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Abstract ":-.L; ;%

This paper presents the rst 3D reconstruction system S
using unsynchronized and helmet-held consumer cameras.
without the use of a calibration pattern. Our assumptions
are easy to meet in practice: the cameras have the sam
setting (frequency, image resolution, eld-of-view, roughly
equiangular). First, the time offsets between cameras are
estimated without accurate calibration as input. Second,
both inter-camera rotations and intrinsic parameters are re-
ned using structure-from-motion and bundle adjustment.
We experiment both synchronization and self-calibration on
four GoPro cameras mounted on a helmet, such that the re-
sulting multi-camera is assumed to be central and provides 1 1. Assumptions about the Cameras
a 360 degree eld-of-view in the horizontal plane. A sur-

face is also estimated from a multi-camera video acquired ~ T1he user starts all videos at once by a single click on a
by walking in a city. wi remote. However this synchronization is too inaccu-

rate for applications like immersive video and our 3D scene
modeling. Furthermore, we assume that the cameras are
roughly equiangular with an approximately known eld-of-
] view and orientation (rotations) in the multi-camera coor-
1. Introduction dinate system. In our context, this knowledge is easy to
obtain since the cameras are the same and mounted such
The automatic 3D modeling of a scene from an image that a 360 video 1, 2] can be generated by stitchingt
sequence is a well studied topic. Today most available soft-cameras that are symmetrically mounted around a symme-
wares reconstruct objects or “small” parts of environments try axis. In practice we use the same four cameras that are
due to the small eld-of-view of the camera, unless aerial enclosed in a cardboard box as shown in EigThis can be
images are taken at well selected viewpoirggy(thanks seen as a DIY version of the Ladybug] pulti-camera, but
to UAV). Flexible and helmet-held systems to reconstruct the price of our multi-camera is one magnitude smaller than
complete (even immersive) environments from ground im- that of the Ladybug. The camera con guration is chosen
agery are still lacking. In this paper, we propose to mount such that the distance between optical centers is as short as
several consumer cameras on a helmet; the user then movgsossible (we do a central approximation). A greater number
at a low speed (walking) in an environment and takes the of cameras can be use{] fo increase the common eld-of-
videos; lastly a surface approximating the viewed scene isview of adjacent cameras and then to make easier image
reconstructed based on assumptions about the cameras thatatching and blending between two adjacent cameras (this
are easy to be meet. The reconstruction stage includes synis useful for video stitching). However both the price and
chronization and self-calibration of the multi-camera (the distance increase. In our case, the common eld-of-view is
main topics of the paper), as well as structure-from-motion too small for us to automatically obtain a decent matching
and surface reconstruction from a cloud of 3D points esti- using available tools (we tried Hugis]} VideoStitch ]
mated from the images. and VisualSFM §]).

Figure 1. Top: four GoPro Hero3 cameras enclosed in a cardboard
box. Bottom: resulting images of our DIY multi-camera.



2. Previous Work space to the ray space. The re nement of intrinsic parame-
ters is left as future work ing, 23].
Work [17] suggests that time offset and spatial transfor-

There is an automatic method to estimate the intrin- mations €.g rotations) between multiple sensors can be
sic parameters of a single camera through structure-from-jointly estimated using a continuous state representation.
motion (SfM): projective reconstruction from an image se- However there are only two sensors in experiments: a cali-
guence, auto-calibration and re nement using bundle ad- brated camera and IMU. Such a method would also estimate
justment [L4, 2¢] (BA). The radial distortion can also be the time offset with sub-frame accuracy.
included in intrinsic parameters that are estimateq P1].

A more detailed overview about uncalibrated SfM and auto- 3. Contributions
calibration is outside the scope of this paper.

2.1. Initializing the Intrinsic Parameters

3.1. Initializations

2.2. Time Offset Estimation First we do not intend to compete with the accuracy of
the initialization methods for intrinsic parameters (S&@)
and inter-camera rotations (Sex3). In this paper, SfM is
started using calibration initialized by approximate values.
We think that this is useful to experiment our contribution
(synchronization and BA) with respect to inaccurate input.
Here we describe two cases: single camera and multi-
camera. Since our cameras are roughly equiangular and we

In [24], transformations are estimated between consec-
utive frames of every video instead of trying to match dif-
ferent videos. The estimated offset is then that which best
“compares” the transformations between two videos. One
example in P4] is the translation magnitude that is es-
timated from tracked features. Intuitively, the larger the

translation in one video, the larger the translation in the X ) _ e
have approximate knowledge of their eld-of-view, their in-

other. The comparison is done using cross-correlation. insi ‘ includi dial distorti
Such approaches are frame-accurate (the offset is an inte; 151G Parameters (including radial distortion) are approx-

ger) and need neither common eld-of-view nor matching imately knpwn. Standard SfM is then applied for every

between different cameras. This is interesting in our Casecamlera(l;smg tEeSt_e paraﬁmeters and aglOb‘Zl BAdre_nes the
where matching is dif cult between cameras. A survey of Lesu t nce the time offsets are gsn_ma_te and since we
methods for video synchronization can be found ig][ ave approximate knowledge ofthe Intrinsic parameters {and
but these require inter-camera matching or common eld- relative/inter-camera rotations, an approximate calibration

of-view or are designed for non jointly moving cameras. of th_e multi-camera is known. We then apply SfM for the
multi-camera and a global BA re nes the result.

2.3. Initializing the Inter-Camera Rotations 3.2. Synchronization

Onzce a 35) ;ecqnstrufcf:tlon IS obktalned for everﬁ/ Camera  gecond we estimate the time offset using a method that is
(Sec.2.1) and the time offsets are known (S€c2), the re- less heuristic than the translation-based method (Sé&k.

constructions are registered in the same coordinate frameLet R be the rotation at frame estimated by monocular

In [8], a similarity trans_formati_on is robu_stly estimated be- SfM for a camera (Se€.1). The instantaneous angular ve-
tween two reconstructions using a 3-point RANSAC algo- locity is the angle in{0; ] of rotation R 'R.;. This an-

rithm gnd ima@,le matching for 3D points in different recon- gle is the same for all cameras at the same time. Indeed,
;truptlons. In.IL ], the relative pose between two cameras R !R.1 does not change if we replage by RR andR .1
is directly estimated from the pose sequences of their oy, pp - \vhereRis the (constant) relative rotation between
r_econstructlo_ns (if thg camera motion is not a pure transla-tWO cameras. Then we compute the table of angles for ev-
fuon). Averaging rotathne(.g [9) can also be used if therg ery camera and nd the time offset that maximizes the cor-
is a non constant relative pose between two reconstructionsajation (ZNCC) between two such tables (try to match two
due to the drift of reconstruction(s). sub-tables with the same length in different tables).

Forn > 2 cameras, we rst estimate the best offset for
every pair of adjacent cameras. Since the camera adjacen-

A BA is introduced in [L7] to re ne the relative poses cies can form loops (they do in our setup) and the offsets
between the cameras. The successive poses of the multiare estimated independently, the sum of offsets along a loop
camera and 3D points are also re ned by minimizing a re- can be non-zero although it should be zero. In this case,
projection error. But the intrinsic parameters are not re ned we also try offsets around the best one (their difference is
and the reprojection error is in the undistorted space of thein f  k; 2, 1;1;2; + kg, wherek =1 is enough
classical polynomial distortion modetf]. The BA in [23] in our experiments). The nal offsets are those whose sum
deals with points at in nity, uses ray directions as observa- along loop is zero and that maximize the sum of ZNCC.
tions, and transfers the uncertainty from the measure image We expect this calculation to have low ambiguity thanks

2.4. Re nements for Multi-Camera



to small head motions and since the cameras are helmetspace to the undistorted space is closed-form and depends

held. In experiment (Seé.2), both translation- and angle-

on radial distortion parameteks (tangential distortions are

based methods are compared. In the translation methodneglected). Letzq andz, be the distorted (original) and
the angle of a frame is replaced by the mean of translationundistorted (recti ed) coordinates of a pixel. Their normal-

moduli of feature tracks (Harris matched by ZNCC).

3.3. Bundle Adjustment

Third, we improve a BAT7] in two ways, which is based
on the classical polynomial distortion modél]. Our BA
also re nes intrinsic parameters (not only inter-camera ro-

tations and the other 3D parameters) and minimizes the re
projection error in the right space: the distorted space where

>

ized coordinategq andz, meetk z7 1 = z; 1
andK z; 1~ = 2z 1. Letrq = jjzqjj be the
normalized radial distance in the distorted image. The
link hetween distorted and undistorted coordinates, is

1+ inzl kira)zq. Lastly, the back-projected ray of pixel
z4 has directionz; 1 " in the camera frame. Note that
the distortion center is the principal point.

the image points are detected. Under the standard assump4.2. Equiangular Initialization

tion that the image noise due to point detection follows

zero-mean normalized identical and independent Gaussian

vectors, the result returned by BA is a Maximum Likeli-

hood Estimator (this assumption is not true in the undis-

torted space). Sed. details how to initialize the BA and
how to compute the non-closed form forward-projection of
the classical polynomial distortion model. In Sé&c3, we
experiment on the BA started from inaccuracies of intrin-

A camera is equiangular if anglebetween the principal
axis and the back-projected ray is proportional to the (non-
normalized) radial distancey in the distorted image. We
havery = jjzg  Zojj andtan = ry wherery = jjzyjj.

If the camera is equiangular, there is a constastich
that = crq and the pixels are sq’gardse(fx =fy=1)

sic parameters and inter-camera rotations. We also com-

pare our results to others that are estimated using a cali-
bration pattern, and compare results without and with inter-

camera matches (SeB.5) that are obtained using image
pre-recti cation and our calibration estimation.

3.4. Applications: 3D Modeling and 360 Video

Fourth, Sec5.4 shows a 3D model of an environment

(a part of a city) computed by a 3D reconstruction system

Thus = cfrg. Sincery = rq(L+ [, kird),
tan =tan(cfrg)=rqg+  kr3*t: (1)

i=1

Sincetan is not polynomial, Egl can not be exact. We use
Taylor approximation

177
+

o2+l —
t 315

tan +

3 25
| ERECI @)
i=0

that uses our synchronization and BA methods. The inputand identify coef cients between Edsand2. We obtain

multi-camera video is taken by four GoPro Hero3 camerascf = 1 usingty andk; = t; if i
mounted on a helmet. As far as we are aware, this is the rst
time such an experiment has been conducted. Lastly, thergutef

arejoint videos that show the surface and 360 videos.

4. Polynomial Distortion Model

First Sec.4.1 provides the equations of the classical
polynomial distortion model45], which is often used since
its closed-form back-projection is useful for SfM tasks and
epipolar geometry. Sed.2 then details how to obtain the
model parameters from a given eld-of-view and assuming
that the camera is equiangular. This is useful to initialize
BA. Last, Sec.4.3 details how to ef ciently compute the

forward-projection and its derivatives, which are not closed-

form. They are required by BA for minimizing errors in the
right image space (Se8.3).

4.1. Back-Projection

Let K be the intrinsic parameter matrix of a perspec-
tive camera. K has focal parametefs, andfy, principal
point zo and zero skew. The mapping from the distorted

0.

In practice, we initializey at the image center and com-
rq= for pixel z4 at the center of an image bor-
der where the half- eld-of-view is approximately known.
Note that the resulting eld-of-view is not exactly as desired
due to the Taylor approximation.

4.3. Forward Projection and its Derivatives

The forward projection and its derivatives are required
by the Levenberg-Marquardt routine involved in BA. The
computations from 3D to undistorted coordinates are not
detailed since they are standard. The mapping from undis-
torted to distorted coordinates is implicitly de ned by

0(Zd; Zu; Zosk) = 0 wherek = (fyx;fy;kijka;  kn)
and functiong : R"*® 7! R? meets
o(za;zuizosK) = (1+  kird')za 20) zu+ zo: (3)

i=1

In more detail, the implicit function Theorem implies that
locally we have &' continuous function such thatzg =
' (2ui20;K) if det 29 6 0.



First zq is estimated frone,, zo andk by non linear Method | 0p;1 | O1;2 | Op;3 | Ogyo | Li Lr
least-square minimizingg 7! jj 9(zq¢)jj2. In our BA con- Ago 15| -1 | 14 1 |-1] 3.8e-3
text, we would like to minimize reprojection errijpey  Zq4jj Aogor -15 | -1 14 1 |-1]|-21e-3
wherezy is an inlier point detected in an image. Thrsis Apat -15 | -1 14 1 -1 | -2.0e-3
known and close taq (in our experimentgjzy  Zgjj < 2 Ts 12| 0 12 0 0 0.10
pixels). We use an iterative method starting framto es- To 151 0 14 0O |-1| -1.45
timatezq. In practice, the Gauss-Newton method is accept- S -18 | -2 17 2 | -1] -0.46

able with no more than 5 iterations.
Second,@ should be estimated to Il the hessian in Table 1. Time offsets without loop constrainti (Lr, respec-

BA. We differentiate Eq3 with respect tdk; and obtain tively) is the sum of four integer (real, respectively) offsets.
@d _ @g> 1 @g 4 . . . .
oK~ (- @K 4 the video; then re nec (assuming that is constant in the

sequence) using a global BA; lastly, use SfM once again for
The derivatives oy with respect td;fy;zo andz, are all frames with the re ned and nat.
similar. The other derivatives (with respect to relative Euler  Let T; be the name of the translation method such that
angles/rotation, translation etc) are computed by the chainthe mean of translation moduli is computed in the complete

rule involving derivative%. frame of a camera. Lef, be a variant ofT; : the mean
) is computed in a small area including the common eld-
5. Experiments of-view with other cameras (most left and right columns
of images in Fig.1l). We expectT, to be better thai,
5.1. Input 9 g.1) pectis !

if the translation magnitude evolves similarly in different
The multi-camera is de ned by four GoPro Hero3 cam- cameras, especially in the common eld-of-view. We also

eras (Fig.1) with the same setting; they are numbered from try a sound-based synchronization metl®&dvhere sound

0 to 3. They are mounted on the helmet such that 0 (respec+eplaces angle/translation in the tables.

tively, 1,2 and 3) is pointing forward left, (respectively, for- There are four offsetsy.1, 01.2, 023, 03.0 between adja-

ward right, backward right, and backward left). The videos cent cameras that are computed by one of the six methods

are recorded while the user walks the streets of a city andabove. Lel. = 0g.1 + 01.2 + 02:3 + 03.0. Since we have a

under trees in a garden for a duration of 703s. The imagesoop of camera adjacencies (FiD, we should havé =0

are a little dark since the acquisition was done in the early by enforcing a loop constraint as in S8c2

morning to avoid cars and pedestrians. The camera gain In fact we distinguishLi, the sum of integer offsets

is not xed and evolves independently for every camera. o +1 , andLr the sum of real offsets;j +1 + ij+1. We

A high frame-rate (100 fps) is used to allow accurate syn- estimate sub-frame offsets like sub-pixelic disparity using a

chronization. The resolution of a GoProli2g80 960, but quadratic t[26]: rstapproximate the mapping from;; +1

the image sizes are reduced by 50% to accelerate all comto ZNCC using a quadratic polynomial de ned by its 3 val-

putations. Here we neglect rolling shutter and non-centralues ai;; +1 + f 1;0;+1g; theno;j +1 + i +1 Maximizes

effects. We also assume that the calibration (both intrinsic this polynomial. Note thaktr is not used by computations

and inter-camera rotations) does not change over time. in our paper, it is used as a con dence measure.

5.2. Synchronization )
5.2.2 Experiments
Several synchronization methods are experimented on

the rst 2000 frames of the four videos (a walk lasting 20s). The estimated offsets without and with loop constraint are
provided in Tabl and Tab.2, respectively. Note that an

offsetequalto 15between two cameras means that the dif-
ference between the starting dates of their videos is 0.15 s.
Let A be the name of the angle method based on standardrhis is non negligible. We see that the integer offsets com-
SfM (based on local BAZZ] and re ned by global BA) puted byA. do not depend on the attempted calibratopn
using calibratiort. The 9 parameters afaref,, f, zo and although the difference between two SfM results with dif-
ki wherel i 5. ferentc is not negligible €.g the SfM withc = 90 has a
If ¢ = pat, the cameras are accurately calibrated using a nal RMS which is 1.22 greater than that of the SfM with

planar calibration patternLf]. If ¢ = 90, cis equiangular ¢ = 90r; the latter has a number of 2D inliers 5% greater
and its eld-of-view is 90 degrees in the horizontal direction than that of the former). The better tleevalue, the bet-

of Fig. 1 (Sec.4.2). If c = 90r, every camera has the same ter (smaller) thgLr j in Tab.1. The better the value, the
process: rst apply SfM using = 90 on key-frames of  better (larger) the ZNCC score in Tah. In comparison,

5.2.1 Notations



Method | 0p.1 | 012 | 02:3 | 030 | ZNcey | Zncec, | Method [ d | RMS | #3Dpts| #2Dpts |
Ag | -15| -1 | 14 | 2 | 3.854 | 3.795 Bso.-» | 0.36] 0.511] 16376 | 76837
Agor | 15| -1 | 14 | 2 | 3.941 | 3.880 Boo:-2 || 0.34| 0.507 | 16365 | 76842
Apat -12 -61 1421 é 3-2‘11(1) g-igg Boor- » || 0.31] 0.498| 16346 | 76677
:||:fb -15 0 | 14 | 1 | 3319 3.221 Bt~ 2 0 | 0507] 16303 | 76430
S et T i 163 Boor - 246 || 0.32] 0.502 | 16347 | 76794

Boor— 210 || 0.34 | 0.504 | 16342 | 76397
Table 2. Time offsets with loop constrairZncc; is the greatest Boor,= 2414 || 0.39] 0.498| 16027 | 71192
sum of the four ZNCC of the four computed time offsefsicc, Boor = 2418 6.70 | 0.553| 11687 | 52750

is the second greatest ZNCC. We havé Zncc; 4.
Table 3. Results of multi-camera SfM followed by our BA us-
ing several initializations: angular-based distance (in degrees) be-
thejLr j and ZNCC scores of metho&s T; andT, are the tweenBcr andB 'Y ,, RMS for reprojection errors in pixels,
worst. The results 6f; andT, are not surprising since the numbers of reconstructed 3D points and 2D inlier points.
translation-based methods are essentially heuristic. Here is
one reason for the results of the sound-based me$iod ) )
some cameras, including our GoPro Hero3, provide poort_0 be the most accgratgsmcehtandki parameters are es-
Audio/Video synchronization (according to the user guide imated using a calibration pattern.

of [2]). A joint video (https://lyoutu.be/8bZM20g1pOU) Distanced is based on the angle between rays of the two
shows the videos without and with our synchronization. calibrations that have the same pixel. There are two reasons

for this. First the accuracy is only needed for the ray direc-
5.3. Multi-Camera Bundle Adjustment tions in our 3D modeling application, since these directions
are directly used by SfM. Second parameters can compen-
sate themselves if their estimations are biasegl the rota-
tion/principal point near-ambiguity for one viewl).

Since two estimated calibrations can have different
multi-camera coordinate systems, their sets of rays must be
. registered in the same coordinate system. The registration
5.3.1 Notations is de ned by rotationR, which maps one ray set to another
(no translation since the calibrations are central in our pa-
camera SfM using calibrationand inter-camera rotations pen). Ris robustly est'lmated by .RANSAC applied t(.) bairs
R, followed by our multi-camera BA. We dene 2 _Of matcrle(?orﬁys__lnldlﬁ;rgnz't cz;:llbratt)lo;]s, and_ bytmlmmlz-
£90; 90r; patg as in Sec5.2. Writing R = =2meansthat M9 e(OR) = = I N where both ray dﬂec'ﬁ
the inter-camera rotations between adjacent cameras are e;ndri have the same pixel. Our distancalis = e(R=N
actly the rotation with angle= 2 around thez-axis of the whereN is the number of (sampled) rays in a multi-camera

Thanks to Sec5.2, the four videos are frame-accurately
synchronized by skipping; frames at the beginning of the
i-thvideo & Si+1 = 0 +1 provided byAgo ). Now we
examine the BA result with respect to the initialization.

Let Bcr be the name of the following method: multi-

multi-camera coordinate frames. According to Figthis image. Note thatl is expressed in radiansdf 1.
approximates the true inter-camera rotations of our setup.

We also try otheR that are perturbations 6{ = =2 for 5.3.3 Experiments

exampleR = =2 + 6 means that we multiply every inter-

camera rotation by a 6 degree rotation with random axis.  Tab. 3 provides results for several initial calibrations. In
The multi-camera BA irB.r re nes all inter-camera  all cases, SfM generates the same set of matched interest

rotations (4*3 relative Euler angles), all intrinsic parameters points and the same number of key-frames. We obtain 41

c (4*(4+5) parameters fdfandk; ), all 3D points and multi- key-frames by SfM running on the rst 2000 frames.

camera poses in world coordinates. Thus both inter-camera We rst examine the inter-camera rotation initializations

rotation andc are assumed to be constant in every video. whereR = =2 (top of Tab.3). According tod, the calibra-
MethodsB andB‘g;"F?St are the same &..r up to the tion of Bggr. = » is better than that oBgg. = . This result

c re nement: BZy enforces the samefor the 4 cameras  is expected since both methods are the same and the former

anngf’F?St does not re nec. has a better initialization. Furthermore, the calibration of

Boo; = 2 is better than that dB . _ ,. In other words, there

is an accuracy loss if we assume that the four cameras have

exactly the same (although they have the same setting).

We compute a distanakbetween the multi-camera calibra- We note that all these methods have similar reprojection

tions estimated b ¢.r anngg{jﬂ ,. The latteris assumed errors (RMS), their numbers of reconstructed 3D points and

5.3.2 How to Compare two Calibrations



C 90 90r pat Bgor;: 2

f. | 30557 [289.8,291.4]| [290.1,290.9]| [289.9,292 5]
f, | 305.57| [288.5,291.4] [290.1,290.9]| [289.8,291.7]
Uo | 320.00| [318.6,324.7]| [319.7,325.8]| [318.0,325.6]
Vo | 240.00| [233.9,242.0]| [234.2,240.9]| [235.2,240.3]
k. | 0.3333| [.3580,.3739]| [.3689,.3746]| [.3675, 3792]
k, | 0.4000| [0475,.0991]| [.0335,.0669] [0297,.0638]
ks | 0.0539| [-.035,.0518] | [.0041, 0611]| [-.007,.0699]
ke | 0.0218| [-.033,.0406]| [-3e-4,.0173]| [-.033,.0180]
ks | 0.0088| [.0015,.0239]| [.0067,.0197]| [.0099,.0248]

Table 4. Intrinsic parameters of the four cameras in several cases.

Figure 2. Top views of the SfM result without (left) and with

2D inliers are roughly the sames. In the whole paper, RMS (right) automatic loop detection and closure: 1834 key-frame
is about 0.5 pixel (the Harris point detector has pixelic ac- poses (small black squares) and 710k points (gray-black points)
curacy and every detected point is classi ed as inlier for BA reconstructed from 70k 640 480images. The garden area is
if its reprojection error is less than 2 pixels).
Second, we examine the intrinsic parameter initializa-
tionsc = 90r (bottom of Tab.3). The smaller theR =
=2 + X, the better thel value (as expected). BA provides
bad results if thdR perturbation is too high (+14 and +18).
In the other casesl is about0:33 degrees.
Tab. 4 provides values for the intrinsic parameters of
the four cameras in several cases:= 90 (equiangular,
Sec.4.2), ¢ = 90r (camera-wise re nement in Seb.2),
¢ = pat (using calibration pattern;Lf]), andc = Bgor. = »
(i.e. multi-camera-wise re nement provided g = 2,
Sec.5.3). We see thaB0r, pat andBgg. - » have simi-
lar Kandk; parameters for all cameras, bytvaries a lot if

on the bottom right corner and is surrounded by a few parked cars.

tion. To limit the point cloud size, we only retain one recon-
structed Canny pixel over four consecutive ones in a curve.
2.7M 3D points are computed in 42 min.

Third a surface reconstruction method 4] improved
using [20]) is applied to the point cloud. The cloud is I-
tered beforehand. A point is rejected if its apical angle is
less than 10 degrees. Furthermore, points are rejected if
they are below the ground or in the sky. hetbe an esti-
mate of the vertical direction. Lef, be the set of points
that are detected and inlier in theth key-frame. We re-

ject pointp if there is key-framg such thatp 2 V; and
altitudep:v is one of the ten smallest or ten largest values
infqg:v;q 2 V,g. The resulting surface has 1.8M triangles
and is computed in 2 min. (time without texturing).

Fig. 3 shows a global view of the reconstructed sur-
. ) ~ face and Fig.4 shows local views. Ajoint video
Firstwe apply SfM to the whole sequence with the multi- -/youtu.be/S5r46 SEBvz5w) shows walkthroughs in the
camera calibration provided o, - 2 inSec.5.3 Weuse  qoyiput surface. There are several reasons for surface errors.
SfM [27] based on key-frame sub-sampling, central generic gince we use ground imagery taken by a pedestrian, there is
camera model, and local BA. SfM selects 1834 key-frames g 3¢k of points and bad accuracy near the tops of buildings.
from 70k frames of the multi-camera, and reconstructs 710k 11,5 the main errors are in this area, and they are more vis-
points. Loops are then detected and closed using a methoge in Fig. 3 than in the video (the viewing conditions are
similar to [15, 27] in 18 min. on a Latitude ES510 Lap-  gifferent: a global and top view in Fig, local views close
top (i5 CPU M560 @ 2.67GHz). Fig. compares the StM (4 the camera trajectory in the video). Another reason for er-
results without and with automatic loop detection and clo- o is the aperture problem: the edges that are parallel to a
sure. The low drift without loop computation con rms that  ¢treet é.g those of a building top) can not be reconstructed

the calibration is good. o if the street is parallel to the pedestrian motion.
Second, the sparse cloud of points is completed for sur-

face reconstructlpn. Eor every key-frame, we detect Cannys 5 360 Video

curves and Harris points and match them to those of the

previous key-frame usinglLP] and the epipolar constraint. Here we compare the calibrations estimatedlgy;. - »

A Canny point is ignored if the angle between its curve tan- from several sets of image matches. The calibration quality
gent and the epipolar line at this point is less thad. Both is evaluated for the 360 video applicatiore. how good is
Canny and Harris points are reconstructed by ray intersec-the stitching of the four videos using the calibration ?

i 2. According toc = pat, the four cameras have similar
(fx:fy;Ka; Zo), theirk, have the same magnitude order, but
theirk; variesalotif3 i 5.

5.4. 3D Modeling



Figure 3. Global view of the 3D model (textures and triangle normals) computed from 2.7M points. The triangles in the sky are removed.
Top: the key-frame poses of the multi-camera are also drawn using small white points. Bottom: the normals are encoded by colors.

5.5.1 Notations 5.5.2 Image-Based Evaluation

The rstsetiss = 2k asin Secs5.2and5.3: both SfM and An image-based method is used to evaluate a central cali-
BA use the 2000 rst frames of the video. The second set is bration. With images from the 4 cameras at the same time
s = all,i.e. all frames of the video are used. In more detail, and a calibration, we warp the 4 images on a cylinder and

SfM rst uses the calibration above (provided Byor. = » accumulate the gray level discrepancies over the cylinder
ands = 2k) on the whole multi-camera video, and BA then pixels where two images are warped. A discrepancy is the
re nes all parameters including the calibration. absolute value of the differences between two luminances.

Sets = all iss = all plus additional inter-camera This process is done several times in the video (once per 10s
matches. These matches connect reconstructed tracks iff video). The result is the mean of the discrepancies.
different cameras,e. they merge 3D points. They are com-
puted after the SfM step and before BA. Their matching is
made easier by prewarping onto a cylinder of the images
of every camera; a standard ZNCC-based correlation (as inFig. 5 shows an example of a cylindrical image without
SfM) is then applied. In practice, we try to match points and with its discrepancies (Fig.also shows that the com-
of thei-th camera in the-th key-frame with points of the  mon eld-of-view between adjacent cameras is small). The
(i + 1) -th camera (indices modulo 4) in tije + )-key- means of discrepancies dé:51 for s = 2k, 1397 for s =
frame where 2f 8; 7; +7;+8g. all, and13:63for s = all (gray levels in[0; 255). Thus

5.5.3 Experiments



Figure 4. Local views of the 3D model (textures and triangle normals). The normals are encoded by colors (ground: white, vertical:
red-green-blue, sky: black). Every key-frame pose is represented by four squares (one square per camera).

The time of one successful BA iteration is 29ssif=
all (710k 3D points and 1.8k multi-camera 6D poses and
4*(3+4+5) calibration parameters are re ned, 3.4M 2D in-
liers). Our implementation uses sparse implementation of
Hessian and Cholesky factorization of the reduced camera
system Pg]. If s = all , there are 11k, 16k, 13k, and 16k
matches between cameras 0-1, 1-2, 2-3, and 3-0, resp.

Lastly, we make two observations in the cylindrical im-
ages. First, there are some local and non-negligible im-
provements like those at the bottom-right of Fig. Sec-
ond, a textured ground in the close vicinity of the cameras
is a frequent reason for high discrepancy (one example can
be found in the bottom-left corner of Fi§). Indeed, the
central approximation is inaccurate in this area.

5.6. Limitations and Further Experiments
Figure 5. Cylinders without (top) and with (middle) discrepancies
in areas shared by two original images in case s=aBottom:
local views of discrepancies if s=alls=all , s=all and s=2k, re-
spectively. The lower the discrepancy, the darker the gray level.

Our synchronization method\go, in Sec.5.2) is done
using monocular SfM for every camera at the beginning of
the dataset. Thus it can fail due to the lack of texture in
a camera during this period. Nevertheless, the robustness
with respect to low texture is improved thanks to (1) a mod-
the improvements oéll overall and ofall over 2k are i cation of Agor, (2) our assumption that the same setup is
globally small. Ajoint video shows input frames and 360 used for all cameras and (3) the fact that SfM robustness is
videos using = all (https://youtu.be/8bZM20g1p0OU). better for accurate calibration. First apply monocular SftM



and calibration re nement for one video that has a lot of
texture, then compute monocular SfM for the other (low
textured) videos with this re ned calibration. Similarly, it is
straightforward to do the multi-camera re nemeBt( in
Sec.5.3) for a low textured dataset by computing the multi- (9]
camera calibration on a more textured dataset, then assume
that the calibration is similar between the two datasets. [10]

In general, the number of inliers decreases in keyframes
where the assumptions are not meet and SfM can falil for[11]
this reason. Shocks can generate changes of inter-camera
rotations and rolling shutter effects due to fast image mo- 17
tion. However, we think that shocks due to walking are
damped by the pedestrian. Another dataset has low framej13]
rate (30 fps) and fast head rotations. This is more dif cult
than our paper's dataset: the synchronization is less accu-
rate and the rolling shutter effects are greater. To avoid fail- [14]
ures of the synchronization and self-calibration, we increase
the number of inliers (multiply by 2 the inlier threshold) and  [15]
select a video segment for SfM with slow image motion.

(7]
(8]

6. Conclusion [16]
This paper focuses on the synchronization and self-
calibration of a DIY multi-camera system mounted on a hel- [17]

met. It presents large-scale 3D scene modeling using such

a setup for the rst time. Thanks to the central approxima-

. . [18]
tion, 360 videos are also generated (although the common
eld-of-view between adjacent cameras is small). [19]

We start with structure-from-motion, then the instanta-
neous angular velocity (IAV) is known and the initial cali-
bration is re ned by bundle adjustment (BA). Synchroniza- [20]
tion methods are compared including ours which is based on
IAV. We extend previous BAs designed for multi-cameras:
both intrinsic parameters and inter-camera rotations are re{21]
ned, and the minimized errors are the true reprojection
errors (although the forward-projection is not closed-form [22
with the classical polynomial distortion model). We also
experiment our BA for several calibration parametrizations
and several sets of tracked points in images.

Future work includes a BA that simultaneously re-
nes geometry and sub-frame synchronization, a detailed
comparison of central and non-central self-calibrations for [24]
multi-cameras like ours that are almost central, investiga-
tions on rolling shutter and non-constant calibration, and [25]
improving the robustness with respect to low texture.

(23]
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