C. Bonnet-gonnet, L. Belloni, B. Cabane, J. Persello, A. Magnin et al., Osmotic Pressure of Latex Dispersions, 1845?1870. (3) Bouchoux, A.; Cayemitte, P.-E.; Jardin, pp.4012-4021, 1994.
DOI : 10.1021/la00023a019

B. Cabane, I. Gergianakis, M. Meireles, P. Bacchin, and J. H. Dobnikar, The continuous modeling of charge-stabilized colloidal suspensions in shear flows 1317?1329. (5) Denton, A. R. Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions, Casein micelle dispersions under osmotic stress Diatta, J.; Meireles, M. Quantitative Assessment of the Accuracy of the Poisson-Boltzmann Cell Model for Salty Suspensions, pp.364108-6721, 2009.

R. H. Castan?-eda-priego, Macroion virial contribution to the osmotic pressure in charge-stabilized colloidal suspensions (8) Belloni, L. Ionic condensation and charge renormalization in colloidal suspensions, 227?243. (9) Trizac, 1998.

G. I. Alexander-'s-prescription-for-colloidal-charge-renormalization-guerrero-garcía, R. Van-roij, M. De-la-cruz, L. Goehring, J. Li et al., Effective charges and virial pressure of concentrated macroion solutions Jo? nsson, A.-S.; Jo? nsson, B. Ultrafiltration of Colloidal Dispersions -A Theoretical Model of the Concentration Polarization Phenomena Drying paint: from micro-scale dynamics to mechanical instabilities Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory, Proc. Natl. Acad. Sci. U. S. A. 2015 504?518. (12), pp.9242-9246, 1984.

H. Wennerstrom, B. Jonsson, P. Linse, C. Holm, P. Ke?kicheffke?kicheff et al., Monte Carlo simulations, and the Poisson-Boltzmann approximation Testing the relevance of effective interaction potentials between highly-charged colloids in suspension Van der Waals-Like Instability in Suspensions of Mutually Repelling Charged Colloids Phase diagram of chargestabilized colloidal suspensions: van der Waals instability without attractive forces (19) Zoetekouw, B.; van Roij, R. Volume terms for charged colloids: A grand-canonical treatment consistent, integral equation for simple fluids, Exact statistical mechanical relations21) Heinen, M.; Holmqvist, P.; Banchio, A. J.; Na? gele, G. Pair structure of the hard-sphere Yukawa fluid: An improved analytic method versus simulations-Young scheme, and experiment. J, pp.277-294, 1982.

. Chem, J. Gapinski, G. Na?-gele, A. Patkowski, J. Hansen et al., Freezing lines of colloidal Yukawa spheres. I. A Rogers-Young integral equation study A rescaled MSA structure factor for dilute charged colloidal dispersions An analytic structure factor for macroion solutions 109?118. (25) Snook, I.; Hayter, J. Static structure of strongly interacting colloidal particles Hardsphere radial distribution function again Equation of state of PEG/PEO in good solvent. Comparison between a one-parameter EOS and experiments Structural and thermodynamic properties of charged silica dispersions Surfactant Science Series, 15993?16001. (30) Persello, J. Surface and Interface Structure of Silicas. In Adsorption on Silica Surfaces, pp.44532-651, 1981.

M. Dekker, (31) Linse, P. Structure, phase stability, and thermodynamics in charged colloidal solutions, J. Chem. Phys, vol.297, issue.113, pp.4359-4373, 2000.