). When \(\gamma = 0 \), this problem reduces to solving (6) and, when \(\gamma > 0 \), this problem corresponds to the computation of \(\text{prox}_{\gamma^{-1}f} \), the proximity operator of \(\gamma^{-1}f \) [18]. As we will see in the next section, such a proximity operator constitutes a key tool for solving optimization problems more involved than (6).

Since \(f \) is a quadratic function, it is well-known that \(\text{prox}_{\gamma^{-1}f} \) is a linear operator for which a closed-form expression can be obtained [14]. We show next, rather than applying the direct formula (see [14, Table 10.1xi]), a more efficient approach can be adopted to compute this proximity operator.

Forcing the derivative of the objective function in (7) w.r.t. each \(h_j \) to be zero and substituting \(Q_j = FD_jF^H \) in the resulting equation leads to

\[
w_j^T (WH - Y) + \lambda_j h_j^T F(I - D_j)^2 F^H + \gamma(h_j - \overline{h}_j)^T = 0 \tag{8}
\]

for every \(j \in \{1, \ldots, d\} \). Note that the matrix \(\lambda_j(I - D_j)^2 \) is a real diagonal matrix whose vector of diagonal elements is denoted by \(m_j \). Thus, (8) can be rewritten as

\[
w_j^T (WH - Y) F + (h_j^T F) \odot m_j^T + \gamma(h_j - \overline{h}_j)^T F = 0 \tag{9}
\]

where \(\odot \) is the Hadamard (element-wise) product. Stacking these \(d \) equations leads to the following matrix equation

\[
(W^T W + \gamma I) H F + (HF) \odot M = (W^T Y + \gamma \overline{H}) F. \tag{10}
\]

Note that the matrix \(M \) can be decomposed as \(M = [m_1, \ldots, m_n] = [m_1, \ldots, m_d]^T \), where a bold italic notation is used to designate the column of \(M \) while a bold non-italic one designates its rows. Eq. (10) is a Sylvester-like matrix equation\(^2\) w.r.t. \(H = HF \). Let \(h_k \) be the \(k \)th column of the matrix \(H \) and let \([(W^T Y + \gamma \overline{H})F]^k \) be the \(k \)th column of \((W^T Y + \gamma \overline{H})F \). Decomposing (10) column-wise allows the estimation of the different vectors \((h_k)_{1 \leq k \leq n} \) to be decoupled:

\[
\overline{h}_k = (W^T W + \gamma I + \text{Diag}(m_k))^{-1} [(W^T Y + \gamma \overline{H})F]^k \tag{11}
\]

for every \(k \in \{1, \cdots, n\} \), where \(\text{Diag}(m_k) \) is the diagonal matrix whose diagonal is filled with the components of \(m_k \). The solution to Problem (7) is finally given by

\[
H = \overline{H} F^H \tag{12}
\]

\(^2\)A Sylvester equation is a matrix equation of the form \(AX + XB = C \) [19].
If \(\max \{d, m\} \ll n \), the computational complexity of the previous strategy is of the order \(O(3dn \log_2 n) \) because of the low cost of the 2D-FFT operation. The whole procedure to compute \(\text{prox}_{1/f}(\mathbf{H}) \) is summarized in Algorithm 1.

Algorithm 1: Computation of the proximity operator of the LS criterion with GMRF prior

Input: \(\mathbf{Y}, \mathbf{W}, (\mathbf{Q}_i)_{1 \leq i \leq d}, \mathbf{H}, \lambda = (\lambda_i)_{1 \leq i \leq d}, \gamma \)

// 2D Fourier diagonalisation of \((\mathbf{Q}_i)_{1 \leq i \leq d}\)

1. for \(i = 1 \) to \(d \) do
 2. \(\mathbf{D}_i \leftarrow \mathbf{F}^H \mathbf{Q}_i \mathbf{F} \); // one 2D-FFT required
 3. \(\mathbf{m}_i = \lambda_i \text{diag}((\mathbf{I} - \mathbf{D}_i)^T) \);
4. end

// Compute the FFT of \(\mathbf{H} \) for all pixels in parallel

5. for \(k = 1 \) to \(n \) do
 6. Compute \(\hat{h}_k \) using (11);
7. end
8. \(\hat{\mathbf{H}} \leftarrow \mathbf{H} \Phi^H \)

Output: \(\hat{\mathbf{H}} \)

Algorithm 2: Penalized LS with GMRF regularization

Input: \(\mathbf{Y}, \mathbf{W}, (\mathbf{Q}_i)_{1 \leq i \leq d}, \mathbf{U}^{(0)}, \mathbf{G}^{(0)}, \lambda, \gamma \)

// Initialize \(\mathbf{U} \) and \(\mathbf{G} \) with \(\mathbf{U}^{(0)} \) and \(\mathbf{G}^{(0)} \)

1. \(\hat{\mathbf{U}} \leftarrow \mathbf{U}^{(0)} \);
2. \(\hat{\mathbf{G}} \leftarrow \mathbf{G}^{(0)} \);
3. repeat
 4. Update \(\hat{\mathbf{H}} \) to \(\hat{\mathbf{H}} \leftarrow \text{prox}_{1/f}(\hat{\mathbf{U}} + \hat{\mathbf{G}}) \);
 5. by feeding Algorithm 1 with
 6. \((\mathbf{Y}, \mathbf{W}, (\mathbf{Q}_i)_{1 \leq i \leq d}, \hat{\mathbf{U}} + \hat{\mathbf{G}}, \lambda, \mu) \);
 7. Update \(\hat{\mathbf{U}} \) to \(\hat{\mathbf{U}} \leftarrow \text{prox}_{\gamma g}((\mathbf{H} - \hat{\mathbf{G}})) \);
 8. Update \(\hat{\mathbf{G}} \) to \(\hat{\mathbf{G}} \leftarrow \text{prox}_{\gamma g}(\mathbf{H} - \hat{\mathbf{U}}) \);
9. until convergence;

Output: \(\hat{\mathbf{H}} \)

IV. PENALIZED LS WITH A GMRF PRIOR

Having a fast way of computing the proximity operator of the LS criterion with GMRF prior yields efficient solutions to the following class of variational formulations:

\[
\min_{\mathbf{H} \in \mathbb{R}^{d \times n}} \frac{1}{2} \|\mathbf{Y} - \mathbf{WH}\|_F^2 + \sum_{i=1}^{d} \frac{\lambda_i}{2} \|h_i^T - h_i^T \mathbf{Q}_i\|_2^2 + g(\mathbf{H})
\]

(13)

where \(g : \mathbb{R}^{d \times n} \rightarrow [0, \infty] \) is an additional regularization term, here assumed to be a convex, lower-semicontinuous and proper function. For example, if \(\mathbf{H} \) is known to belong to a nonempty closed convex set \(\mathcal{C} \subset \mathbb{R}^{d \times n} \), a constrained least squares (CLS) regression is obtained by setting \(g \) equal to the indicator function of \(\mathcal{C} \), i.e.

\[
(\forall \mathbf{U} \in \mathbb{R}^{d \times n}) \quad g(\mathbf{U}) = \iota_{\mathcal{C}}(\mathbf{U}) = \begin{cases} 0 & \text{if } \mathbf{U} \in \mathcal{C} \\ +\infty & \text{otherwise.} \end{cases}
\]

(14)

Looking for a solution to (13) amounts to finding a minimizer of \(f + g \). Provided that the proximity operator of \(g \) is easy to compute, a wide range of proximal algorithms can be employed [14], [20] having good convergence properties. In particular, if \(g \) is given by (14), this operator reduces to the projection \(\Pi_{\mathcal{C}} \) onto \(\mathcal{C} \).

As an example of proximal approaches which can be used, Algorithm 2 describes the iterative steps to be followed in order to implement the alternating direction of multipliers method (ADMM) [21], [22].

V. EXPERIMENTS

This section evaluates the performance of the proposed algorithm for a multichannel image processing problem, and compares it with two widely used optimization algorithms: forward backward (FB) [23] and FISTA [24]. For a fair comparison, all the algorithms have been implemented using MATLAB R2016b on an HP EliteBook Folio 9470m with Intel(R) Core(TM) i7-3687U CPU @2.10GHz and 16GB RAM.

A. Simulation scenario

In all the experiments, we consider a matrix \(\mathbf{W} \in \mathbb{R}^{5 \times 3} \) corresponding to measurements acquired in five channels and decomposed in a basis defined by three vectors. The three columns of the basis matrix \(\mathbf{W} \) are displayed in Fig. 1. These vectors represent the signatures of three different fluorescent protein spectra [25]. One can note that two of them (red and brown) are quite similar, which makes the model very ill-posed. The matrix \(\mathbf{H} \) has been generated row by row after vectorizing 3 texture images available at http://sipi.usc.edu/database/.

The three images we have considered in this work are displayed in the first row of Fig. 4 showing clear oriented structures. The GMRF parameters for these three images have been estimated using the maximum likelihood method [26] and

\[3\text{ courtesy of Alexandre Jaouen, CNRS-AMU UMR7289.}\]
are summarized in Fig. 2. Note that these GMRFs consider 3 × 3 neighbors around one pixel and that half of them are set to zeros due to the symmetry property. The size of the images is 512 × 512. In our simulations, the regularization parameters (λi)1≤i≤3 for all bands are chosen equal to 0.05 empirically (in real application this value vary depending on the noise power). The convex penalty function g is the indicator of the box constraint H ∈ [0, 1]d×n.

The observed data are finally generated using the linear mixing model (1), i.e., Y = WH + N, where the noise matrix N has been generated using samples of a Gaussian distribution with zero mean and covariance matrix σ2I. The variance σ2 has been adjusted in order to have an initial SNR (signal to noise power) equal to 25dB.

\[
\begin{bmatrix}
-0.26 & 0.55 & 0 \\
0.13 & 0 & 0 \\
0.58 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
-0.19 & 0.78 & 0 \\
0.35 & 0 & 0 \\
0.042 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
-0.68 & 0.79 & 0 \\
0.84 & 0 & 0 \\
0.047 & 0 & 0
\end{bmatrix}
\]

Fig. 2. Estimated GMRF coefficients for h1, h2 and h3 (left to right).

B. Quality Assessment

To analyze the quality of the proposed estimation method, we have considered the normalized mean square error (NMSE) defined as

\[
\text{NMSE} = \frac{\|\hat{H} - H^*\|_F^2}{\|H^*\|_F^2}
\]

(the smaller NMSE, the better the estimation quality).

C. Comparison with existing optimization algorithms

The evolution of the relative error between the iterates and the solution to (13) versus execution time, is displayed in Fig. 3(top) for the three tested algorithms, namely FB, FISTA and the proposed one. Here, the optimal solution H* has been precomputed for each algorithm using a large number of iterations. We also show the NMSE versus time in Fig. 3(bottom). All the algorithms lead to the same estimation quality as expected. However, as demonstrated in these plots, the proposed algorithm based on a Sylvester-like equation solver is faster than FB and FISTA. More precisely, the proposed algorithm converges rapidly in a few steps while the other two need more iterations and time to converge. One can also note that FISTA converges faster than FB, both in terms of error on the iterates and NMSE decays.

To demonstrate the role of the GMRF regularization, we computed the box constrained (H ∈ [0, 1]d×n) LS regression without any regularization, by setting λi = 0 for every i ∈ {1, 2, 3} and use it as a baseline for comparison. The regression matrix H estimated by LS and by the proposed approach are displayed in the second and third rows of Fig. 4, respectively. Due to the ill-posedness of the problem, the inversion without any spatial regularization amplifies the noise, leading to poor estimation results as shown in the second row of Fig. 4 (especially for the second and third images).

The GMRF model plays a very important role in restoring satisfactorily the spatial structures and details as shown in the last row of Fig. 4. The NMSE values indicated in the caption of Fig. 4 corroborate these visual comparisons.

VI. Conclusion

This paper developed a new algorithm for penalized least squares regression with GMRF regularization based on a Sylvester-like matrix equation solver. The closed-form solution of this equation makes it very appealing in terms of computational complexity. Although we have focused on the use of ADMM, the proposed approach can be embedded into most of the existing proximal methods to solve penalized or constrained least squares regression problems. Numerical experiments confirmed the effectiveness of the resulting algorithms. Future work includes the generalization of the proposed algorithm to applications where the basis matrix is partially known or unknown.

ACKNOWLEDGMENT

The authors would like to thank CNRS for supporting this work by the CNRS Imag’In project under grant 2015 OPTIMISME.
REFERENCES

