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ABSTRACT: Increasing demand is appearing for the fast,
robust prediction of the equation of state of colloidal
suspensions, notably with a view to using it as input data to
calculate transport coefficients in complex flow solvers. This is
also of interest in rheological studies, industrial screening tests
of new formulations, and the real-time interpretation of osmotic
compression experiments, for example. For charge-stabilized
spherical particles, the osmotic pressure can be computed with
standard liquid theories. However, this calculation can some-
times be lengthy and/or unstable under some physicochemical
conditions, a drawback that precludes its use in multiscale flow simulators. As a simple, fast, and robust replacement, the literature
reports estimations of the osmotic pressure that have been built by adding the Carnahan−Starling and the cell model pressures
(CSCM model). The first contribution is intended to account for colloid−colloid contacts, and the second, for electrostatic
effects. This approximation has not yet been thoroughly tested. In this work, the CSCM is evaluated by comparison with data
from experiments on silica particles, Monte Carlo simulations, and solutions of the accurate Rogers−Young integral equation
scheme with a hard-sphere Yukawa potential obtained from the extrapolated point-charge renormalization method for a wide
range of volume fractions, surface charge densities, and interaction ranges. We find that the CSCM is indeed perfectly adequate
in the electrostatically concentrated regime, where it can be used from vanishingly small to high surface charge because there is
error cancellation between the Carnahan−Starling and cell model contributions at intermediate charge. The CSCM is thus a nice
extension of the cell model to liquid-like dense suspensions, which should find application in the domains mentioned above.
However, it fails for dilute suspensions with strong electrostatics. In this case, we show that, and explain why, perturbation
methods and the rescaled mean spherical approximation are good alternatives in terms of precision, ease of implementation,
computational cost, and robustness.

1. INTRODUCTION

The equation of state (EOS) of a colloidal dispersion is a
macroscopic, thermodynamic signature of the physical and
chemical phenomena at play on the particle scale. For example,
the examination of an EOS has proven useful in showing that
some latex particles release small polymers under dilute, high-
pH, low-salt conditions1 and in understanding the link between
the dynamic yield stress and the formation of a slip layer in
silica suspensions2 or again in determining the conditions under
which casein micelles in suspension make the transition from
separate, incompressible entities to a percolated compressible
network.3 The understanding that can be gained by studying
the EOS of a suspension relies on the knowledge of a set of
typical EOSs for a few canonical, simpler, well-documented
suspensions. If quantitative models exist for the latter EOSs,
then matching them with experimental data even allows
physical quantities to be measured.
The EOS is also an essential ingredient required to build

continuous models of out-of-equilibrium suspensions. It can be
used to derive quantities such as the gradient diffusion
coefficient or the particle stress in flowing suspensions if the
microstructure is close to equilibrium (particle Pećlet number

<1, which is often verified in practice).4 In this case, the
physicochemical parameters may change continuously in space
and time because of variations of the colloid and ion
concentrations (including the pH). Multiscale simulation
codes intended to compute colloidal flows should therefore
either be able to evaluate millions of values of the pressure on
the fly or have access to these values in precomputed lookup
tables. In both cases, a large number of osmotic pressure or
compressibility values have to be computed for a broad range of
physicochemical parameters as fast as possible and in a robust
manner and, in particular, without human intervention.
In this work, we discuss the determination of such a model of

EOS for a suspension of charged hard spheres in a liquid
containing both salt ions and the counterions of the colloids.
Accurate models do exist to compute the EOS of such
suspensions. Unfortunately, they suffer from two major
drawbacks in the context mentioned above. First, they may
be prohibitively computational-time-consuming, like primitive



model molecular dynamics or Monte Carlo simulations,
because they require a few hours to obtain one pressure
value. Second, they may be fast but unreasonably human-time-
consuming, like some spectral solvers of integral equation
schemes requiring the tweaking of a few numerical parameters
to achieve and accelerate convergence. This lack of robustness
is also incompatible with any kind of on-the-fly calculation in a
multiscale solver.
Models that are simple and fast already exist, with various

associated precisions, computational times, and robustnesses.
The cell model (CM) is able to produce accurate predictions of
the osmotic pressure in “effectively concentrated” dispersions,
i.e., suspensions in which the mean intercolloid distance is
smaller than a few times the interaction range.5,6 The cell
model is relatively simple to implement, always converges, and
accounts for nonlinear effects in strongly charged suspensions.
It is therefore often very attractive, but by construction, it
accounts only for the ion contribution to the pressure, which
indeed dominates in effectively concentrated suspensions,7 and
it ignores the direct colloid−colloid interactions essential in
dilute suspensions. For uncharged spheres, the Carnahan−
Starling (CS) expression is very accurate up to volume fractions
ϕ of about 0.5. Between these two extremes, predicting the
thermodynamics of charged sphere suspensions requires a
knowledge of an effective pair potential of interaction u. The
effective parameters entering this potential can be computed
from the real screening length and surface charge (obtained by
titration, for instance) with various methods, a procedure
termed renormalization. Several of these renormalization
methods are based on the cell model solution.8−10 If this
route is chosen, calculating an equation of state without fitting
experimental data inevitably starts with a CM resolution to
determine u. Thermodynamics can then be predicted with
perturbation methods or through a calculation of the
suspension structure with statistical theories. This second step
adds computational time to the equation of state calculation
and, sometimes, significant numerical instability, depending on
the method.
To avoid these additional constraints, some authors have

made the choice of building an approximate equation of state
by simply adding the Carnahan−Starling pressure to the cell
model pressure.4,11,12 The motivation stems from the
observation that the ion-induced CM pressure is much larger
than the CS pressure at high effective volume fraction and that
the CS pressure dominates the electrostatic contribution for
vanishingly small surface charges. This simple model, termed
CSCM here, is fast, unconditionally stable, and accurate within
these two limits by construction. It completely avoids the
computational overhead and instability introduced by the
effective potential-based methods mentioned above. Although
it was satisfactory in the contexts where it was used, to have any
general reach, it needs to remain acceptable in other regions of
the parameter space. The aims of this article are to determine
the extent to which this is the case and to propose alternative
schemes when necessary.
The different models involved in this work are presented in

section 2. Their predictions are compared to experimental and
Monte Carlo data in section 3 and show in particular that the
renormalized integral equation scheme considered as a
reference is actually an accurate and predictive tool. The
performances of the simple CSCM are discussed in section 4 by
means of a systematic comparison with reference data
throughout the parameter space. Finally, alternative methods

are compared to this model in terms of precision, cost, and ease
of use. Note that a list of abbreviations is provided in the
Abbreviations section if needed.

2. MODELS

For future use, let us recall that the osmotic pressure of a
suspension of charged hard spheres can be decomposed into Π

= ρkT + ΠC + ΠE
col + ΠE

ions,where ρ is the colloid density, k is the
Boltzmann constant, T is the temperature, ΠC is the
contribution of colloid−colloid contacts, ΠE

col is the contribu-
tion of direct colloid−colloid electrostatic interactions, and
ΠE

ions is the contribution of the small ions. Because ΠE
ions is

induced by electrostatics, the total electrostatic contribution to
the pressure is ΠE ≡ ΠE

col + ΠE
ions.

The equation of state of uncharged hard spheres is very well
modeled by the Carnahan−Starling expression ΠCS = ρkT(1 +
ϕ + ϕ2

− ϕ3)/(1 − ϕ)3 up to volume fractions ϕ of about 0.5.
On the other hand, strongly charged, interacting spheres
arrange themselves on a solid-like structure, which permits the
use of the cell model:13 the suspension is split into identical,
electroneutral, usually spherical cells, each containing one
colloid of radius a. Conserving the global volume fraction
defines the cell radius R = aϕ−1/3. The osmotic pressure of the
suspension is related to the total ion density at the boundary of
the cell n(R) by ΠCM = 2n(R)kT − 2nreskT. Here, 2nres is the
ion density in an ion reservoir assumed to be in equilibrium
with the suspension. n(R) can be obtained from a Monte Carlo
simulation in the primitive model or from a 1D resolution of
the Poisson−Boltzmann equation valid at low electrostatic
coupling. In the latter case, the resulting 1D spherically
symmetric problem can be solved numerically in a fast,
accurate, and robust manner even for nonlinear electrostatics.
More details on the construction of the cell model can be found
in refs 9 and 13−15. The drawback of this model is that it takes
only the osmotic pressure contribution of the ions, ΠE

ions, into
account and not the contribution ΠE

col from the colloids
themselves. It produces a good estimate of the full electrostatic
contribution ΠE only when the former largely dominates the
latter. This is the case when the interaction range is large
compared to the intercolloid distance, which is sometimes
called the “electrostatically concentrated” regime.5−7,16

The equation of state of colloidal suspensions is often
required for volume fractions varying by orders of magnitude.
These suspensions can then be in either the electrostatically
dilute or the electrostatically concentrated regimes. For the
reasons mentioned in the Introduction, this led some
authors4,11,12 to use the simple approximation Π ≃ ΠCSCM ≡

ΠCS + ΠCM, termed CSCM here. To some extent, it can be seen
as a cell model approximation patched for colloid−colloid
correlations by adding, in a crude way, ΠCS instead of the true
contribution ρkT + ΠC + ΠE

col. For low colloidal charges Ze, ΠE

and ΠCM (scaling as Z2) are much smaller than ΠC so that the
CSCM reduces to ΠCS and remains accurate. In the
electrostatically concentrated limit, ΠE

ions is much larger than
every other contribution, so the CSCM pressure reduces to the
accurate cell model prediction. However, to be of any practical
use, the CSCM has to remain acceptable between these two
limits. The aim of this work is to determine if this is the case.
To this end, the colloidal osmotic pressures given by the

simple CSCM will be compared to predictions of alternative
methods. In this work, the latter are all based on a one-
component model (OCM) of the suspension: the small ions
are not considered explicitly, but their effect is accounted for



implicitly through the definition of an effective potential of
interaction between the colloids. The effective pair potential
considered here is of the hard-sphere Yukawa type,

β =
≥

∞ <

κ−⎧

⎨
⎪

⎩
⎪

u r
Q l

r
r a

r a

( )

e
, 2

, 2

r
2
B

eff

(1)

where β = 1/kT and lB = e2/4πϵkT is the Bjerrum length. Q and
κeff are the effective point charge and the effective screening
length determined following the extrapolated point charge
(EPC) renormalization method.10 This scheme involves a
preliminary resolution of the cell model. Then the effective

screening length is defined as κ κ ψ= cosheff D
, where

κ π= l n8 B res is the inverse screening length in the ion

reservoir and ψD is the dimensionless electric potential at the
cell boundary. In the EPC, the real system of spheres is
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Solving the Ornstein−Zernike (OZ) equation with the
effective pair potential (eq 1) yields the microstructure of the
colloids, from which the pressure POCM can be computed, for
example, with the virial equation
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ρ
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The pressure P of the true multicomponent system involves
an additional ion contribution stemming from the so-called
volume term in the free energy arising from the mapping of the
multicomponent system to the one-component equivalent
system.17−19 The osmotic pressure Π ≡ P − 2nreskT of the true
multicomponent system is then10
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The last contribution in eq 4 is important only when the
screening length is significantly renormalized, which happens at
a large effective volume fraction and surface charge.
From this point, the different models considered in this work

diverge in the way POCM is calculated in eq 4. The Rogers−
Young (RY) closure20 of the OZ equation is renowned for its
accuracy concerning hard-sphere Yukawa systems. This scheme
is an interpolation between the hypernetted chain and Percus−
Yevick closures, with the interpolation coefficient being
determined in such a way as to ensure that the isothermal
compressibilities computed with the virial equation and with
the compressibility equation are identical. This is known to
yield very accurate results for charged hard spheres but involves
significant computational time to determine the interpolation
coefficient.21,22

The rescaled mean-spherical approximation23 (RMSA) is
much faster because it does not involve an iterative spectral
solver such as the Rogers−Young scheme. It is based on the
semianalytical MSA solution of the OZ equation with potential
(eq 1). We use the MSA solution of Hayter and Penfold.24 It
still requires the iterative determination of a rescaling parameter
and some calls to an FFT algorithm to switch from structure
factor S(q) to g(r), which constitutes the main computational

effort of the method. Extensions of the RMSA scheme have
been proposed to correct for the overlap between the ion
background and the colloid core if necessary,21,25 but here,
because of the use of the extrapolated point charge
renormalization, ions can, by construction of the effective
potential, occupy the space inside colloids, so we consider only
the unmodified RMSA scheme.
Finally, the pressure POCM will also be computed with a

perturbation method. The excess free energy of the system Fexc
obeys the Gibbs−Bogoliubov inequality26
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where Fexc* is the excess free energy of a reference system in
which colloids interact through the arbitrary potential u* and
⟨...⟩* is the thermodynamic average in this system. If u* has a
free parameter, then minimizing the right-hand side of eq 5
with respect to this parameter makes it the best estimate of Fexc.
Here we consider a reference system of (uncharged) hard
spheres with the diameter d* used as a free parameter so that
eq 5 gives an estimate of the excess free energy per colloid as
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where g* is the radial distribution function of a suspension of
hard spheres with diameter d* and βu is given by eq 1. The
analytical expression for g* used here was developed in ref 27
and is too long to be reported. However, it is available in the
program in Supporting Information. The OCM pressure is then
ρkT + ρ2(∂fexc/∂ρ) at fixed N, T, and effective potential. The
integral in eq 6 is easily evaluated, and the minimization can be
performed with standard packages. Hence, this method is quite
simple to implement and is even faster than the RMSA scheme.
Attractive forces, such as van der Waals forces, may exist

between colloids at short distance. They are not considered in
the models described in this section. In experimental systems,
this is justified if the long-range repulsions are strong enough to
prevent colloids from coming too close to contact. It will be
shown to be the case for the data considered in this work.

3. COMPARISON WITH REFERENCE DATA

The predictions of the models discussed in the previous section
are compared to two sets of results available in the literature:
experimental measurements on silica spheres and numerical
data obtained with Monte Carlo simulations.
Many osmotic compression experiments have been con-

ducted on Ludox HS40 silica spheres. In Figure 1, we report the
osmotic pressure values measured by Goehring et al.12 and Li et
al.,28 with the latter authors correcting the values obtained
earlier by Chang et al.29 and Persello et al.2 These data are
particularly interesting because they cover a range of regimes
from electrostatically dilute to concentrated, they correspond to
highly charged particles so that charge renormalization is
necessary, and the volume term plays an important role but
they are still within the weak coupling limit where the
(nonlinear) Poisson−Boltzmann theory is fully valid.
A first noteworthy feature of Figure 1 is the excellent

agreement between the RY predictions and the experimental



data obtained without any fitting parameter. Colloid size a = 8
nm was measured by small-angle X-ray scattering, and the bare
surface charge density σ′ = 0.5 e/nm2 was determined from
titration at the pH of the experiments.12,30 Note that the precise
value of this bare charge does not affect the equations of state
significantly because in this high-charge regime the effective
surface charge reaches a plateau value almost independent of
the bare charge.8 To obtain agreement such as that in Figure 1
over this wide range of physicochemical conditions, every
ingredient introduced in the previous section is necessary: the
renormalization at high charge and the volume term when
renormalization is significant. Figure 1 proves, in particular, that
the hard-sphere Yukawa (HSY) potential is perfectly suited to
these colloids and physicochemical conditions and that the van
der Waals interactions can safely be ignored. As an examination
of the radial distribution function reveals, colloids never enter
into contact even at the highest salt content investigated (0.05
M).
The CSCM osmotic pressure predictions are reported as

dashed lines in Figure 1. For most parameters, this model
performs quite satisfactorily. The only significant discrepancy is
encountered for the highest salt concentration and is most
dramatic for intermediate volume fractions. This is a parameter
domain in which colloid−colloid correlations are indeed
expected to play an important role. More details will be
provided in section 4.
The experimental system presented above corresponds to a

case with added salt. The parameter κa ranges between 0.6 and
6 here. The behavior of suspensions with κa > 6 will be similar
to the κa = 6 case: the structure of the suspension is liquid-like
and can be modeled with DLVO-like theories. It is interesting
to explore the other limit of the interaction range parameter, κa
→ 0, corresponding to suspensions without added salt. In this
case, the interaction range is infinite, so a solid-like structure is
quite probable and the CSCM should be very precise. However,
this is a stringent test for theories based on a renormalized pair
potential because renormalization is expected to work, by
construction, only for particles separated by a distance larger
than O(κ−1).8

As a reference set of data, we consider the primitive model
Monte Carlo simulations of Linse31 reproduced in Figure 2.

Because our calculations are carried out in the μVT ensemble,
we set a reservoir ion concentration such that κa = 10−3. This is
sufficiently low to reach the salt-free limit and ensure results
independent of κa. Both the RY-EPC theory and the CSCM
reproduce the simulation data quite well. The agreement is
especially good for the four upper curves in Figure 2 but less so
for the two lower curves. This was to be expected from the
coupling parameter values, which indicate that the lowest two
curves are in the moderate to high coupling regime, out of
reach of the mean-field Poisson−Boltzmann theory underlying
every model employed in this work.
Considering the aforementioned reserve about the use of

renormalization methods in electrostatically dense suspensions,
the RY-EPC scheme is very accurate in this salt-free test. This is
made possible by correctly accounting for the volume term,
which contributes approximately half the osmotic pressure
value in the calculations reported in Figure 2. A similar
evaluation of the RY-EPC approach has been conducted by
Boon et al. on a different set of Monte Carlo simulation data10

and also shows its good prediction capabilities.
As expected in the salt-free limit, the simple CSCM yields

data in excellent agreement with Monte Carlo simulations,
actually better than the RY theory.
The most important conclusion of this section is that the RY

scheme used with a hard-sphere Yukawa potential renormalized
with the extrapolated point charge method simulates charge-
stabilized hard-sphere suspensions very precisely without any
fitting parameter and whatever the physicochemical conditions.
This was shown in the weak coupling limit (Ξ < 1) for dilute
and concentrated systems (ϕ ∈ [10−3, 0.4]), short- and long-
range interactions (κa ∈ ]0, 6]), and low and high surface
charges (ZlB/a ∈ [1, 35]). In addition, the simple CSCM is
very accurate in the salt-free limit as expected. In suspensions
with added salt, it was able to give satisfactory predictions for a
wide range of parameters, but it was inefficient at intermediate
volume fractions when the screening length was moderate. This
issue is studied in more detail in section 4 through a systematic
comparison of RY-EPC and CSCM results throughout the
parameter space. Note that the RY-EPC has been chosen as a
reference method to evaluate the CSCM because the Rogers−
Young closure is known for its good accuracy and because the

Figure 1. Osmotic pressure of Ludox HS40 suspensions dialyzed
against osmolyte solutions with various ionic strengths I: from top to
bottom, I = 0.5, 5, 10, and 50 mM. Symbols: measurements by
osmotic compression2,12,28,29 as reported in refs 12 and 28. Solid lines:
RY-EPC theory. Dashed lines: CSCM.

Figure 2. Osmotic pressure of charge-stabilized spheres without added
salt. Symbols: primitive model Monte Carlo simulations.31 Solid line:
RY-EPC theory. Dashed line: CSCM. In both models, lB = 7.312 ×

10−10 m and Z = 40. The coupling parameter, Ξ = 2πz3σ′lB
2/e (where

z is the valency of an ion), is from top to bottom 0.00986, 0.0396,
0.158, 0.633, 2.532, and 10.24.



EPC renormalization proved to be very precise in salty
suspensions and quite precise even in electrostatically
concentrated suspensions. It is important to keep in mind,
however, that the CSCM was better than the RY-EPC by a few
percent in the salt-free case of Figure 2. Therefore, a few
percent difference between the two methods should not be
automatically associated with an error in the CSCM in the
comparisons presented hereafter.

4. DISCUSSION

The results reported in section 3 reveal a loss of quality of the
CSCM in suspensions with added salt, indicating an effect of
the interaction range. In the following text, we consider systems
with long-range (κa = 0.5) and short-range (κa = 2)
interactions. The volume fraction and the surface charge are
varied systematically for both types of systems. The volume

fraction ranges between 10−3 and 0.4. The average interparticle
distance κd = 2κa(ϕ−1/3

− 1) is thus between 0.36, an
effectively concentrated regime with strongly overlapping
electrical double layers, and 36, an effectively dilute regime
with double layers very small compared to the interparticle
distance. The dimensionless charge ZlB/a is also varied
continuously between 0.05 and 32 in order to sample both
low-charge regimes, in which renormalization is not necessary,
and high-charge regimes, in which it plays a central role. (The
dimensionless charge σ = (ZlB/a)/κa ranges between 0.1 and
16.)
Data are represented in phase-diagram-like maps (Figures 3

and 4), with the axes being the volume fraction ϕ and a
temperature scaled by the interaction strength (ZlB/a)

−1. The
solid phase is found below the thick black line (region III)
computed with the Hansen−Verlet criterion, Smax = 2.85.

Figure 3. Comparison of different quantities involved in the equation of state calculation for κa = 2. (See the caption of each panel for the precise
definition of the quantity evaluated.) In all of these maps, the osmotic pressure denoted Π and its components denoted ΠE and ΠC are computed
with the RY-EPC theory, and the osmotic pressure ΠCSCM and its components denoted ΠCM and ΠCS are computed with the CSCM.



Although sufficient for the present discussion, this is a
qualitative boundary because the value of Smax at freezing
actually varies slightly with the type of interactions, from 2.85
for hard spheres up to 3.3 for pure Yukawa systems with long-
range interactions. (See, for example, Heinen et al.21 and
references therein.)
The CSCM and RY-EPC osmotic pressure predictions are

compared in Figure 3a for κa = 2 and in Figure 4a for κa = 0.5.
Overall, the accuracy of the CSCM is quite good for the broad
range of parameters investigated. The maximum error is about
30−40% and is found for intermediate volume fractions and
high surface charges (region I), in line with the observations of
section 3. In all of the other regions (II, III, and IV), the CSCM
predicts osmotic pressures within 10% of the actual values. This
can be explained in the following way.

In the very low charge regime and whatever the volume
fraction value (zone II in Figures 3a and 4a), the total osmotic
pressure Π is dominated by its contact contribution ΠC as
shown in Figures 3b and 4b. Because electrostatic effects are
weak in this regime, the contact pressure is well approximated
by the Carnahan−Starling equation of state, as proven in
Figures 3d and 4d: in the parameter region where ΠC is at least
70% of Π, the Carnahan−Starling expression matches ΠC

within 10%. Note that systems benefiting from good modeling
in region II must have very low van der Waals interactions even
at contact. They are essentially systems with purposely matched
optical indexes.
In the very dilute regime, here ϕ < 1−2%, for short-range

interactions and whatever the surface charge (left of zones I and
II in Figure 3a), the suspension once again behaves mostly as a
liquid of hard spheres and the CSCM performs well for the

Figure 4. Comparison of different quantities involved in the equation of state calculation for κa = 0.5. (See the caption of each panel for the precise
definition of the quantity evaluated.) In all of these maps, the osmotic pressure denoted Π and its components denoted ΠE and ΠC are computed
with the RY-EPC theory, and the osmotic pressure ΠCSCM and its components denoted ΠCM and ΠCS are computed with the CSCM.



same reasons as before. Here a model of equivalent hard
spheres with a radius increased by one Debye length would be
appropriate.
In the solid phase (high charge and volume fraction; region

III in Figures 3a and 4a), the suspension is jammed by
electrostatic interactions in a Wigner glass or crystal. The
electrostatic contribution to the pressure is high, but the
contact contribution vanishes (Figures 3b and 4b). The
electrostatic contribution is well approximated by the cell
model, as expected by construction and as shown in Figures 3c
and 4c. In a previous work, we have shown that the cell model
pressure is a good approximation of ΠE for mean intercolloid
half distances κa(ϕ−1/3

− 1) smaller than a value between 1.5
for low charges and 3.2 in the effective charge saturation regime
(Figure 4 in ref 6). Applied to the present data, this criterion is
consistent with the 40% error isocontour in Figures 3c and 4c.
It also corresponds fairly well to the boundaries between
regions I and IV, and I and III in Figure 3a and between regions
I and IV in Figure 4a.
The general idea found in the literature that the cell model is

efficient in solid-like suspensions corresponds well to the phase
diagrams computed here. The CSCM can, however, also be
precise in liquid-like suspensions provided the interaction range
is large compared to the intercolloid distance. The CSCM
performs very well in liquid regions IV and II at high volume

fraction and moderate charge. In this case, electrostatic
interactions are not strong enough to trap colloids in a solid-
like structure, but the interaction range is comparable to or
larger than the mean intercolloid distance so the electrostatic
potential can be high between colloids. As a consequence, the
average concentration of counterions is high and their
contribution to ΠE, which is precisely what the CM evaluates,
is expected to dominate the direct colloid−colloid contribution
ΠE

col. The latter is, however, not vanishingly small, and the true
electrostatic contribution ΠE is thus slightly underestimated.
Meanwhile, an examination of the radial distribution function in
this same region reveals a significant contact value at moderate
and low charge, although not as high as what would be
expected in the pure hard-sphere case. Hence, using ΠCS

instead of the true contact contribution ρkT4ϕg(2a) is fairly
relevant but tends to overestimate the actual contact
contribution ΠC. The two errors in ΠE and ΠC therefore
tend to cancel each other out so that the pressures obtained
with the CSCM are actually precise for any surface charge at
high volume fraction. This is one of the main results of this
work.
The domain in the parameter space where the CSCM is less

accurate corresponds to intermediate volume fractions and high
surface charges (region I in Figures 3a and 4a). In this region,
electrostatic effects are important because of the high charge,

Figure 5. Relative difference between osmotic pressure predictions from perturbation theory Πperturb and from RY-EPC theory Π: |Π − Πperturb|/Π.

Figure 6. Relative difference between osmotic pressure predictions from RMSA-EPC theory ΠRMSA and from RY-EPC theory Π: |Π−ΠRMSA|/Π.



and the interaction range is smaller than the mean intercolloid
distance. The ion contribution to the pressure is thus small
compared to the direct colloid−colloid contribution, so the CM
pressure is irrelevant. In the CSCM, the Carnahan−Starling
contribution involves colloid−colloid correlations but erro-
neous ones because it ignores electrostatics. In particular, the
CS modeling implies a nonzero radial distribution function at
contact while the high surface charge imposes a vanishing value.
Hence, the CSCM is definitely not suitable for such
suspensions. They have to be modeled in a better way.
To sum up this systematic evaluation of the CSCM, we can

state that (i) it works well for systems with long-range
interactions, whatever the volume fraction and surface charge,
because the electrostatic contribution to the osmotic pressure is
dominant, comes from the ions, and is thus well approximated
by the cell model part of the CSCM, (ii) it works for weak
charges if van der Waals interactions can be ignored thanks to
the dominant contribution of contacts to the osmotic pressure
and the good approximation of the latter by the Carnahan−
Starling part of the CSCM, and (iii) it is not very efficient in the
electrostatically dilute but electrostatically dominated regime
that is encountered for high surface charges and interaction
ranges smaller than the average interparticle distance. In this
case, other methods should be preferred.
The equations of state reported in Figure 1 were also

computed with the perturbation method and the RMSA theory
presented in section 2 (they are not represented for the sake of
clarity). They could both reproduce all of the RY results almost
perfectly, with deviations of at most one line width. They were
therefore clearly superior to the CSCM for this system in terms
of precision. However, the convergence of the RMSA scheme
was difficult to obtain for the highest salt content. The
performances of these two methods were also investigated in
the phase-diagram-like maps used for the CSCM. They produce
very good results for the full range of parameters investigated,
as shown in Figures 5 and 6. The maximum error never exceeds
10% and is often below a few percent. Once again, the
convergence of the RMSA scheme was difficult to obtain for
the highest charge with short-range interactions.
These two methods, besides being accurate, are quite fast.

Our implementations of the perturbation and RMSA and RY
schemes converged in about 0.2, 1.1, and 29 s, respectively, on a
standard laptop. Note that the codes were not overly optimized.
These values were obtained with fine grids so that the same
grids could be used for every surface charge, volume fraction,
and salt content. The comparison of computational times is
thus qualitative. The important point is that the renormaliza-
tion step preceding these computations to determine the
effective potential involves a cell model resolution, the
convergence of which requires about 3 s. Hence, whereas the
Rogers−Young scheme involves a significant overhead, the
perturbation method gives a nice pressure estimation virtually
for free and the RMSA calculation requires only a modest
additional effort.
To conclude, the perturbation method and the RMSA

scheme are reasonably easy to implement, and their stability
does not depend too much on numerical details. The bounds
provided for the hard sphere diameter d* in the minimization
procedure involved in the perturbation theory (section 2) and
the initial value of the rescaling parameter in the RMSA may
still have to be modified to ease the convergence under some
specific physicochemical conditions.T
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A summary of the characteristics of the models investigated
in this work is provided in Table 1.

5. CONCLUSIONS

The ways to compute the equation of state of a suspension of
charged hard spheres in a fast and robust manner were
investigated, with particular focus on the CSCM model. This
approximation resulting from the simple addition of the
Carnahan−Starling (CS) and the cell model (CM) pressure
estimations was compared to experimental and Monte Carlo
data and to the solution of the Ornstein−Zernike equation with
an extrapolated point charge renormalization method applied
to a hard-sphere Yukawa potential (RY-EPC scheme).
It was first shown that the RY-EPC scheme could predict

osmotic pressures perfectly well without any fitting parameter
for silica suspensions in equilibrium with a salt reservoir. Good
agreement was also obtained with the results of primitive model
Monte Carlo simulations of a salt-free system. The CSCM
performed very well by construction in the salt-free system,
actually better than the RY-EPC scheme. Comparisons with
RY-EPC data throughout the parameter space revealed that the
CSCM was satisfactory in concentrated suspensions even for
moderate surface charges, thus extending the possibilities of the
cell model toward the liquid phase. This is due to an error
cancellation between a slightly underestimated electrostatic
contribution to the pressure and a slightly overestimated
contact contribution to the pressure occurring when the mean
intercolloid distance is smaller than a few times the screening
length. However, the CSCM is not satisfactory in dilute systems
dominated by electrostatic interactions when the radial
distribution function at contact vanishes.
Under the last mentioned conditions, perturbation methods

and the RMSA scheme (also based on the effective potential
determined with the extrapolated point-charge method) can
actually produce good results, with a limited loss of robustness
and only a small computational overhead compared to the
CSCM because the cell model has to be solved anyway to
determine the effective potential of interaction. To compute a
large number of equations of state of charged hard spheres for
arbitrary physicochemical conditions and if robustness is
actually an issue, we would thus recommend first solving the
cell model to determine this potential and then attempting a
pressure prediction with a perturbation method or the RMSA
and using the CSCM approximation as a fallback plan if this
computation fails. For applications in which the interaction
range can be anticipated to be larger than the mean colloidal
distance, the CSCM is sufficient, being easy to implement, fast,
and perfectly robust for any surface charge. This is of interest in
rheological studies, flow calculations of concentrated suspen-
sions, screening tests of new formulations, or the real-time
interpretation of osmotic compression data, for example.
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ABBREVIATIONS

EOS equation of state
CM cell model
CSCM Carnahan−Starling cell model
EPC extrapolated point charge
OZ Ornstein−Zernike
RY Rogers−Young
MSA mean spherical approximation
RMSA rescaled MSA
FFT fast Fourier transform
OCM one-component model
HSY hard-sphere Yukawa
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