K. L. Agster, T. Pereira, I. Saddoris, M. P. Burwell, and R. D. , Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. II. efferents, Hippocampus, vol.33, issue.9, pp.1213-1230, 2016.
DOI : 10.1016/0301-0082(89)90009-9

A. S. Alexander and D. A. Nitz, Retrosplenial cortex maps the conjunction of internal and external spaces, Nature Neuroscience, vol.34, issue.8, pp.1143-1151, 2015.
DOI : 10.1523/JNEUROSCI.1199-13.2014

K. Allen, M. Gil, E. Resnik, O. Toader, P. Seeburg et al., Impaired Path Integration and Grid Cell Spatial Periodicity in Mice Lacking GluA1-Containing AMPA Receptors, Journal of Neuroscience, vol.34, issue.18, pp.6245-6259, 2014.
DOI : 10.1523/JNEUROSCI.4330-13.2014

URL : http://www.jneurosci.org/content/jneuro/34/18/6245.full.pdf

A. Alonso and C. Köhler, A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain, Journal of Comparative Neurology, vol.65, issue.Suppl., pp.327-343, 1984.
DOI : 10.1016/0014-4886(79)90255-3

C. Barry, L. L. Ginzberg, J. O-'keefe, and N. Burgess, Grid cell firing patterns signal environmental novelty by expansion, Proceedings of the National Academy of Sciences, vol.48, issue.5688, pp.17687-17692, 2012.
DOI : 10.1126/science.1100265

URL : http://www.pnas.org/content/109/43/17687.full.pdf

C. Barry, R. Hayman, N. Burgess, J. , K. J. Chwiesko et al., Experience-dependent rescaling of entorhinal grids, Nature Neuroscience, vol.7, issue.6, pp.682-684, 2007.
DOI : 10.1016/j.neunet.2006.11.007

S. Benhamou, On systems of reference involved in spatial memory, Behavioural Processes, vol.40, issue.2, pp.149-163, 1997.
DOI : 10.1016/S0376-6357(97)00775-4

D. E. Berlyne, Conflict, Arousal and Curiosity, 1960.
DOI : 10.1037/11164-000

URL : http://hdl.handle.net/2027/mdp.39015001641003

T. W. Blackstad, Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination, The Journal of Comparative Neurology, vol.14, issue.3, pp.417-537, 1956.
DOI : 10.1016/0013-4694(49)90212-6

T. Bonnevie, B. Dunn, M. Fyhn, T. Hafting, D. Derdikman et al., Grid cells require excitatory drive from the hippocampus, Nature Neuroscience, vol.9, issue.3, pp.309-317, 2013.
DOI : 10.1016/S0306-4522(03)00160-X

M. P. Brandon, A. R. Bogaard, C. P. Libby, M. A. Connerney, K. Gupta et al., Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning, Science, vol.113, issue.2, pp.595-599, 2011.
DOI : 10.1037/0735-7044.113.2.265

V. H. Brun, S. Leutgeb, H. Q. Wu, R. Schwarcz, M. P. Witter et al., Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex, Neuron, vol.57, issue.2, pp.290-302, 2008.
DOI : 10.1016/j.neuron.2007.11.034

N. Burgess, C. Barry, O. Keefe, and J. , An oscillatory interference model of grid cell firing, Hippocampus, vol.29, issue.9, pp.801-812, 2007.
DOI : 10.1515/REVNEURO.2006.17.1-2.71

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678278/pdf

R. D. Burwell and D. G. Amaral, Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortex, 3<293::aid- cne2 >3.0.co, pp.293-321, 1998.
DOI : 10.1007/978-3-642-70573-1

R. D. Burwell and D. G. Amaral, Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat, 2<179::aid-cne3 >3.0.co, pp.179-205, 1998.
DOI : 10.1002/hipo.450020102

C. B. Canto, F. G. Wouterlood, and M. P. Witter, What does the anatomical organization of the entorhinal cortex tell us? Neural Plast, pp.381243-381253, 2008.

O. Y. Chao, J. P. Huston, J. S. Li, A. L. Wang, and M. A. De-souza-silva, The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition, Hippocampus, vol.340, issue.5, pp.633-645, 2016.
DOI : 10.1126/science.1232627

D. Derdikman, J. R. Whitlock, A. Tsao, M. Fyhn, T. Hafting et al., Fragmentation of grid cell maps in a multicompartment environment, Nature Neuroscience, vol.18, issue.10, pp.1325-1332, 2009.
DOI : 10.3758/BF03200260

S. S. Deshmukh and J. J. Knierim, Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex, Frontiers in Behavioral Neuroscience, vol.5, 2011.
DOI : 10.3389/fnbeh.2011.00069

C. L. Dolorfo and D. G. Amaral, Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus1<25::aid-cne3 >3.0.co Entorhinal cortex of the rat: organization of intrinsic connections, 1<49::aid-cne4 >3.0.co, pp.25-48, 1998.

J. Ferbinteanu, R. M. Holsinger, and R. J. Mcdonald, Lesions of the medial or lateral perforant path have different effects on hippocampal contributions to place learning and on fear conditioning to context, Behavioural Brain Research, vol.101, issue.1, pp.65-84, 1999.
DOI : 10.1016/S0166-4328(98)00144-2

S. C. Furtak, S. M. Wei, K. L. Agster, and R. D. Burwell, Functional neuroanatomy of the parahippocampal region in the rat: The perirhinal and postrhinal cortices, Hippocampus, vol.7, issue.9, pp.709-722, 2007.
DOI : 10.1016/B978-012547638-6/50022-5

M. Fyhn, S. Molden, M. P. Witter, E. I. Moser, and M. B. Moser, Spatial Representation in the Entorhinal Cortex, Science, vol.305, issue.5688, pp.1258-1264, 2004.
DOI : 10.1126/science.1099901

URL : http://science.sciencemag.org/content/sci/305/5688/1258.full.pdf

J. B. Hales, M. I. Schlesiger, J. K. Leutgeb, L. R. Squire, S. Leutgeb et al., Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. Cell Rep, pp.893-901, 2014.
DOI : 10.1016/j.celrep.2014.10.009

URL : https://doi.org/10.1016/j.celrep.2014.10.009

E. L. Hargreaves, G. Rao, I. Lee, and J. J. Knierim, Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus, Science, vol.308, issue.5729, pp.1792-1794, 2005.
DOI : 10.1126/science.1110449

M. E. Hasselmo, L. M. Giocomo, and E. A. Zilli, Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons, Hippocampus, vol.87, issue.12, pp.1252-1271, 2007.
DOI : 10.1016/0165-0173(83)90037-1

M. Hébert, E. Maubert, A. Anfray, A. Chevilley, S. Martinez-de-lizarrondo et al., Distant spatial processing is controlled by tissue Plasminogen Activator-NMDAR signaling in the entorhinal cortex, Cereb. Cortex, vol.27, pp.4783-4796, 2017.

M. Hitier, S. Besnard, and P. F. Smith, Vestibular pathways involved in cognition, Frontiers in Integrative Neuroscience, vol.1164, 2014.
DOI : 10.1111/j.1749-6632.2009.04461.x

URL : https://doi.org/10.3389/fnint.2014.00059

R. N. Hughes, Intrinsic exploration in animals: motives and measurement, Behavioural Processes, vol.41, issue.3, pp.213-226, 1997.
DOI : 10.1016/S0376-6357(97)00055-7

R. N. Hughes, Neotic preferences in laboratory rodents: Issues, assessment and substrates, Neuroscience & Biobehavioral Reviews, vol.31, issue.3, pp.441-464, 2007.
DOI : 10.1016/j.neubiorev.2006.11.004

M. R. Hunsaker, V. Chen, G. T. Tran, and R. P. Kesner, The medial and lateral entorhinal cortex both contribute to contextual and item recognition memory: A test of the binding ofitems and context model, Hippocampus, vol.21, issue.5, pp.380-391, 2013.
DOI : 10.1002/hipo.20839

R. Insausti, M. T. Herrero, and M. P. Witter, Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents, 2<146::aid-hipo4 >3.0.co, pp.146-183, 1997.
DOI : 10.1007/978-3-642-70573-1

P. Jacob, M. Gordillo-salas, J. Facchini, B. Poucet, E. Save et al., Medial entorhinal cortex and medial septum contribute to self-motion-based linear distance estimation, Brain Structure and Function, vol.25, issue.6, pp.2727-2742, 2017.
DOI : 10.1016/j.cub.2015.08.034

URL : https://hal.archives-ouvertes.fr/hal-01461959

P. Jacob, B. Poucet, M. Liberge, E. Save, and F. Sargolini, Vestibular control of entorhinal cortex activity in spatial navigation, Frontiers in Integrative Neuroscience, vol.19, 2014.
DOI : 10.1002/hipo.20533

C. S. Keene, J. Bladon, S. Mckenzie, C. D. Liu, J. O-'keefe et al., Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices, The Journal of Neuroscience, vol.36, issue.13, pp.3660-3675, 2016.
DOI : 10.1523/JNEUROSCI.4368-15.2016

K. M. Kerr, K. L. Agster, S. C. Furtak, and R. D. Burwell, Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas, Hippocampus, vol.10, issue.9, pp.697-708, 2007.
DOI : 10.1002/hipo.20315

T. Kitanishi and N. Matsuo, Organization of the claustrumto-entorhinal cortical connection in mice, J. Neurosci, vol.37, 2017.

J. J. Knierim, H. , and D. A. , Framing Spatial Cognition: Neural Representations of Proximal and Distal Frames of Reference and Their Roles in Navigation, Physiological Reviews, vol.91, issue.4, pp.1245-1279, 2010.
DOI : 10.1152/physrev.00021.2010

J. J. Knierim, J. P. Neunuebel, and S. S. Deshmukh, Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.352, issue.1360, 2013.
DOI : 10.1098/rstb.1997.0136

J. Koenig, A. N. Linder, J. K. Leutgeb, and S. Leutgeb, The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations, Science, vol.453, issue.7199, pp.592-595, 2011.
DOI : 10.1038/nature06957

W. J. Krieg, Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas, The Journal of Comparative Neurology, vol.14, issue.2, pp.221-275, 1946.
DOI : 10.1002/cne.900840205

J. Krupic, M. Bauza, S. Burton, C. Barry, O. Keefe et al., Grid cell symmetry is shaped by environmental geometry, Nature, vol.10, issue.7538, pp.232-235, 1038.
DOI : 10.1038/nn1905

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576734/pdf

S. P. Ku, N. H. Nakamura, N. Maingret, L. Mahnke, M. Yoshida et al., Regional Specific Evidence for Memory-Load Dependent Activity in the Dorsal Subiculum and the Lateral Entorhinal Cortex, Frontiers in Systems Neuroscience, vol.223, 2017.
DOI : 10.1016/j.neuroscience.2012.07.067

M. V. Kuruvilla and J. A. And-ainge, Lateral Entorhinal Cortex Lesions Impair Local Spatial Frameworks, Frontiers in Systems Neuroscience, vol.156, 2017.
DOI : 10.1016/j.cell.2014.02.023

URL : https://www.frontiersin.org/articles/10.3389/fnsys.2017.00030/pdf

L. Lu, J. K. Leutgeb, A. Tsao, E. J. Henriksen, S. Leutgeb et al., Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex, Nature Neuroscience, vol.6, issue.8, pp.1085-1093, 2013.
DOI : 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K

B. L. Mcnaughton, F. P. Battaglia, O. Jensen, E. I. Moser, and M. B. Moser, Path integration and the neural basis of the 'cognitive map', Nature Reviews Neuroscience, vol.290, issue.8, pp.663-678, 1038.
DOI : 10.1126/science.290.5500.2319

M. Mishkin, L. Ungerleider, and L. Macko, Object vision and spatial vision: two cortical pathways, Trends in Neurosciences, vol.6, pp.414-417, 1983.
DOI : 10.1016/0166-2236(83)90190-X

R. G. Morris, P. Garrud, J. N. Rawlins, O. Keefe, and J. , Place navigation impaired in rats with hippocampal lesions, Nature, vol.17, issue.5868, pp.681-683, 1038.
DOI : 10.1017/S0140525X00062713

M. D. Morrissey, G. Maal-bared, S. Brady, and K. Takehara-nishiuchi, Functional Dissociation within the Entorhinal Cortex for Memory Retrieval of an Association between Temporally Discontiguous Stimuli, Journal of Neuroscience, vol.32, issue.16, pp.5356-5361, 2012.
DOI : 10.1523/JNEUROSCI.5227-11.2012

M. D. Morrissey and K. Takehara-nishiuchi, Diversity of mnemonic function within the entorhinal cortex: A meta-analysis of rodent behavioral studies, Neurobiology of Learning and Memory, vol.115, pp.95-107, 2014.
DOI : 10.1016/j.nlm.2014.08.006

J. P. Neunuebel, D. Yoganarasimha, G. Rao, and J. J. Knierim, Conflicts between Local and Global Spatial Frameworks Dissociate Neural Representations of the Lateral and Medial Entorhinal Cortex, Journal of Neuroscience, vol.33, issue.22, pp.9246-9258, 2013.
DOI : 10.1523/JNEUROSCI.0946-13.2013

L. Olivito, P. Saccone, V. Perri, J. L. Bachman, P. Fragapane et al., Phosphorylation of the AMPA receptor GluA1 subunit regulates memory load capacity, Brain Structure and Function, vol.7, issue.11, pp.591-603, 2016.
DOI : 10.1097/00001756-199607290-00037

C. Parron, B. Poucet, and E. Save, Entorhinal cortex lesions impair the use of distal but not proximal landmarks during place navigation in the rat, Behavioural Brain Research, vol.154, issue.2, pp.345-352, 2004.
DOI : 10.1016/j.bbr.2004.03.006

URL : https://hal.archives-ouvertes.fr/hal-01384910

C. Parron and E. Save, Evidence for entorhinal and parietal cortices involvement in path integration in the rat, Experimental Brain Research, vol.rat, issue.3, pp.349-359, 2004.
DOI : 10.1007/s00221-004-1960-8

URL : https://hal.archives-ouvertes.fr/hal-01384904

A. Pitkänen, M. Pikkarainen, N. Nurminen, A. C. Ylinen, J. M. Lefort et al., Reciprocal Connections between the Amygdala and the Hippocampal Formation, Perirhinal Cortex, and Postrhinal Cortex in Rat: A Review, Annals of the New York Academy of Sciences, vol.94, issue.1, pp.369-39135, 2000.
DOI : 10.1111/j.1749-6632.2000.tb06738.x

C. Rodo, F. Sargolini, and E. Save, Processing of spatial and non-spatial information in rats with lesions of the medial and lateral entorhinal cortex: Environmental complexity matters, Behavioural Brain Research, vol.320, pp.200-209, 2017.
DOI : 10.1016/j.bbr.2016.12.009

URL : https://hal.archives-ouvertes.fr/hal-01470488

S. Sannino, F. Russo, G. Torromino, V. Pendolino, P. Calabresi et al., Role of the dorsal hippocampus in object memory load, Learning & Memory, vol.19, issue.5, pp.211-218, 2012.
DOI : 10.1101/lm.025213.111

F. Sargolini, M. Fyhn, T. Hafting, B. L. Mcnaughton, M. P. Witter et al., Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex, Science, vol.312, issue.5774, pp.758-762, 2006.
DOI : 10.1126/science.1125572

E. Save and B. Poucet, Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation, Behavioural Brain Research, vol.109, issue.2, pp.195-206, 2000.
DOI : 10.1016/S0166-4328(99)00173-4

E. Save, B. Poucet, N. Foreman, and M. C. Buhot, Objects exploration and reaction to a spatial and a non-spatial change in the rat following damage to the posterior parietal cortex or the dorsal hippocampus, Neurobiol. Learn. Mem, vol.106, pp.447-456, 1992.

F. Savelli, D. Yoganarasimha, and J. J. Knierim, Influence of boundary removal on the spatial representations of the medial entorhinal cortex, Hippocampus, vol.97, issue.12, pp.1270-1282, 2008.
DOI : 10.1515/REVNEURO.2006.17.1-2.71

T. V. Sewards and M. A. Sewards, Input and output stations of the entorhinal cortex: superficial vs. deep layers or lateral vs. medial divisions?, Brain Research Reviews, vol.42, issue.3, pp.243-251, 2003.
DOI : 10.1016/S0165-0173(03)00175-9

T. Solstad, C. N. Boccara, E. Kropff, M. B. Moser, and E. I. Moser, Representation of Geometric Borders in the Entorhinal Cortex, Science, vol.309, issue.5734, pp.1865-1868, 2008.
DOI : 10.1126/science.1114037

H. A. Steffenach, M. Witter, M. B. Moser, and E. I. Moser, Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex, Neuron, vol.45, issue.2, 2005.
DOI : 10.1016/j.neuron.2004.12.044

T. Pereira, I. Agster, K. L. Burwell, and R. D. , Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents, Hippocampus, vol.1, issue.9, pp.1189-1212, 2016.
DOI : 10.1002/hipo.450010208

A. Tsao, M. B. Moser, and E. I. Moser, Traces of Experience in the Lateral Entorhinal Cortex, Current Biology, vol.23, issue.5, pp.399-405, 2013.
DOI : 10.1016/j.cub.2013.01.036

T. Van-cauter, J. Camon, A. Alvernhe, C. Elduayen, F. Sargolini et al., Distinct roles of medial and lateral entorhinal cortex in spatial cognition The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network Navigating actions through the rodent parietal cortex, Cereb. Cortex Nat. Rev. Neurosci. J. R. Front. Hum. Neurosci, vol.23, issue.8, pp.451-459, 2009.

A. A. Wilber, B. J. Clark, T. C. Forster, M. Tatsuno, and B. L. Mcnaughton, Interaction of Egocentric and World-Centered Reference Frames in the Rat Posterior Parietal Cortex, Journal of Neuroscience, vol.34, issue.16, pp.5431-5446, 2014.
DOI : 10.1523/JNEUROSCI.0511-14.2014

D. I. Wilson, S. Watanabe, H. Milner, and J. A. And-ainge, Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory, Hippocampus, vol.21, issue.1-2, pp.1280-1290, 2013.
DOI : 10.1002/hipo.20839

URL : http://onlinelibrary.wiley.com/doi/10.1002/hipo.22165/pdf

M. P. Witter, Organization of the entorhinal-hippocampal system: a review of current anatomical data, Hippocampus, vol.3, pp.33-44, 1993.

F. G. Wouterlood, G. Rao, and J. J. Knierim, Innervation of Entorhinal Principal Cells by Neurons of the Nucleus Reuniens Thalami. Anterograde PHA-L Tracing Combined with Retrograde Fluorescent Tracing and Intracellular Injection with Lucifer Yellow in the Rat, European Journal of Neuroscience, vol.5, issue.7, pp.641-647, 1991.
DOI : 10.1016/0165-0270(90)90024-A

S. Yoo, L. , and I. , Functional double dissociation within the entorhinal cortex for visual scene-dependent choice behavior, 2017.
DOI : 10.7554/elife.21543

URL : https://cdn.elifesciences.org/articles/21543/elife-21543-v5.pdf