
HAL Id: hal-01635480
https://hal.archives-ouvertes.fr/hal-01635480

Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Fusion of Structure-from-Motion and GPS
using Constrained Bundle Adjustment

Maxime Lhuillier

To cite this version:
Maxime Lhuillier. Incremental Fusion of Structure-from-Motion and GPS using Constrained Bundle
Adjustment. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical
and Electronics Engineers, 2012, 34 (12), pp.2489-2495. <hal-01635480>

https://hal.archives-ouvertes.fr/hal-01635480
https://hal.archives-ouvertes.fr


Incremental Fusion of Structure-from-Motion and GPS

using Constrained Bundle Adjustments

Maxime Lhuillier

Institut Pascal, UMR 6602, CNRS/UBP/IFMA

24 avenue des Landais,

63177 Aubière Cedex, France.

Mail: Maxime.Lhuillier [AT] free.fr

Tel: +33(0)4 73 40 75 93

Fax: +33(0)4 73 40 72 62

http://maxime.lhuillier.free.fr

The reference of this paper is: Maxime Lhuillier, Incremental Fusion of
Structure-from-Motion and GPS using Constrained Bundle Adjustments, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(12), 2012.

The published version of this paper is available at
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6332439

Copyright c©2012 IEEE

1



Incremental Fusion of Structure-from-Motion and

GPS using Constrained Bundle Adjustments

Maxime Lhuillier

Abstract

Two problems occur when bundle adjustment (BA) is applied on long
image sequences: the large calculation time and the drift (or error accu-
mulation). In recent work, the calculation time is reduced by local BAs
applied in an incremental scheme. The drift may be reduced by fusion of
GPS and Structure-from-Motion. An existing fusion method is BA min-
imizing a weighted sum of image and GPS errors. This paper introduces
two constrained BAs for fusion, which enforce an upper bound for the
reprojection error. These BAs are alternatives to the existing fusion BA,
which does not guarantee a small reprojection error and requires a weight
as input. Then the three fusion BAs are integrated in an incremental
Structure-from-Motion method based on local BA. Lastly, we will com-
pare the fusion results on long monocular image sequences and low cost
GPS.

1 Introduction

Bundle adjustment (BA) is an iterative method of estimating camera poses and
3d points detected in an image sequence [12]. The resulting poses and points
minimize a sum of squared reprojection errors.

Recent BA developments mainly concern accelerations for long sequences
such as multicore BA [13], conjugated gradient [1], and local BA (LBA) [10].

Another BA topic is fusion of data coming from several sensors. Fusion
is useful for reducing the error accumulation of Structure-from-Motion (SfM),
which is unavoidable for long image sequence (especially if the camera is monoc-
ular). Global BA is used in aerial Photogrammetry to combine image, inertial
and GPS measures: the cost function minimized by BA is a sum of image,
inertial and GPS terms weighted by measure covariances [8]. There is also
an attempt to include the GPS pseudo-ranges directly as measures in BA [3].
In a different context, the reprojection errors of 3d points involved in BA are
modified such that points are constrained into vertical planes stored in a GIS
database [7]. Recent work combines GPS and image measures [5] (or inertial
and image measures [9]) using LBA, which minimizes a weighted sum of GPS
(or inertial) and image terms. In [9], several weights are experimented. In [5],
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the experiments are limited to a small sequence (70 m) and the GPS term is
defined by a high order polynomial.

In [6], new constrained BAs are introduced for SfM-GPS fusion. These
BAs enforce an upper bound for the reprojection error, while the other fusion
BAs [8, 9, 5] do not guarantee a small reprojection error and requires a weight.
This paper also compares the results of the fusion BAs in a context which is
useful for applications: the incremental SfM based on LBA [10]. In experiments,
low cost GPS and monocular (calibrated) camera are mounted on a car moving
in urban area. The trajectory length is larger (4 km) than in the previous works.

The current paper is an improved version of [6]. The prerequisites detail our
assumptions (Section 2.1) and studies our upper bound-based fusion scheme in
a simple case (Section 2.2): if the sum of squared reprojection errors is approx-
imated by one quadratic Taylor expansion. Section 3 provides a brief overview
of BAs which solve the SfM-GPS fusion problem. Only sparse Levenberg-
Marquardt [12] (second order) based methods are considered here. Section 4
introduces our two constrained BAs for fusion, which involve inequality con-
straint. Section 5 provides the detailed algorithms (useful for re-implementers).
Lastly, Section 6 shows experiments in the same context as [6].

The additional contributions over [6] includes Section 2.2 and new exper-
iments. Section 2.2 provides interesting properties and helps to convince the
reader that SfM-GPS fusion is possible without calculation of SfM covariance.
The properties detail the link between the ǫ-indifference region [2] defined by
our upper bound, the SfM covariance (that we do not estimate), and the GPS
locations where fusion is possible.

The new experiments show the robustness of the fusion methods against
several important factors: upper bounds for image error and track lengths,
time shift between GPS and video recorders, frequency of GPS perturbations,
number of iterations, incomplete GPS data. Lastly, a 5 km long sequence is
experimented with GPS providing altitude (the GPS in [6] does not).

2 Prerequisites

Section 2.1 introduces notations and assumptions. Section 2.2 details our fusion
scheme when the sum of squared reprojection errors is approximated by one
quadratic Taylor expansion.

2.1 Main notations and assumptions

The Euclidean norm is ||.||. Different fonts are used for vectors (e.g. x), matrices
(e.g. H) and function/real (e.g. e). Vector x concatenates the 3d parameters
(camera poses and 3d points) and e(x) is the sum of squares of reprojection
errors of x.

In this paper, we assume that the starting/input x of fusion BA is the
minimizer x∗ of e, i.e. ∀x, e(x∗) ≤ e(x). Standard BA (not fusion BA) provides
x∗.
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Let x1 be location(s) of the camera. The variable ordering is such that
xT =

(

xT
1 xT

2

)

. Let P =
(

I 0
)

be such that x1 = Px.
Let x

gps
1 be the location(s) of the camera provided by GPS at the same

time(s) as x1. Assuming that the GPS drift (or accumulation error) is bounded
and that of SfM is not, the ideal output x of fusion BA meet x1 ≈ x

gps
1 .

Vector x2 concatenates all 3d points, all rotations of the camera, and the
camera locations without GPS data.

Let et be a threshold which is slightly greater than the minimum e(x∗) of e.
In our context, the final/output x of fusion BA is assumed to be acceptable if
its reprojection error is similar to the minimum of e, i.e.

e(x) < et. (1)

Last, we assume that H > 0, i.e. the hessian of e is positive definite in a
neighborhood of x∗.

2.2 Quadratic Taylor approximation

Let q and H∗ be the quadratic Taylor expansion and Hessian of e at x∗. Since
e gradient is zero at x∗,

e(x∗ + ∆) ≈ q(∆) = e(x∗) + 0.5∆TH∗∆. (2)

In the paper we use block-wise notations
(

x∗

1 x1 ∆1

x∗

2 x2 ∆2

)

=
(

x∗ x ∆
)

,

(

H1 HT
21

H21 H2

)

= H∗. (3)

Assume that ∆1 is a step of x∗

1 to remove (or to reduce) the SfM drift, i.e.
x∗

1 +∆1 = x
gps
1 . Now we should find x such that both Eq. 1 and x1 = x∗

1 +∆1

are meet.
The set of values x defined by Eq. 1 is called ǫ-indifference region ([2], p.171)

where ǫ = et − e(x∗). Since ǫ is small and H∗ > 0, Eq. 2 is used to approximate
the ǫ-indifference region by ellipsöıd ([2], p.172)

Eǫ
x
∗ = {x∗ + ∆, q(∆) ≤ e(x∗) + ǫ}. (4)

Now we should find x ∈ Eǫ
x
∗ such that x1 = x∗

1 + ∆1. In other words, x
gps
1

should be in the ellipsöıd projection

Eǫ
x
∗

1

= {x1, ∃x2,
(

xT
1 xT

2

)T
∈ Eǫ

x
∗}

= {x∗

1 + ∆1, ∃∆2, q(

(

∆1

∆2

)

) ≤ e(x∗) + ǫ}. (5)

Lemma 1 is useful to explicit Eǫ
x
∗

1

.

Lemma 1: Function ∆2 7→ q(
(

∆T
1 ∆T

2

)T
) has minimum

q(

(

∆1

−H−1
2 H21∆1

)

) = e(x∗) + 0.5∆T
1 C

−1
1 ∆1, (6)
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where C1 = (H1 − HT
21H

−1
2 H21)

−1 is the top-left block of H∗−1.

Proof: Thanks to H∗ > 0 and Section 6.1 of [12], H1 − HT
21H

−1
2 H21 is the Schur

complement of H2 in H∗ and C1 is the top-left block of H∗−1. Furthermore, H∗ > 0

implies H2 > 0. Thus, quadratic function ∆2 7→ q(
(

∆T
1 ∆T

2

)T
) has minimizer

−H−1
2 H21∆1 and minimum

e(x∗) + 0.5∆T
1

(

I

−H−1
2 H21

)T

H∗
(

I

−H−1
2 H21

)

∆1. (7)

�

Thanks to Lemma 1, we can use ∆2 = −H−1
2 H21∆1 in Eq. 5 and obtain

Eǫ
x
∗

1

= {x∗

1 + ∆1,∆
T
1 C

−1
1 ∆1 ≤ 2ǫ}. (8)

Theorem 1 summarizes the derivations of Section 2.2.

Theorem 1: Thanks to the quadratic Taylor approximation of e at x∗, the
fusion problem defined by

e(x) ≤ et and x1 = x
gps
1 (9)

has solution(s) x if and only if x
gps
1 is in the ellipsöıd Eǫ

x
∗

1

(Eq. 8) where ǫ =

et − e(x∗) and C1 = (H1 − HT
21H

−1
2 H21)

−1. In this case, e(x) is minimized by
choosing

x2 = x∗

2 − H−1
2 H21(x

gps
1 − x∗

1). (10)

If xgps
1 /∈ Eǫ

x
∗

1

, Theorem 1 can still be used to fuse SfM and GPS incompletely:

we replace x
gps
1 by x̃

gps
1 ∈ Eǫ

x
∗

1

such that x̃
gps
1 is close as possible to x

gps
1 .

Lastly, we provide a probabilistic interpretation of C1 and Eǫ
x
∗

1

. Remind that

x∗ is the minimizer of sum of squared reprojection errors. Under the assumption
that the image noise follows the zero-mean normalized Gaussian vector, the x∗

covariance is approximated by H∗−1 [4]. Then we see that C1 is the covariance
matrix of x∗

1 and Eǫ
x
∗

1

is an uncertainty ellipsöıd of x∗

1.

3 BA candidates for SfM-GPS fusion

Here we review three BAs which fuse SfM and GPS. They meet the requirements
of Section 2.1.
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3.1 UBA: BA without explicit constraint

Such a BA was used to combine measurements from different sensors [8]. We
refer to it as UBA or “unconstrained BA”. A sum of weighted terms is mini-
mized:

eU (x) = e(x) + β||Px − x
gps
1 ||2. (11)

Here the problems are the adequate choice of weight β and the risk of inlier loss
due to the term β||Px − x

gps
1 ||2. The inliers are the detected points involved

in e such that the reprojection error is less than a threshold. These problems
are similar if we generalize β||.||2 by a quadratic form defined by a covariance
matrix. In our framework, the UBA output is ignored if e(x) > et

3.2 IBA: BA with inequality constraint

Another method uses penalty function ([2], p.141). In our context, the iterations
of this constrained BA enforce the inequality constraint in Eq. 1, i.e. cI(x) > 0
where cI(x) = et − e(x). Here we minimize

eI(x) = γ/cI(x) + ||Px − x
gps
1 ||2 (12)

where γ > 0. Function x 7→ ||Px−x
gps
1 || is minimized while the penalty function

γ/cI(x) enforces the inequality constraint. Penalty is the main (positive infinite)
term in the neighborhood of cI(x) = 0, and it does not change the minimizers
too much of x 7→ ||Px− x

gps
1 ||2 elsewhere.

Although the principle is simple, such an IBA was not used before for fusion
of SfM and another sensor.

3.3 EBA: BA derived from equality constraints

BAs in [12] minimize e(x) subject to equality constraint c(x) = 0. At first
glance, we could try c(x) = Px− x

gps
1 since we would like x1 ≈ x

gps
1 .

One iteration improves x by adding step ∆ subject to the linearized con-
straint c(x + ∆) ≈ c(x) + ∂c

∂x
∆ = 0. Like unconstrained BA, damping is used

to define ∆ between the Gauss-Newton step, which minimizes the quadratic
Taylor expansion of e, and a gradient descent step. The Taylor expansions
require a small enough ∆, which in turn requires a small enough value of
||c(x)|| = || ∂c

∂x
∆||.

Now we see that c(x) = Px − x
gps
1 can not be used: on the one hand the

constrained BAs in [12] require small ||c(x)||, while on the other c(x∗) = x∗

1 −
x

gps
1 may have large modulus since it is the drift between SfM and GPS.

Therefore we introduce EBA, which is derived from a constrained BA in [12].
EBA is a different method and c is replaced by another function

cα(x) = Px− ((1 − α)xgps
1 + αx∗

1) where α ∈ [0, 1]. (13)
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Note that Eq. 13 is the same as Eq. 14 in [6], i.e. cα(x) = c(x)−αc(x∗). Eq. 13
makes easier the understanding of cα(x) = 0: x1 is a linear interpolation of x

gps
1

and x∗

1.
Eq. 13 implies c1(x

∗) = 0 and c0(x) = c(x). EBA decreases α progressively
from 1 (no constraint before all iterations) to 0 (full constraint). The final value
of α may be different to 0 and this measures the success of fusion between GPS
and image data from α = 1 (failure) to α = 0 (100% success). A decrease
of α may produce an increase of e(x), but this increase is moderated since we
integrate in EBA the reduction method (a constrained BA in Section 4.4 of [12]).
This is useful to meet Eq. 1.

Note that EBA minimizes α and the (integrated) reduction method mini-
mizes e(x). For the paper clarity, the reduction method and EBA are described
in two different Sections 4.3 and 4.4.

4 Iteration of BAs

Section 4 describes the iterations of Levenberg-Marquardt (LM), IBA and EBA
(the former is useful to explain the latters). The supplementary material shows
that successful iteration is possible in all cases.

The quadratic Taylor expansion of e at x is

e(x + ∆) ≈ e(x) + gT ∆ + 0.5∆TH∆ (14)

where g and H are the gradient and hessian of e. The projection function
E : R

n → R
m meets e(x) = ||E(x)||2. Let J be the jacobian of E at x. We have

g = 2JT E(x) and use the Gauss-Newton approximation H ≈ 2JTJ. We assume
JTJ > 0 since H > 0 (Section 2.1).

4.1 Levenberg-Marquardt without constraint

The LM iteration to minimize e(x) without constraint is the following [11] (UBA
minimizes a different function using LM). Efficient sparse methods are used to
solve (H+λdiag(H))∆ = −g for the current value of x and a damping coefficient
λ > 0. If e(x + ∆) < e(x), the iteration is successful: x is replaced by x + ∆

and λ is replaced by λ/10. Otherwise, λ is replaced by 10λ.

4.2 IBA

The method is the same as in Section 4.1, except for the calculation of ∆. Let
xi be a coefficient of x and f(x) = γ/(et − e(x)). We have

∂f

∂xi

=
γ

(et − e)2
∂e

∂xi

∂2f

∂xi∂xj

=
γ

(et − e)3
((et − e)

∂2e

∂xi∂xj

+ 2
∂e

∂xi

∂e

∂xj

). (15)
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Then, we use the Gauss-Newton approximation H ≈ 2JTJ and obtain the gra-
dient and hessian of eI :

gI =
γ

(et − e)2
g + 2PT (Px− x

gps
1 )

HI ≈
2γ

(et − e)3
((et − e)JTJ + ggT ) + 2PTP. (16)

Now, the linear system (HI + λdiag(HI))∆ = −gI is solved. This can not be
solved as in Section 4.1 since HI is not sparse due to the dense term ggT .
Section 5.1 provides an efficient method to solve this linear system.

4.3 Reduction Method (BA with equality constraint)

Now the LM iteration to minimize e(x) subject to constraint c(x) = 0 is de-
scribed [12]. We use notations

(

x1 ∆1 g1

x2 ∆2 g2

)

=
(

x ∆ g
)

,

(

H1 HT
21

H21 H2

)

= H (17)

and jacobian
(

C1 C2

)

of c at x. In our case, C1 = I, C2 = 0 and step ∆ is such
that

c(x + ∆) ≈ c(x) + C1∆1 + C2∆2 = c(x) + ∆1 = 0. (18)

Then, ∆ is

∆(∆2) =
(

−c(x)T ∆T
2

)T
. (19)

Thanks to Eq. 14 and ∆ = ∆(∆2), we obtain

e(x + ∆(∆2)) ≈ ē2 + ∆T
2 ḡ2 + 0.5∆T

2 H2∆2 (20)

where

ē2 = e(x) − gT
1 c(x) + 0.5c(x)TH1c(x)

ḡ2 = g2 − H21c(x) (21)

Step ∆2 meets (H2 +λdiag(H2))∆2 = −ḡ2. Now the iteration is the same as
in Section 4.1 using ∆ = ∆(∆2).

4.4 From Reduction Method to EBA

Assume that EBA is the reduction method using the constraint in Eq. 13.
A problem is the descending condition e(x + ∆(∆2)) < e(x) to test step
∆ = ∆(∆2). In our fusion context, the initial value of x is x∗, which mini-
mizes e. So the descending condition can not be meet at the very beginning of
EBA. However, we remind that our condition for fusion is Eq. 1. We solve this
problem, substituting the descending condition by

e(x + ∆(∆2)) < et. (22)
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Now the ∆2 calculation in a successful EBA iteration is concisely written
as: find positive δ and λ such that







ḡ2 = g2 − H21cα−δ(x)
(H2 + λdiag(H2))∆2 = −ḡ2

e(x +
(

−cα−δ(x)T ∆T
2

)T
) < et.

(23)

Then we add ∆ =
(

−cα−δ(x)T ∆T
2

)T
to x, and subtract δ from α. The

detailed algorithm is in Section 5.2. According to the supplementary material,
Eqs. 23 have a solution thanks to small enough δ and large enough λ.

5 Implementation

Now we will explain how to implement efficiently IBA (Section 5.1) and EBA
(Section 5.2).

5.1 IBA

In Section 4.2, (HI + λdiag(HI))∆ = −gI should be solved efficiently. Let ~H and
g̃ be such that

HI + λdiag(HI) = ~H + g̃g̃T , g̃ =

√

2γ

(et − e)3
g. (24)

Basic computation shows that

(~H + g̃g̃T )−1 = (I−
~H−1g̃g̃T

1 + g̃T ~H−1g̃
)~H−1. (25)

We introduce a = −~H−1gI , b = ~H−1g̃, and obtain

∆ = −(~H + g̃g̃T )−1gI = a −
g̃Ta

1 + g̃T b
b. (26)

Now we explain how to estimate a and b. According to Eqs. 16 and 24, ~H

has the sparse structure of JTJ. More precisely [4], we have ~H =

(

U W

WT V

)

and

~H > 0 where U is a 6 × 6 block-wise matrix, V is a 3 × 3 block-wise invertible
diagonal matrix, and W is a 6 × 3 block-wise matrix such that the (i, j) block
is zero if the j-th 3d point is not seen in the i-th image. So linear systems
~Ha = −gI and ~Hb = g̃ are solved using the same efficient sparse method [4] as
the linear system (H + λdiag(H))∆ = −g.

The algorithm in C style is the following. The inputs are reprojection error
e(x) = ||E(x)||2, GPS location(s) x

gps
1 , initial x which minimizes e (i.e. x = x∗),

maximum number of iterations Itmax, and threshold et. The output is x such
that e(x) < et and eI(x) has the smallest possible value.
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err = γ/(et − e(x)) + ||Px− x
gps
1 ||2;

UpdateD = 1; λ = 0.001;
for (It = 0; It < Itmax; It++) {

// derivative update and estimation of ∆

if (UpdateD) {
UpdateD = 0;
g = 2JT E(x); H = 2JTJ; // J is the jacobian of E at x

gI = γ
(et−e)2 g + 2PT (Px − x

gps
1 ); H = γ

(et−e)2 H + 2PTP;

g̃ =
√

2γ
(et−e)3 g; // now, HI = H + g̃g̃T (don’t store HI)

}
~H = H + λdiag(H + g̃g̃T );
solve ~H

(

a b
)

=
(

−gI g̃
)

∆ = a − (g̃T a)/(1 + g̃Tb)b;
// try to decrease eI

if (e(x + ∆) ≥ et) { λ = 10λ; continue; }
err′ = γ/(et − e(x + ∆)) + ||P(x + ∆) − x

gps
1 ||2;

if (err′ < err) {
x = x + ∆;
if (0.9999err < err′) break; // convergence is too slow
err = err′; UpdateD = 1; λ = λ/10;

} else λ = 10λ;
}

5.2 EBA

Solving the linear system of Eqs. 23 is the main calculation. At first glance, this
should be done for each tried (λ, δ) since ḡ2 depends on cα−δ(x). Fortunately,
we can reduce the number of these calculations. We solve ∆a

2 and ∆b
2 such that

(H2 + λdiag(H2))
(

∆a
2 ∆b

2

)

=
(

−g2 H21

)

(27)

and obtain ∆2 = ∆a
2 + ∆b

2cα−δ(x). Now we see the improvement: once the
linear system in Eq. 27 is solved, ∆2 is obtained very efficiently for all tried δ.

We try δ ∈ {α, α/2, · · ·α/210} in the decreasing order. If all δ above fail, we
change the EBA iteration using ∆T =

(

0T (∆a
2)

T
)

. Then we find λ such that
e(x + ∆) < e(x) as in unconstrained BA (U-iteration).

Remind that EBA minimizes α, but it is interesting to obtain the smallest
e(x) for a given α. Thus, we alternate successful iteration with δ > 0 (E-
iteration) and successful U-iteration to decrease e as much as possible. The
U-iterations do not update α. If α = 0, only U-iterations are applied until
convergence.

The following algorithm in C style provides the remaining details. The inputs
are reprojection error e(x) = ||E(x)||2, constraint c, initial x which minimizes
e, maximum number of iterations Itmax, and threshold et. The output is (x, α)
such that e(x) < et, x1 = (1 − α)xgps

1 + αx∗

1 and the smallest α as possible.

10



err = e(x); c∗ = c(x);
UpdateD = 1; λ = 0.001; α = 1;
αold = 1; // αold is used to alternate E- and U-iterations
for (It = 0; It < Itmax; It++) {

// derivative update and estimation of ∆a
2 and ∆b

2

if (UpdateD) {
UpdateD = 0;
g = JT E(x); H = JTJ; // J is the jacobian of E at x
(

g1

g2

)

= g;

(

H1 HT
21

H21 H2

)

= H;

}
solve (H2 + λdiag(H2))

(

∆a
2 ∆b

2

)

=
(

−g2 H21

)

// E-iteration: try to decrease α with bounded e
if (0 < α && αold == α) {

for (It2 = 0, α′ = 0; It2 < 10; It2++) {
cα′(x) = c(x) − α′c∗;∆2 = ∆a

2 + ∆b
2cα′(x);

∆T =
(

−cα′(x)T ∆T
2

)

; err′ = e(x + ∆);
if (err′ < et) break; // success if true
α′ = 1

2 (α + α′);
}
if (It2 < 10) { // success if true

αold = α; α = α′;x = x + ∆;
err = err′; UpdateD = 1; continue;

}
}
// U-iteration: try to decrease e without α update
∆2 = ∆a

2 ; ∆T =
(

0T ∆T
2

)

; err′ = e(x + ∆);
if (err′ < err) {

x = x + ∆;
if (α == 0 && 0.9999err < err′) break;
αold = α, err = err′; UpdateD = 1; λ = λ/10;

} else λ = 10λ;
}

6 Experiments

6.1 Integrating fusion to LBA-based SfM

SfM [10] reconstructs the very beginning of the sequence using standard methods
and then alternates the following steps: (1) a new keyframe is selected from
the input video and interest points are matched with the previous keyframe
using correlation (2) the new pose is estimated using Grunert’s method and
RANSAC (3) new 3d points are reconstructed from the new matches and (4)
LBA refines the geometry of the n-most recent keyframes. In the LBA context, x
concatenates the 6D poses of the n-most recent images and the 3d points which
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have observation(s) in these images, e(x) is the sum of squared reprojection
errors of these 3d points in the N most recent images. There is no gauge
freedom and H > 0. Step 4 uses n = 3 and N − n = 7 [10].

Our paper adds step (5), a fusion step which is the local version of UBA, IBA
or EBA: e is the reprojection error of the LBA which refines the geometry of the
k-most recent keyframes. The minimizer x∗ of e is estimated before each fusion
LBA using a single iteration of standard LBA. Vector x1 is the 3d location of
the most recent key-frame. Fusion LBA does not involve point outliers since
they are rejected by steps (3-4) as in [10].

UBA, IBA and EBA run under the same conditions: same keyframes, same
matches, same maximum number of iterations (Itmax = 4), same k and et. Our
default values are k = 40 and et = 1.052e(x∗), i.e. a RMS increase of 5% is
accepted for fusion. The other (default) parameters of UBA and IBA are

β =
e(x∗)

||Px∗ − x
gps
1 ||2

, γ =
et − e(x∗)

10
||Px∗ − x

gps
1 ||2. (28)

These weights are such that the ratio between image term and GPS term in eU

(eI , respectively) is 1 (0.1, respectively) before the fusion optimization.
Step (5) is used in the main loop once the SfM result is registered in the

GPS coordinate system. The registration method is the following. First we
select times t0 = 0 and t1 such that the distance between the two GPS positions
is greater than 10 meters. Then we define the vertical direction in the SfM result
assuming that both x-axis and motion of the camera are horizontal between t0
and t1. Now three points are defined in both coordinate systems (SfM and
GPS) and a similarity transformation is estimated from these points. Finally,
the SfM result is mapped in the GPS coordinate system using the similarity
transformation.

6.2 Notations

The 3d location of keyframes are provided by six methods: SfM, GPS, GT
(ground truth), UBA, IBA and EBA.

Let a and b be two different methods that we would like to compare. Let lia
and ei

a be the 3d location and the reprojection error (RMS) provided by method
a at the i-th keyframe. We study the distribution of ∀i, ||lia − lib||, where a ∈
{SfM, GPS, UBA, IBA, EBA}, b ∈ {GPS, GT}. Its mean, standard deviation
and maximum are mb

a, σb
a and ∞b

a in meters. We also study the distribution of
∀i, ei

a/ei

SfM, where a ∈ {UBA, IBA, EBA}. Its mean, standard deviation and

maximum are m2d
a , σ2d

a and ∞2d
a . We refer to these distributions as location

errors and image errors, respectively. Here lia and ei
a are estimated after the

calculation of the entire sequence by method a.

6.3 Experimental conditions for sequence 1

Our GPS and camera are mounted on a car. Its trajectory has straight lines,
sharp curves, traffic circles, stop and go due to traffic lights. It is 4 km long.

12



Figure 1: Images of sequence 1.

f mgps
f σgps

f ∞gps
f mgt

f σgt
f ∞gt

f m2d
f σ2d

f

SfM 165 172 591 164 172 592 1 0
UBA 2.61 2.40 11.3 5.59 3.18 14.0 1.04 .044
IBA 1.24 1.50 8.47 4.57 2.83 12.1 1.05 .046
EBA 2.48 2.27 10.5 5.49 3.12 14.0 1.04 .045
GPS 0 0 0 4.28 2.34 12.2 - -

Table 1: Location errors and image errors using the default parameters. If f ∈
{UBA, IBA, EBA}, ∞2d

f ∈ [1.28, 1.3].

The scene includes low and high buildings, trees and moving vehicles.
The GPS is low cost (Ublox Antaris 4). It provides one 2D location (longi-

tude, latitude) at 1Hz and the altitude is set to 0. Once the GPS coordinates
are converted to euclidean coordinates in meters, linear interpolation is used
to obtain a 3d GPS location at all times. The ground truth is provided at
10Hz by IXSEA LandINS and RTK (not low cost) GPS. We have mgt

gps = 4.28,
σgt

gps = 2.34 and ∞gt
gps = 12.2, so the name “low cost GPS” is confirmed.

The camera is monocular and calibrated; it points forward and provides 640×
352 images (Fig. 1) at 25 Hz. 2480 keyframes are selected from 14850 images,
such that there are about 400 Harris point matches between three consecutive
keyframes. We assume that the distance between camera and GPS antenna
is small in comparison to GPS accuracy: the GPS coordinates of the camera
(xgps

1 ) are approximated by those of the GPS antenna.

6.4 Comparison of UBA, IBA and EBA

Here we compare the methods using the default parameters in Section 6.1.
Tab. 1 shows the location errors. The three fusions (UBA, IBA, EBA) greatly
reduce the errors relative to GPS to about 2 meters. The errors relative to
ground truth are also greatly reduced to about 5 meters, which is the magnitude
order of the GPS accuracy. However, the fusion methods are not able to improve
the mean of GPS accuracy since the fusion errors are slightly larger than the
pure GPS errors. According to values of mGPS

a and mGT
a , the best results are

obtained by IBA, followed by EBA and UBA. Tab. 1 also shows the image
errors. We check that they are acceptable for all fusion BAs since they show
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Figure 2: Top views of trajectories: GPS+SfM (top left), GPS+IBA (bottom left).
Local view (right) of GPS (black crosses), GT (black dots), UBA (red dots), IBA
(green dots), EBA (blue dots). One dot is one keyframe.

that the increase of RMS reprojection errors per keyframe due to fusion is about
5%. RMS ei

SfM ranges from 0.37 to 0.54 pixel (the mean is 0.44), which implies

that ei
f ≤ 0.702 pixel ∀f, ∀i.

Fig. 2 shows top views of GPS, SfM and IBA trajectories. We see the drift of
SfM compared to GPS (top left). At this scale, it is difficult to see a difference
between GPS and IBA (bottom left). The same observation can be done for
UBA and EBA. Fig. 2 also shows a local view of the 3d locations provided by
the fusion BAs (right), in the case where there are high buildings at the road
border. The car moves from right to left. We see that the trajectory shapes of
the fusion BAs are better than that of the GPS: fusion trajectories are smooth
like GT trajectory, GPS trajectory (using linear interpolation) is not smooth at
a point on the left. We can also see that the GPS does not provide a good local
scale factor to the trajectory.

The mean times of U-/I-/EBA are 0.25, 0.27 and 0.28 seconds for each
keyframe, respectively. Here we use a core 2 duo 2.5Ghz laptop, sparse imple-
mentation of hessians, and Cholesky factorization of reduced camera system to
solve the LM linear systems [12].

6.5 Weight changes for UBA and IBA

Remember that UBA and IBA require choosing weights β and γ, respectively.
So we re-do the UBA and IBA fusions of Section 6.4 using different weights
around the default values in Eq. 28. The results are given in Tab. 2. We can
see that the fusion results are similar if we divide or multiply the weights by 2.
We can also see that large changes of weight (division or multiplication by 10)
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f w. mgps
f ∞gps

f mgt
f ∞gt

f m2d
f ∞2d

f

UBA β
10 135 409 133 409 1.00 1.11

UBA β
2 2.66 11.3 5.62 14.0 1.04 1.31

UBA 2β 2.55 10.8 5.55 14.9 1.04 1.29
UBA 10β 405 1.3k 405 1.3k 1.02 1.19
IBA γ

10 22.4 80.7 22.9 80.9 1.06 1.43
IBA γ

2 1.88 9.84 4.88 12.3 1.06 1.32
IBA 2γ 1.64 12.5 4.78 12.1 1.05 1.26
IBA 10γ 195 690 193 691 1.00 1.10

Table 2: Location and image errors for weight changes.

provide bad fusion results. These experiments suggest that the tuning of the
weights is important, although it is not difficult to get weight which provides
acceptable fusion results. Furthermore, they confirm that IBA has the best 3d
location results.

6.6 Changes of sliding window size

We redo the experiments of Section 6.4 for different values of k. Tab. 3 shows
that fusion is more difficult for small k. UBA, IBA and EBA provides acceptable
results if k ≥ 40: the mean of location errors is less than 6.07 and that of image
errors is less than 1.05. Fusion is more difficult if k < 40, especially for UBA
and IBA whose locations errors increases dramatically. For EBA, the location
errors are acceptable (except ∞gt

eba = 35.1 if k = 25), but the mean of image
errors increase up to 1.098. Since small k is better for computation time, we
found k = 40 is a good compromise for the 3 fusion BAs.

Such results are suggested by Section 2.2. Remind that the gauge is fixed
at the beginning and x1 is at the end of the k most recent keyframes. In this
context, we can assume that covariance C1 of x∗

1 (Section 2.2) increases if the
optimized sequence length k increases. Then Theorem 1 implies that Eǫ

x
∗

1

, the

region of the GPS locations where fusion is possible, increases if k increases.
Thus, small k makes fusion more difficult.

6.7 Changes of image upper bound

We redo the experiments of Section 6.4 for different values of et. Here the no-
tation µ =

√

et/e(x∗) is more convenient. According to Section 6.1, the default
value is µ = 1.05. Tab. 3 shows that fusion is more difficult for small µ (or et):
the location errors increase if µ decreases. This confirms the following intuition:
the smaller et, the stronger constraint enforced by SfM, the less tolerance for
inaccurate GPS. Furthermore, the means of image errors are less than 1.053.
This might be surprising since they are cases where the image errors are greater
than µ. We should remember that et is an upper bound for a sum of reprojec-

15



mgt
uba mgt

iba mgt
eba m2d

uba m2d
iba m2d

eba ∞2d
∗

default 5.59 4.57 5.49 1.037 1.049 1.038 1.301

k=25 54.0 195 6.62 1.013 1.009 1.098 1.439
k=30 65.2 43.3 4.99 1.018 1.021 1.070 1.501
k=35 34.6 33.5 5.15 1.035 1.032 1.051 1.392
k=45 5.84 4.56 5.74 1.029 1.042 1.032 1.291
k=50 6.07 4.59 5.86 1.027 1.035 1.028 1.263

µ=1.01 112 76.3 6.16 1.003 1.004 1.052 1.288
µ=1.03 94.9 5.01 5.40 1.022 1.049 1.039 1.314
µ=1.07 5.58 4.55 5.51 1.037 1.053 1.038 1.299

δt=-2 89.9 229 396 1.025 1.021 1.054 1.394
δt=-1 8.68 5.49 5.84 1.063 1.081 1.074 1.501
δt=-.5 5.39 4.87 5.59 1.058 1.061 1.052 1.456
δt=.5 5.91 4.71 5.79 1.032 1.048 1.035 1.283
δt=1 6.40 5.39 6.50 1.030 1.054 1.039 1.337
δt=2 10.3 7.64 7.99 1.060 1.071 1.073 1.444
δt=3 20.9 16.1 9.56 1.048 1.056 1.100 1.569

L∞=6 5.39 4.57 5.28 1.041 1.059 1.043 1.320
L∞=7 5.37 4.67 5.10 1.045 1.067 1.047 1.343
L∞=8 11.9 9.47 4.99 1.035 1.045 1.048 1.360
L∞=9 54.4 48.5 5.09 1.015 1.020 1.055 1.368
L∞=∞ 54.5 54.4 4.45 1.005 1.007 1.036 1.277

Itmx=1 85.1 120 4.61 1.015 1.027 1.057 1.312
Itmx=2 4.81 4.61 4.61 1.041 1.059 1.050 1.366
Itmx=3 5.49 4.56 4.83 1.038 1.051 1.042 1.306

Table 3: Location and image errors for parameter changes.
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p msfm
uba msfm

iba msfm
eba mgps

uba mgps
iba mgps

eba ∞2d
∗

10 4.56 4.04 1.31 10.7 11.0 9.95 1.48
100 4.56 4.04 1.31 11.9 14.5 10.1 1.64
200 442 11.4 10.2 443 10.4 9.31 1.48
400 10.7 12.3 10.1 6.43 7.93 4.67 1.48
800 10.3 12.4 9.94 3.91 6.62 2.17 1.48
1600 9.91 10.4 9.88 1.57 1.46 0.76 1.48

Table 4: Location and image errors if i 7→ l
i
gps − l

i
sfm has period p.

tion errors over the k most recent keyframes; it does not enforce upper bound
for individual keyframe. Last, we see that EBA is the most robust to small et.

6.8 Time shift between GPS and video recorders

We redo the experiments of Section 6.4 for different values of δt, which is the time
shift between GPS and video recorders (in seconds). The previous experiences
have δt = 0 and now we try δt 6= 0 as if the experimenter synchronizes the two
recorders manually. Tab. 3 shows that the results are not dramatically corrupted
by a bad synchronization: δt ∈ {−.5, 0, .5, 1} provides acceptable results, δt > 2
does not. Such a conclusion depends on the camera speed: the larger speed, the
more corrupted GPS location for camera (xgps

1 ) due to δt 6= 0, the more difficult
fusion. Here the speed is less than 60 km/h.

6.9 Upper bound for track lengths

Tab. 3 shows that the result of SfM-GPS fusion depends on L∞, the upper
bound of the track lengths of image points. The default value is L∞ = 5, e.g.
if a point is tracked over 13 consecutive frames, then we split this track into 2
tracks with length 5 and 1 track with length 3. Large L∞ makes fusion more
difficult (except EBA).

6.10 Number of iterations

Tab. 3 shows the fusion results for values of Itmax. UBA and IBA fail if
Itmax = 1. If Itmax ∈ {2, 3, 4}, we see that (1) the location and image errors
are acceptable (2) the greater Itmax, the smaller image error. Furthermore, the
greater Itmax, the smaller α returned by EBA. If Itmax = 4, the mean value is
ᾱ = 0.0017. If Itmax = 1, ᾱ = 0.13. Remind that α > 0 means that the EBA
fusion is incomplete (Section 3.3). Other examples of incomplete EBA fusion
are ᾱ(µ = 1.01) = 0.76 and ᾱ(k = 25) = 0.56.
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p mgps
uba mgps

iba mgps
eba m2d

uba m2d
iba m2d

eba

20 36.8 31.9 1.80 1.04 1.04 1.06
30 98.4 33.3 1.96 1.03 1.04 1.07
40 32.3 7.84 9.87 1.03 1.04 1.12
50 153 421 175 1.02 1.03 1.08

Table 5: Location and image errors for incomplete GPS data.

6.11 GPS as a periodic perturbation of SfM

We redo the experiments of Section 6.4 with GPS data such that ligps = lisfm +

10
(

cos(2πi/p) sin(2πi/p) 0
)T

, where p is the period of a circular perturba-

tion around the SfM result and
(

0 0 1
)T

is the vertical direction. Tab. 4
shows the fusion results for several p. For small periods (p ≤ 100), the fusion

is mainly SfM since msfm
f < mgps

f . For large periods (p ≥ 800), the fusion is

mainly GPS since msfm
f > mgps

f . This suggests that the fusion only uses the

low frequencies of i 7→ ligps − lisfm.

6.12 Incomplete GPS data

The experiments of Section 6.4 are redone with incomplete GPS data, as if
GPS satellites are occluded due to high buildings. ligps is available and fusion
is done if and only if (i modulo p) ∈ [0, p/2], where p is a period. Tab. 5 shows
the fusion results for several p. EBA has the best results, but fusion is more
difficult for large values of p.

6.13 Experiment for sequence 2

Sequence 2 has the following differences with sequence 1: 3d locations provided
by Flytec GPS at 1 Hz, H.264 compressed video at 30 Hz by Gopro camera,
19515 images reduced to 640 × 480, 4000 keyframes, 5 km long trajectory loop
(max speed 77 km/h), the altitude variation is 51 m. The ground truth is
unknown. The camera and GPS recorders are manually synchronized.

Fig. 3 shows the recorders, three images of the sequence, and a top view of the
GPS and IBA trajectories obtained using the default parameters (Section 6.1).
Tab. 6 provides the location and image errors. Now EBA has the best mean of
location errors and the image errors are larger than those of sequence 1. RMS
ei

SfM ranges from 0.35 to 0.51 pixel (the mean is 0.45), which implies that

fusions always have ei
f ≤ 0.77 pixel.

7 Conclusion

Two constrained bundle adjustments IBA and EBA were introduced to fuse
GPS and Structure-from-Motion data. They enforce an upper bound for the
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Figure 3: Video (Gopro) and GPS (Flytec) recorders, 3 images of sequence 2, top
view of the GPS and IBA trajectories.

f mgps
f σgps

f ∞gps
f m2d

f σ2d
f ∞2d

f

SfM 387 224 767 1 0 1
UBA 3.62 3.09 15.1 1.06 0.06 1.43
IBA 2.32 2.84 14.6 1.09 0.05 1.51
EBA 2.12 1.58 10.4 1.13 0.09 1.48

Table 6: Location errors and image errors for sequence 2.

reprojection errors and are described in details. The experiments compare our
two BAs with the existing UBA (which minimizes a weighted sum of image
and GPS errors) in the difficult context of incremental Structure-from-Motion
applied on long urban image sequences and low cost GPS. We also study the
fusion results for several parameter settings. Such experiments were not done
before.

The three fusion BAs greatly improve the poses of the Structure-from-
Motion; the resulting increases of reprojection errors are small. According to
ground truth, the resulting pose accuracies are similar to that of the GPS. The
GPS accuracy is slightly better (it is the only sensor which provides absolute
data, our monocular camera can not). EBA has two advantages: it does not re-
quire weight choice and it is the most robust method to bad parameter settings
and bad experimental conditions. IBA may provide the best results for good
parameter settings. UBA is ranked #3.

Future work includes experiments with other fusion BAs, improvement to
initialize the visual reconstruction in the GPS coordinate system, parameter
setting from knowledge of the GPS performance, fusion with other sensors,
application to georeferenced 3d modeling.
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