Parameter Estimation in Finite Mixture Models by Regularized Optimal Transport: A Unified Framework for Hard and Soft Clustering

Abstract : In this short paper, we formulate parameter estimation for finite mixture models in the context of discrete optimal transportation with convex regularization. The proposed framework unifies hard and soft clustering methods for general mixture models. It also generalizes the celebrated $k$\nobreakdash-means and expectation-maximization algorithms in relation to associated Bregman divergences when applied to exponential family mixture models.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01635325
Contributeur : Nicolas Papadakis <>
Soumis le : mercredi 15 novembre 2017 - 09:09:45
Dernière modification le : lundi 27 novembre 2017 - 13:45:05

Identifiants

  • HAL Id : hal-01635325, version 1
  • ARXIV : 1711.04366

Collections

IRCAM | UPMC | IMB | STMS

Citation

Nicolas Papadakis, Arnaud Dessein, Charles-Alban Deledalle. Parameter Estimation in Finite Mixture Models by Regularized Optimal Transport: A Unified Framework for Hard and Soft Clustering. 2017. 〈hal-01635325〉

Partager

Métriques

Consultations de la notice

25