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Abstract

The finite-depth interaction theory (IT) introduced by Kagemoto H. and

Yue (1986) enables one to drastically speed up the computation of the added

mass, damping and excitation force coefficients of a group (”farm”) of floating

bodies when compared to direct calculations with standard widely available

boundary element method (BEM) codes. An essential part of the theory is

the calculation of two hydrodynamic operators, which characterize the way a

body diffracts and radiates waves, known as Diffraction Transfer Matrix (DTM)

and Radiation Characteristics (RC) respectively. Two different strategies to

compute them for arbitrary geometries have been proposed in the literature

(Goo, J.-S. and Yoshida, 1990; McNatt J. C. et al., 2015). The purpose of this

study is to present the implementation of the former in the zeroth-order BEM

solver NEMOH and to compare it with the latter by providing an insight into the

DTM and the RC of a truncated vertical circular cylinder and a square box. A

very good agreement between the hydrodynamic operators computed with both

methodologies is obtained. In addition, hydrodynamic coefficients generated

by means of the IT are verified against direct NEMOH calculations for two

different array layouts. Results show the effect of hydrodynamic interactions as

well as the importance of the evanescent modes truncation for closely spaced

configurations.
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1. Introduction

Because of the limits of the energy conversion capacity of single devices, it is

nowadays well-accepted that commercial exploitation of wave energy will require

the deployment of wave energy converters (WECs) in array. As the advance-

ment of WEC technology continues, there is an increasing interest in developing5

numerical tools to investigate how WECs will interact with one another in the

first generation farms.

It has been shown that wave interactions may affect the forces acting upon

the WECs and the energy production of the wave farm to varying degrees de-

pending on the layout (Budal, 1977; Falnes J. and Budal, 1982; Falnes, 1984).10

Forces due to wave radiation and scattering in the array can be well represented

by matrices of linear radiation and excitation force coefficients. However, due

to memory and time restrictions, the direct computation of these matrices for

large arrays of bodies O(100) is beyond the capabilities of standard Boundary

Element Method (BEM) codes.15

The methodology developed by Kagemoto H. and Yue (1986), known as

Direct Matrix Method interaction theory and that we shall refer to herein as

IT, combines the features of the Direct Matrix approach in Spring B. H. and

Monkmeyer P. (1974) and Simon (1982), and the multiple-scattering technique

by Twersky (1952) and Ohkusu (1974). It enables one to accelerate the com-20

putation of the hydrodynamic coefficients, for multi-body arrays under certain

circumstances, including finite water depth and no vertical overlap. IT com-

putations can generate the coefficients for large arrays, which could not be

computed directly with a BEM code. The IT computation is based on mathe-

matically characterizing how an individual isolated device scatters and radiates25

waves. For this, two hydrodynamic operators known as Diffraction Transfer

Matrix and Radiation Characteristics that we shall refer to herein as DTM and
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RC respectively need to be computed. Kagemoto H. and Yue (1986) provided

a method to obtain the DTM and RC for axisymmetric bodies. Goo, J.-S. and

Yoshida (1990) developed an approach based on a cylindrical representation of30

the Green’s function by Fenton (1978) to calculate the elements of the DTM

and RC for an arbitrary geometry using a BEM.

The approach by Goo, J.-S. and Yoshida (1990) was used to study the forces

on the fixed (Chakrabarti, 2000) and floating (Chakrabarti, 2001) modules of

an interconnected multi-moduled floating offshore structure used by the US35

Navy. It was also employed by Peter M. A. and Meylan H. (2004) to study the

interactions between ocean waves and large fields of ice floes in the marginal

ice zone. For that, the extension of the theory to infinite-depth was required.

Based on Kagemoto H. and Yue (1986), Kashiwagi (2000) derived a hierarchical

interaction theory aimed at studying hydrodynamic interactions among a great40

number of bodies in very large floating structures. More recently, in the context

of wave attenuation in the marginal ice zone, Montiel F. et al. (2016) proposed

an approach known as slab-clustering method which combines the Direct Ma-

trix Method with a one dimension multiple scattering technique to solve the

multiple-scattering problem in arrays composed of thousands of ice floes.45

The methodology of Goo, J.-S. and Yoshida (1990) requires the modification

of the standard diffraction problem boundary conditions, as well as access to

the source strength distribution on the discretized wetted surface of the body.

This output is not accessible to the user in the majority of standard BEM codes

which only provide the standard hydrodynamic excitation forces and radiation50

coefficients after integration over the body surface. As a result, the IT has been

applied mainly in cases where WEC geometries are such that an analytical

expression of its hydrodynamic operators exists (Child B. and Venugopal, 2010;

Göteman, M. et al., 2015). To overcome such limitation, McNatt J. C. et al.

(2015) developed and validated an alternative approach to the one of Goo, J.-S.55

and Yoshida (1990) to calculate the DTM and RC using the standard output of
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available BEM codes like WAMIT 1. A shortcoming of the method provided by

McNatt J. C. et al. (2015) is that it is unable to include evanescent wave modes

in the IT computation.

A key goal of this study is to verify the outputs of a new implementation60

of the method developed by Goo, J.-S. and Yoshida (1990) in the open-source,

BEM-code NEMOH 2 to the outputs using the method developed by McNatt J.

C. et al. (2015) by comparing the DTM and the RC of two different geometries,

a truncated vertical circular cylinder and a cube. This comparison also serves to

illustrate the frequency-dependent patterns of the DTM and RC, which, despite65

their necessity in IT, have not received much attention in literature.

In the following sections, we first present the solution to the Boundary Value

Problem (BVP) for an isolated body in cylindrical coordinates and introduce the

concept of partial cylindrical waves. We then consider the multi-body BVP and

its exact algebraic solution by means of the IT method derived by Kagemoto H.70

and Yue (1986). The procedure to obtain the radiation and excitation force co-

efficients from the solution to the multiple-scattering problem is also presented.

Following that, the methodologies of Goo, J.-S. and Yoshida (1990) and McNatt

J. C. et al. (2015) for computing the DTM and the RC are presented and com-

pared in section 3. Details of the numerical implementation of the procedure75

by Goo, J.-S. and Yoshida (1990) in the open-source BEM solver NEMOH are

given in section 4. Section 5 presents numerical results as the hydrodynamic

operators for a truncated vertical cylinder and a cube. Verifications of IT with

direct BEM computations are made via comparison of the free surface eleva-

tion and the hydrodynamic coefficients. These results show the importance of80

selecting the correct truncation value for cases where bodies are placed in close

proximity, which has not been shown in previous studies. Finally, verification

of the hydrodynamic coefficients computed by NEMOH is made by comparison

of a semi-analytical solution for vertical cylinders in a particular array layout

1www.wamit.com
2http://lheea.ec-nantes.fr/doku.php/emo/nemoh/start
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which includes near trapped-modes.85

2. Interaction Theory

The Direct Matrix Method interaction theory (IT) by Kagemoto H. and

Yue (1986) is based on the linear potential flow theory (Newman, J.N, 1999).

Thus, the constraints of linearity of the governing equations and perfect fluid

characteristics are assumed to be satisfied. The former applies as long as a small90

wave steepness and a small amplitude of the body motions with respect to its

characteristic dimension can be assumed. The latter holds if the fluid can be

characterized as inviscid and incompressible and the flow as irrotational. In this

case all the flow quantities of interest can be derived from a scalar field known

as velocity potential Φ and such that ~v = ∇Φ. If in addition, a harmonic time95

dependence is assumed, the spatial and time variation of Φ can be decoupled as

Φ = Re{φ(x, y, z) e−iωt}, where φ is the complex spatial part of Φ, (x, y, z) are

the spatial coordinates in a global Cartesian reference system, i =
√
−1, ω the

angular frequency and t the time.

For an array of floating bodies, and given the linearity of the problem, the

total potential in the fluid domain can be computed as a superposition of the

different forms of the velocity potential:

φ = φI +

Nb
∑

j=1

φSj +

Nb
∑

j=1

Dfj
∑

k=1

φR,k
j (1)

where φI is the ambient incident wave potential, φSj is the scattered potential100

by body j in the array when held fixed, φR,k
j is the radiated potential by body

j moving in its kth degree of freedom, Nb represents the number of bodies in

the array and Dfj stands for the number of degrees of freedom k of body j.

2.1. Partial Waves

In a large array, waves emanating from each body due to scattering and

radiation will propagate and interact with its neighbours. This will lead to

a succession of scattering events which are referred to as multiple-scattering
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Figure 1: Partial waves modes. Progressive term H
(1)
m (r) (a, b, c); evanescent term Km(r)

(d, e, f).

(Martin, 2006). In this context, the representation of the scattered potential by

body j can be described by the outgoing wave solution to the BVP in cylindrical

coordinates (a full derivation can be found in Child (2011) 3.4.1):

φSj =

∞
∑

m=−∞

[

(

AS
j

)

0m

cosh k0(zj + d)

cosh k0d
H(1)

m (k0rj)

+

∞
∑

n=1

(

AS
j

)

nm
cos kn(zj + d)Km(knrj)

]

eimθj (2)

where H
(1)
m is the Hankel function of the first kind of order m (see Figures

1a,1b,1c), Km is the modified Bessel function of the second kind of order m (see

Figures 1d,1e,1f),
(

AS
j

)

nm
are scattered complex coefficients, subindices m and

n are the modes representing the angular and depth variation of the scattered

potential respectively, d is the water depth, (zj , rj , θj) are the cylindrical coor-

dinates local to body j and k0 and kn are positive real quantities that represent

the progressive and evanescent wave numbers obtained respectively from the

following dispersion equations:

k0 tanh k0d =
ω2

g
; kn tan knd = −ω

2

g
(3)

where g is the acceleration due to gravity.105

The expression of the radiated potential follows as in (2) with the only

difference being the substitution of the scattered coefficients
(

AS
j

)

nm
by the
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radiated coefficients
(

Rk
j

)

nm
in a kth mode of motion with k = 1, . . . , 6 in the

general case:

φR,k
j =

∞
∑

m=−∞

[

(

Rk
j

)

0m

cosh k0(zj + d)

cosh k0d
H(1)

m (k0rj)

+

∞
∑

n=1

(

Rk
j

)

nm
cos kn(zj + d)Km(knrj)

]

eimθj (4)

where φR,k
j is the radiated potential by a body j moving in its kth degree of

freedom.

The incident potential to a body j is represented following the incoming

wave solution to the BVP in cylindrical coordinates (a full derivation can be

found in Child (2011) 3.4.2):

φIj =

∞
∑

q=−∞

[

(

AI
j

)

0q

cosh [k0(zj + d)]

cosh k0d
Jq(k0rj)+

∞
∑

l=1

(

AI
j

)

lq
cos[kl(zj + d)] Iq(klrj)

]

eiqθj (5)

where Jq is the Bessel function of the first kind of order q, Iq is the modified

Bessel function of the first kind of order q,
(

AI
j

)

lq
are incident complex coef-

ficients, subindices q and l are the modes representing the angular and depth110

variation of the incident potential respectively.

For convenience, (2), (4)and (5) can be represented as the scalar product

between a vector of complex coefficients and a vector of partial cylindrical wave

components:

φSj =
(

AS
j

)T
ψS
j ; φR,k

j =
(

Rk
j

)T
ψS
j ; φIj =

(

AI
j

)T
ψI
j (6)

where T stands for transposed, AS
j , A

I
j and Rk

j are the complex scattered, inci-

dent and radiated vectors of partial waves coefficients whose elements represent

an (n,m) or (l, q) index pair. For clarity of notation, indexes (n,m) are asso-

ciated with outgoing waves and (l, q) with incident waves. ψS
j and ψI

j are the
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vectors of scattered and incident cylindrical functions which are expressed as:

(

ψS
j

)

nm
=











cosh [k0(zj+d)]
cosh k0d

H
(1)
m (k0rj) e

imθj n = 0

cos [kn(zj + d)]Km(knrj) e
imθj n ≥ 1

(7)

(

ψI
j

)

lq
=











cosh [k0(zj+d)]
cosh k0d

Jq(k0rj) e
iqθj , l = 0

cos[kl(zj + d)] Iq(klrj) e
iqθj , l ≥ 1

(8)

The potentials in (6) are expressed in a cylindrical coordinate system (rj , θj , ζj)

centered in Ojxjyj local to each body of the array (Figure 2). They represent a

superposition of partial cylindrical waves which are more suited to express the

disturbances on the wave field caused by the finite-sized floating bodies than the

conventional long-crested plane waves (McNatt J. C. et al., 2013). The velocity

potential of a long-crested plane wave is:

φa(x, z) = − igζa
ω

cosh k(z + d)

cosh kd
eik0(x cos β+y sin β) (9)

where ζa is the wave amplitude, and β is the wave direction relative to the global

x axis.

By means of the following fundamental property of the Bessel functions

(Watson, 1966, p.14):

e
1

2
z(t− 1

t
) =

∞
∑

q=−∞

tqJq(z) (10)

equation (9) can also be expressed as a summation of partial cylindrical waves

incident to body j in the form of equation (5) with the following coefficients:

(

aIj
)

lq
=











−i gζa
ω
eik0(Xj cos β+Yj sin β)iqe−iqβ , l = 0

0 l ≥ 1

(11)

with Xj and Yj the coordinates of the center of body j in the global Cartesian

reference system OXY.115

Even though the vectors in (6) are theoretically infinitely long, for practical

computations they need to be truncated. Their dimension is given as (2M +

1) · (N + 1) where the summations go from m = −M to M and from n = 0

8



Figure 2: Schematic of the plane view of two bodies of arbitrary geometry with the nomen-

clature and reference systems used in this paper.

to N (the same expression will apply for modes q and l with truncation limits

Q and L respectively). Further details on the derivation of cylindrical partial120

waves can be found in (Child, 2011; McNatt J. C. et al., 2013).

2.2. Calculation of the scattering coefficients

Section 2.1 dealt with the representation of the velocity potential for a single

body j (Figure 2) using partial cylindrical waves. We now seek to solve the mul-

tiple scattering problem to obtain the scattered coefficients
(

AS
j

)

nm
for an array125

of bodies. The analysis follows Kagemoto H. and Yue (1986) and Chakrabarti

(2001) and the diffraction and radiation problems are treated separately as in

McNatt J. C. et al. (2015).

The total incident potential on body j, which can be expressed in the general

form φIj =
(

AI
j

)T
ψI
j , is composed of a primary wave (either an ambient plane

wave for a diffraction problem or a radiated wave by a body i moving in its kth

degree of freedom for a radiation problem) as well as of the unknown scattered

potentials from all the neighbouring bodies i. For the diffraction problem, the

total incident potential on body j reads:

φIj =
(

(

aIj
)T

+

Nb
∑

i=1
i 6=j

(

AS
i

)T
Tij

)

ψI
j (12)
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where AS
i are the unknown scattered coefficients, aIj are the ambient partial

cylindrical wave coefficients shown in equation (11) and Tij is a transformation

matrix derived from Graf’s addition theorem for Bessel functions (Abramowitz

M. and Segun A., 1964). It enables one to express scattered waves from a body

i as incident to body j in its local reference system, i.e. ψS
i = Tij ψ

I
j , and its

elements are calculated as:

(Tij)
mq
nn =











Hm−q(k0Lij)e
iαij(m−q) n = 0

Km−q(knLij)(−1)qeiαij(m−q) n ≥ 1

(13)

where Lij is the distance between the centers of bodies i and j and αij is the

angle between body i and body j (see Figure 2).

For the radiation problem, the total incident potential on body j can be ex-

pressed as:

φIj =
((

aR,ik
j

)T

+

Nb
∑

p=1
p 6=j

(

AS
p

)T
Tpj

)

ψI
j (14)

where aR,ik
j are the cylindrical coefficients of the radiated wave incident on body

j and generated by the unitary motion of body i in its kth degree of freedom:

(aR,ik
j ) =











0 i = j

TT
ijR

k
i i 6= j

(15)

The incident and scattered partial waves coefficients from an isolated body

can be related by means of a linear operator known as Diffraction Transfer

Matrix
(

Bj

)

:

AS
j = BjA

I
j (16)

The elements
(

Bj

)mq

nl
in row (n,m) and column (l, q) are defined as the

coefficient of the partial wave of depth mode n and angular mode m in the

scattered potential in response to a unit incident wave of depth mode l and

angular mode q (Kagemoto H. and Yue, 1986). For the diffraction problem, by

substituting the incident partial coefficients from (12) into (16), the scattered
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coefficients of body j read:

AS
j = Bj

(

aIj +

Nb
∑

i=1
i 6=j

TT
ijA

S
i

)

(17)

For the radiation problem, the substitution of the incident partial coefficients

from (14) into (16) leads to the scattered coefficients of body j:

AS
j = Bj

(

aR,ik
j +

Nb
∑

p=1
p 6=j

TT
pjA

S
p

)

(18)

Considering all the bodies in the array, equation (17) for the diffraction

problem, or (18) for the radiation problem, become a system of equations which

can be solved for all the unknown scattered coefficients:

AS = (I−BT)−1 B aI (19)

where I is the identity matrix, aI is a vector containing the partial coefficients

of the incident primary waves (either ambient plane waves for the diffraction130

problem or radiated waves by a body i moving in its kth degree of freedom

for a radiation problem) and B and T are matrices containing respectively the

diffraction transfer matrices and transformation matrices of the bodies in the

array organised in an appropriate manner. In equation (19) the matrices are

square; their dimensions and the lengths of the column vectors are (2M + 1) ·135

(N+1) ·Nb. The term (I−BT)−1 is usually referred to as the scattering matrix

(Siddorn P. and Eatock Taylor, 2008).

Before equation (17) can be solved, one must determine the DTM (Bj). In

case of equation (18), the RC (Rj) must also be determined. Both operators

are calculated with the body in isolation and depend on its geometry and the140

wave frequency (ω). In addition, the RC depend on the mode of motion. Two

methodologies to compute them (Goo, J.-S. and Yoshida, 1990; McNatt J. C.

et al., 2015) are presented in this paper in section 3. The former has been

implemented in BEM code NEMOH and will be referred to as Method I, the

latter serves as a basis of comparison for Method I and shall be referred to as145

Method II.
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2.3. Calculation of the radiation hydrodynamic coefficients and the excitation

forces

The solution to the multiple scattering problem (19) enables one to recon-

struct the total potential in the fluid domain and to compute the forces exerted

on the bodies. McNatt J. C. et al. (2015) introduced a linear operator called

Force Transfer Matrix (Gj) which relates the forces acting in each degree of

freedom of the body to the partial incident cylindrical wave coefficients. Here

we make use of it to compute the excitation forces as:

FE
j = Gj A

I
j (20)

where FE
j is the vector of excitation forces with dimension Dfj and AI

j are the

cylindrical coefficients of the total wave incident to body j composed of the

ambient incident wave and all the scattered waves of neighbouring bodies:

AI
j = (aIj +

N
∑

i=1
i 6=j

TT
ijA

S
i ) (21)

Similarly, following the procedure by McNatt J. C. et al. (2015), the radiation

force can be computed as :

(

FR
j

)ik
=











GjA
I
′

j j 6= i

(

iω (AMj)
k − (Dj)

k
)

+GjA
I
′

j j = i

(22)

where
(

FR
j

)ik
is the vector of radiation forces on body j due to a motion of

unit amplitude of body i in a degree of freedom k, (AMj)
k is the kth column

of the added mass matrix of the isolated body j , (Dj)
k is the kth column of

the radiation damping matrix of the isolated body j and AI
′

j are the cylindrical

coefficients of the total wave incident to body j composed of the radiated wave

cylindrical coefficients aR,ik
j generated by the motion of body i in the degree of

freedom k plus all the scattered waves by the fixed neighbouring bodies:

AI
′

j = (aR,ik
j +

N
∑

p=1
p 6=j

TT
pjA

S
p ) (23)
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The dimension of the added mass and radiation damping hydrodynamic

matrices of each body in the array is Dfj × Dfa with Dfa =
∑Nb

j=1Dfj the150

total number of degrees of freedom of the array.

Expression (22) for the case j = i differs from expression (15) in McNatt

J. C. et al. (2015) as the partial cylindrical wave coefficients in the notation of

the latter have amplitude and not velocity units. We also note a typographical

error in equation (15) in McNatt J. C. et al. (2015) where the term between155

brackets should be preceded by a minus sign.

3. Hydrodynamic operators

3.1. Method I

3.1.1. Diffraction Transfer Matrix

The methodology developed by Goo, J.-S. and Yoshida (1990) enables one to

find each element of the diffraction transfer matrix (Bj)
mq

nl
of an isolated body

j following two steps. First, the solution to a diffraction problem where the

incident wave is a cylindrical partial wave of angular mode q and depth mode

l is found. This involves solving for the unknown source strengths σlqj in the

following integral equation:

1

2
σlqj(rj , θj , zj)+

∫∫

Sj

σlqj(Rj ,Θj , ζj)
∂Gj(Rj,Θj , ζj ; rj , θj , zj)

∂n
ds

= −
∂
(

ψI
j

)

lq
(rj , θj , zj)

∂n
(24)

where G is the Green’s function in finite depth, (Rj ,Θj , ζj) is the influencing or160

source point and (rj , θj , zj) the influenced or field point, (ψI
j )lq is the incident

partial wave lq as defined in (8) and Sj the wetted surface of body j.

The right hand side of expression (24) expresses the diffraction boundary

condition on the wetted surface of the body due to an incident partial cylindrical

wave of angular mode q and depth mode l. This boundary condition must165

13



replace the standard diffraction boundary condition in BEM codes where the

incident potential is simply the potential of a planar wave.

Once the source strength distribution σlqj is known on the panelized surface

of the body, the following step consists of expressing the scattered potential in

the base of partial wave functions (2). This is to be achieved by making use of

the Green’s function in cylindrical coordinates derived by Fenton (1978) which

leads to the following expressions for the elements of the Diffraction Transfer

Matrix:

(Bj)
mq
0l =

i

2

K2 − k20
(k20 −K2)d+K

cosh k0d×
∫∫

Sj

σlqj(Rj ,Θj , ζj) Jm(k0Rj) cosh[k0(ζj + d)]e−imΘjds (25)

(Bj)
mq
nl = − 1

π

k2n +K2

(k2n +K2)d−K
×

∫∫

Sj

σlqj(Rj ,Θj , ζj) Im(knRj) cos[kn(ζj + d)]e−imΘjds (26)

where K = ω2/g.

3.1.2. Radiation Characteristics170

The same principle applied for the calculation of the DTM can be used to

obtain the RC vector. First, the radiation problem associated with a degree of

freedom k of the body under consideration is solved. In this case, the boundary-

value problem is the same as the one solved by a standard BEM solver. Thus, the

source strength distribution can be obtained by solving the following equation:

1

2
σjk(rj , θj , zj)+

∫∫

Sj

σjk(Rj ,Θj , ζj)
∂Gj(Rj,Θj , ζj ; rj , θj , zj)

∂n
dsj = njk (27)

where njk is the generalized direction cosine on the immersed surface of body j

and describes the distribution of normal velocities due to a unitary motion on

the kth degree of freedom.
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Once known, the source strength distribution σjk is used in conjunction with

the Green’s function in cylindrical coordinates to express the radiated potential

in terms of partial waves leading to expressions for the radiation characteristics:

(Rk
j )0m =

i

2

K2 − k20
(k20 −K2)d+K

cosh k0d×
∫∫

Sj

σjk(Rj ,Θj , ζj) Jm(k0Rj) cosh[k0(ζj + d)]e−imΘjds (28)

(Rk
j )nm = − 1

π

k2n +K2

(k2n +K2)d−K
×

∫∫

Sj

σjk(Rj ,Θj , ζj) Im(knRj) cos[kn(ζj + d)]e−imΘjds (29)

3.2. Method II

3.2.1. Diffraction Transfer Matrix175

The Method I described in the previous section involves solving the scatter-

ing BVP using incident partial cylindrical waves. To circumvent the need to use

incident partial cylindrical waves, a procedure to find the DTM by solving the

diffraction problem only for incident plane waves was described in McNatt J.

C. et al. (2015). Equation (16) can be transformed into a system of equations180

to solve for the elements of the DTM as long as a large enough number of pairs

of scattered/incident vectors of coefficients is known in advance. This is to be

achieved by solving, at least, as many plane wave diffraction problems as the

dimension of the DTM by changing at each time the propagation direction (β)

of the plane incident wave. The vectors of incident partial waves are known from185

an analytical expression (11) whereas the elements of the associated vectors of

the scattered coefficients can be derived by means of a Fourier transform of the

scattered potential on the body circumscribing cylinder:

aS0m = − i

2π

ω

g

2 cosh k0d

d
(

1 + sinh 2k0d
2k0d

)

1

H
(2)
m (k0r0)

×

∫ 0

−d

∫ 2π

0

φ(r0, θ, z) e
−imθ cosh k0(d+ z)dθdz (30)
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bSnm = − i

2π

ω

g

2

d
(

1 + sin 2knd
2knd

)

1

Km(knr0)
×

∫ 0

−d

∫ 2π

0

φ(r0, θ, z)e
−imθ cos kn(d+ z)dθdz (31)

where (r0, θ, z) are the coordinates of the points on a circumscribing cylindrical

control surface and aS0m and bSnm are the progressive and evanescent cylindrical190

wave coefficients which correspond respectively to AS
0m and AS

nm of Method I

(as detailed in section 3.3).

3.2.2. Radiation Characteristics

The computation of the RC follows the same procedure as for the DTM.195

First, the radiation problem associated with a specific mode of motion and fre-

quency is solved with a standard BEM code. Then, by means of expressions

(30) and (31), the radiated potential is expressed in terms of partial cylindrical

wave functions. In this base the coefficients are known as Radiation Character-

istics and are denoted by aR,k
0m and bR,k

nm which correspond respectively to Rk
0m200

and Rk
nm in the notation of Method I.

3.3. Equivalence between Methods I and II

The formulation of Method I is based on the notation of Goo, J.-S. and

Yoshida (1990) which makes use of a negative harmonic time dependence (e−iωt),

whereas Method II by McNatt J. C. et al. (2015) adopts a positive sign con-

vention (eiωt). In addition, in Method I amplitudes of partial wave coefficients

have units of velocity potential (m2/s). In Method II they have units of length

(m) and get units of velocity potential by multiplying by (i g
ω
). By taking into

account such convention differences, the equivalence between both partial wave

coefficients is given by:

(−1)−m g

ω

[

i(aS,I−m)
]∗

= AS,I
m (32)
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where ∗ denotes complex conjugate, aS, I−m are the progressive partial waves co-

efficients in the notation of McNatt J. C. et al. (2015) and AS, I
m in the notation

of Goo, J.-S. and Yoshida (1990).205

By introducing (32) into the definition of the DTM in (16), the following

expression relating their elements in both notations can be obtained:

(−1)−m

(−1)−q
(B∗)

Method I
−m,−q = (B)

Method II
m,q (33)

The results presented in this paper have been computed by using the BEM

solver NEMOH, in which Method I has been implemented. The results pre-

sented for Method II were computed using WAMIT. To solve the radiation

problem, NEMOH employs unit-amplitude velocity as the boundary condition,

while WAMIT uses unit-amplitude motions, which results in a difference in scal-

ing of the resulting solutions. The relationship between the source strengths in

the radiation problem is:

σNEMOH =
1

iω
σWAMIT (34)

As a consequence, by taking into account (34) and the notation convention

differences in (32), the relationship between the Radiation Characteristics (RC)

in both notations follows as:

(−1)−m g

ω2

[

(aR−mk)
]∗

= Rmk (35)

where aR−mk are the RC in the notation of McNatt J. C. et al. (2015) and Rmk

in the notation of Goo, J.-S. and Yoshida (1990).

The expressions of the scattered and radiated potentials expressed on the

basis of partial cylindrical waves are only valid outside the body’s circumscribing

cylinder of radius Rj . For Method I, the limitation stems from the use of the210

cylindrical Green’s function form by Fenton (1978) valid only when rj > Rj

whereas, for Method II, it is a consequence of performing a Fourier Transform of

the potential on the body’s circumscribing cylinder. Because of that, the use of

the interaction theory requires that the relative distance between two bodies in

the array has to be such that a circumscribing cylinder cannot intersect any other215
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body (see Figure 3 in Chakrabarti (2001)). This condition is more restrictive

than the one imposed by the use of Graf’s addition theorem in (13) which states

that the circumscribing cylinder of a body cannot contain the geometrical center

of any other body. In that sense, we note that the arrangement in Figure 5b

by McNatt J. C. et al. (2015) is technically not in the range of validity of the220

interaction theory.

Even if evanescent terms from the scattered potential can be identified us-

ing (31), the use of only plane progressive incident waves (with no evanescent

components) prevents the calculation of the DTM terms of the scattering due

to incident evanescent waves using Method II.225

4. Numerical Implementation

As mentioned in Babarit A. and Delhommeau (2015), the body boundary

conditions in the BEM solver NEMOH can be defined by the user. Thus, for

the diffraction problem, the code can easily accommodate a user-defined dis-

tribution of normal velocities at the centroid of each mesh panel. They have230

been implemented as the derivative of the incident partial wave functions (of

angular mode q and depth mode l) represented on the right hand side of (24)

and whose full expression can be found in Goo, J.-S. and Yoshida (1990). The

finite depth Green’s function is expressed in Cartesian coordinates, rather than

the cylindrical coordinates of equation (24) as it was more convenient for the235

computations.

The term
K2−k2

0

(k2

0
−K2)d+K

in expressions (25) and (28) poses convergence prob-

lems when the water depth is increased. As mentioned in Peter M. A. and

Meylan H. (2004), the limitation can be circumvented if it is reformulated by

means of the dispersion relation (3). In addition, the condition number of the240

system (19) has been improved by normalizing Bessel functions with respect to

both their order and argument as suggested by Child (2011).

No closed mathematical expression exists for the integrals (25)-(26) and (28)-

(29), even when σ is constant over each panel. Therefore, they cannot be solved
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analytically. Instead they were solved using a quadrature scheme. In this study,245

results will be presented for a one-point and four-point Gaussian quadrature

rules (Abramowitz M. and Segun A., 1964). In the former, the function to be

integrated is evaluated at a single point of the panel and is therefore considered

constant on it. In the latter, it is evaluated at four different points. In the kernel

of the integrals (25)-(26) and (28)-(29), only the source strengths are constant250

when computed using a zeroth-order BEM solver as in this study. However, the

Bessel functions together with the depth and angular dependence functions will

vary on each panel. Thus, the impact of using different integration schemes on

the final results for the DTM and the RC needs to be investigated.

Figure 3 displays the variation of the functions in the kernel of equations (25)-255

(26) and (28)-(29) over the mesh of a truncated vertical cylinder represented by

the panel’s nodes location. The variation of the depth dependence function is

plotted in Figure 3a against the draft of the cylinder for several values of the

non-dimensional wave-number. It can be observed that the gradient is stronger

at the free surface and increasing at the same time as the wave number. A260

finer refinement of the mesh at the free surface can help capture the rapid

variation of the hyperbolic cosine function at this region. In Figures 3b,3c,3e,3f

the radial variation of the Bessel functions, for different order and different

non-dimensional wave numbers is displayed. No significant gradients can be

observed, although an increase is observed for increasing wave numbers and for265

decreasing orders. Finally, Figure 3d plots the variation of the angular term.

As expected, it increases for increasing orders.

5. Results and Discussion

In the first part of this section, the components of the DTM and the RC for

a truncated vertical cylinder and a square box are presented. Two different dis-270

cretizations, shown in Figures 4a and 5a, have been used for the computations.

A mesh convergence study has been performed showing no significant improve-

ment of accuracy by using 4b or 5b. In some cases, the hydrodynamic operators
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Figure 3: Variation of the hyperbolic cosine depth dependence (a) and angular dependance

(d), variation of the Bessel function of the first kind (b, e) and of the modified Bessel function

of the first kind (c, f) along the lateral side and the bottom of a cylinder (3m radius, 6m

draft in a 30m water depth). Results in (e) are calculated for k0a = 2.7523 and in (f) for

k5a = 1.7279. The thick points represent the nodes of a given mesh with cosine spacing.
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Figure 4: Truncated vertical cylinder mesh. Only half of the geometry is shown due to

symmetry. (a) - coarse mesh, 361 panels; (b) - fine mesh 1521 panels.

Figure 5: Square box mesh. Only half of the geometry is shown due to symmetry. (a) - coarse

mesh, 403 panels; (b) - fine mesh 2059 panels.

obtained with Method I are not shown in the region 2.2 < ka < 2.6. This is

because of the spurious results that were found at a discrete set of frequencies275

within this range, known as irregular frequencies, where the boundary value

problem is ill-posed and the numerical scheme of the BEM solver NEMOH does

not converge to the physical solution.

In the second part, the hydrodynamic coefficients obtained using the interac-

tion theory by Kagemoto H. and Yue (1986) into which the calculated DTM and280

RC have been embedded are shown for a small array of two and four truncated

vertical cylinders. For the latter, the free surface elevation is also displayed.
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Figure 6: Real and imaginary parts of the Diffraction Transfer Matrix progressive terms for

a truncated vertical cylinder of 3m radius (a), 6m draft in a 10m water depth.

5.1. Diffraction Transfer Matrix

5.1.1. Cylinder285

Figures 6a and 6b show the real and imaginary parts of the cylinder DTM

terms. For clarity, only progressive and non-negligible terms are shown and

annotated with their respective (q,m) indexes. A very good agreement is found

between results obtained using Method I (with both one-point and four-point

quadrature schemes), Method II and the semi-analytical solution by Zeng and290

Tang (2013) which is based on the eigenfunction expansion with |m| < 1 and

the Graf’s addition theorem for Bessel functions. It can be observed that the

only non-zero DTM terms correspond to pairs of equal incident (q) and outgoing

(m) angular modes. This is a particular feature of axisymmetric geometries such

as the truncated vertical cylinder, as was identified by Kagemoto H. and Yue295

(1986). In addition, it can be appreciated that the number of non-negligible

angular modes is frequency dependent. For instance, a truncation of only two

angular modes is sufficient at ka ≈ 1 but not at ka ≈ 2 where three angular

modes are required.
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Figure 7: Real and imaginary parts of the Diffraction Transfer Matrix progressive terms for

a cube box of 6m side (2a), 6m draft in a 10m water depth.

5.1.2. Square Box300

Figures 7a and 7b show the real and imaginary parts of the square box

DTM components. Similar to the truncated vertical cylinder, good agreement

between the results obtained using Method I and II can be observed. For this

non-axisymmetric geometry, terms of the DTM involving different incident and

outgoing angular modes, such as the pair (q = 1,m = −3), are non-zero. In305

addition, it can be seen that for a wide range of ka values the angular mode

truncation is higher than for the truncated vertical cylinder. No improvement

of results is obtained for a four point quadrature as compared to a one point

quadrature integration scheme.

310

5.2. Radiation Characteristics

5.2.1. Cylinder

The progressive terms of the surge Radiation Characteristics of the cylin-

der are shown in Figure 8. Good agreement between both methods and the

semi-analytical solution can be observed. Like with the DTM, there were no315
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significant differences between integration schemes. For this mode of motion,

it can be observed that only modes m = 1 and m = −1 are non-zero which

correspond to the partial wave shown in Figure 1b.

For heave (Figure 10), only the mode m = 0, representing an isotropic wave

(Figure 1a) is required (McNatt J. C. et al., 2013). There is a difference in320

the magnitude of both the real and the imaginary parts of the m = 0 wave

between the outputs from Method I, Method II, and the semi-analytical results.

This discrepancy is attributed to the use of a zeroth-order indirect BEM solver,

which does not provide precise results near the sharp corners on the bottom of

the cylindrical and the square box geometries where a large variation of the flow325

velocity occurs. A better agreement with analytical results for the components

of the DTM and the RC was shown in Kashiwagi (2000, 2005, 2008) by using

a direct and higher-order BEM. It offers several advantages with respect to the

indirect BEM, namely that there is no need to evaluate the surface integral on

the body surface with the normal derivative of the incident-wave potential for330

the diffraction problem and that the wave-exciting force can be computed di-

rectly using the velocity potential obtained as a solution of the integral equation.

The discrepancy between Method I and II is mainly attributed to differences in

the results provided by both NEMOH and WAMIT BEM solvers, as shown for

instance by Crooks et al. (2016).335

5.2.2. Square Box

Compared to the cylinder, additional angular modes of order three appear in

the Radiation Characteristics of the square box moving in surge (Figure 9). The

radiated field for this geometry and for this mode of motion is more complex

than the one generated by the truncated vertical cylinder and a superposition340

of partial waves is required to represent it. For heave (Figure 11), it is numeri-

cally found that only the isotropic partial wave (m = 0) is needed and we note

a better agreement between Method I and Method II than for the truncated

vertical cylinder.

345
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Figure 8: Real and imaginary parts of the Radiation Characteristics progressive terms for a

truncated vertical cylinder of 3m radius (a), 6m draft moving in surge in a 10m water depth.

Figure 9: Real and imaginary parts of the Radiation Characteristics progressive terms for a

square box of 6m side (2a), 6m draft moving in surge in a 10m water depth.
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Figure 10: Real and imaginary parts of the Radiation Characteristics progressive terms for a

truncated vertical cylinder of 3m radius (a), 6m draft moving in heave in a 10m water depth.

Figure 11: Real and imaginary parts of the Radiation Characteristics progressive terms for a

square box of 6m side (2a), 6m draft moving in heave in a 10m water depth.
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Figure 12: Schematic of an array composed of two truncated vertical cylinders. β = 0

corresponds to the positive x− axis.

Figure 13: Added mass and damping coefficients for the first truncated vertical cylinder

(radius (a), draft (h = 2a) in a water depth (50a/3)) in the two body array (Figure 12) for

different separating distances (d/a = 5000 - (a), d/a = 5 - (b), d/a = 5 - (c)). First index

corresponds to the direction of the force and the second to the degree of freedom.

5.3. Influence of the evanescent modes truncation

Results for the hydrodynamic coefficients obtained using the IT by Kagemoto

H. and Yue (1986) described in section 2 are shown in Figure 13 for a small array

of two cylinders of radius (a), draft (h = 2a) in a 50a/3 water depth (Figure

12). They are compared to direct calculations performed with our BEM code.350

Hydrodynamic coefficients are specified by means of two indexes; 1-6 are the six

degrees of freedom (DOFs) of the first body, and 7-12 are the 6 DOFs of the

second one. For instance, added mass (3-9) is the added mass of heave-heave

coupling between the bodies. Several separating distance cases are considered.

When only a single line is visible, it means that the other lines lie underneath355

it and there is a very good match between results.

First, both bodies are set far away from each other at a distance d/a = 5000.
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Figure 14: Heave-heave coupling added mass coefficient as a function of the evanescent modes

truncation L and for a small array of two truncated vertical circular cylinders of radius a,

draft h = 2a in water depth of 50a/3.

As expected, the hydrodynamic coefficients are the same as if the cylinders were

in isolation. Moreover, for such a long separating distance the evanescent modes

do not play an important role. This can be derived from the fact that in their360

absence (L = 0) a very good agreement of results between the IT and the direct

computations (Figure 13a) is obtained.

When bodies are set closer, in this case at a distance of d/a = 5, hydrody-

namic interactions become important as can be observed in Figures 13b and 13c.

For ka > 0.2, the added mass and damping coefficients in isolation are altered.365

A similar behaviour was shown by Siddorn P. and Eatock Taylor (2008) for the

heave coupling radiation hydrodyamic coefficients. At this separating distance

(d/a = 5) and for the surge mode of motion, the influence of the evanescent

modes is still negligible. This result is in agreement with Mavrakos, S. A. and

McIver (1997) who stated that the plane-wave approximation can provide accu-370

rate results when the separating distance between devices is larger than 5 times

their characteristic dimension.
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Figure 15: Surge-surge coupling added mass coefficient as a function of the evanescent modes

truncation L for two different wavelengths for a small array of two truncated vertical circular

cylinders of radius a, draft h = 2a in water depth of 50a/3.

Finally, for a fixed frequency corresponding to a wave length of λ/a =

10(ka = 0.6), the coupling heave-heave added mass coefficient (3, 9) is shown

(Figure 14) at several separating distances which span from d/a = 10 to the limit375

case where the perimeters of both cylinders are externally tangent (d/a = 2).

The influence of the evanescent modes for the heave-heave coupling can be

clearly observed, as well as convergence of the IT results to direct calculation

when the truncation of evanescent modes is increased. It has been observed that

their importance to ensure accuracy of the radiation hydrodynamic coefficients380

(both added mass and damping) for close separating distances is mainly depen-

dent on the motion mode and the frequency. For instance, for the surge-surge

coupling, their influence at λ/a = 10 (Figure 15a) is negligible. At a separation

distance of d/a = 2.6 the error is 3%. This is not the case at λ/a = 30 (Figure

15b) where the error for the same separation distance is 40%.385

Another way to visualize the effect of the evanescent modes truncation con-

sists of studying the free surface elevation (η). Figures 17a and 17b show the

total wave elevation, i.e. the sum of incident, scattered and radiated wave eleva-
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Figure 16: Schematic of an array composed of four truncated vertical cylinders of radius a

and separated by a distance between centers d. β = 0 corresponds to the positive x− axis.

tions including the computed body motions, obtained with NEMOH and with

the IT respectively for a small array of 4 freely floating truncated vertical cylin-390

ders for a regular wave of propagation direction β = 0 and wavelength λ/a = 10

with a the radius of the cylinders. The IT free surface elevation has been cal-

culated using its definition η = − 1
g

∂φ
∂t
|z=0, where the velocity potential in the

fluid domain has been reconstructed from the solution of the multiple-scattering

problem by means of expressions in (6).395

It can be observed that a very good agreement between results is obtained

for the whole domain (Figure 17c) when no evanescent modes are used with

the highest differences being located at the vicinity of the bodies. The use of

a higher evanescent modes truncation (17d,17e,17f) reduces the error at these

regions, from 4% to 0.4% at the mid-point of the line linking the centers of400

cylinders 2 and 4 (Figure 16), and results computed with the interaction theory

converge with those obtained from direct calculations with the standard BEM

code.

5.4. Near Trapped Modes

Siddorn P. and Eatock Taylor (2008) showed that the wave numbers prone to405

the physical phenomena of near-trapped modes, characterized by a large increase

of the hydrodynamic force on one of the bodies of the array, can be detected
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Figure 17: Magnitude of surface elevation for an array of 4 cylinders of radius (a), draft (2a)

in a water depth (50a/3) with a separation distance of 4a. Subplot a) shows the magnitude

of the free surface elevation obtained from a direct NEMOH calculation and normalized by

the amplitude of the incident wave, subplot b) shows the same result computed with the

interaction theory (IT), and subplots c), d), e), f) show the percentage difference between the

wave fields computed with the interaction theory and the direct NEMOH calculation as a

function of the evanescent modes truncation L ((c) - L = 0, (d) - L = 6, (e) - L = 12, (f) -

L = 18). Propagation direction is defined from left to right.
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through the peaks of the condition number of the array scattering matrix (19).

An example of this is shown in Figure 18 for a small array of 4 truncated

vertical cylinders of radius a, draft 2a in a water depth of 4a separated by a410

distance of 4a (Figure 16). It can be observed that our results match the ones

obtained by Siddorn P. and Eatock Taylor (2008), who used a semi-analytical

solution instead of a BEM code to compute the hydrodynamic operators, except

at ka = 2.44 and ka = 3.85 where small discrepancies occur due to the irregular

frequencies. We note a slightly smaller condition number between ka ∼ 0.5 and415

ka ∼ 1.5. This may be due to the use of different depth truncation (L = 0

for all ka) and angular mode truncation values to the ones in Siddorn P. and

Eatock Taylor (2008) which are not specified.

That the wave number matches one of the candidates identified from the

analysis of the condition number does not imply that the near-trapped mode420

will occur. As mentioned by Siddorn P. and Eatock Taylor (2008) it is required

as well that the wave heading is the correct one to excite it. For the four cylinder

array under consideration, this happens when the wave heading is β = π/4 and

it produces very large excitation forces in surge at ka ∼ 1.66 as shown in Figure

19. As in the previous case, the match between results is very good. A very high425

accuracy of the excitation force is obtained without making use of evanescent

modes, which agrees with the observations of Chakrabarti (2000).

6. Conclusions

The calculation of the Diffraction Transfer Matrix and the Radiation Char-

acteristics has been implemented in the open source BEM solver NEMOH using430

the methodology of Goo, J.-S. and Yoshida (1990). Results of the progressive

terms of the hydrodynamic operators for a truncated vertical cylinder and a

square box have been contrasted with the methodology developed by McNatt

J. C. et al. (2015) and a very good agreement has been found. In addition,

the DTM and RC of the truncated vertical circular cylinder have been checked435

against the semi-analytical solution by Zeng and Tang (2013) and a very good
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Figure 18: Variation of the condition number (computed using the 1-norm or maximum

column-sum) of the scattering matrix of an array of 4 truncated vertical cylinders with radius

(a), draft (h = 2a) in a water depth of (4a) with each cylinder disposed at the vertex of a

square of side size 4a (Figure 16).

Figure 19: Variation of the surge excitation force on Cylinder 1 (Figure 16) of an array of 4

truncated vertical cylinders with radius (a), draft (h = 2a) in a water depth of (4a) with each

cylinder disposed at the vertex of a square of side size 4a for an incident wave heading angle

of β = π/4. The nondimensionalization factor terms are the wave amplitude (A), the cylinder

radius (a) and the cylinder draft (h).
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match has been obtained.

For a truncated vertical cylinder, only the terms of the DTM corresponding

to pairs of equal incident and outgoing angular modes have been observed to be

different than zero. In contrast, for the square box, coupling terms between dif-440

ferent incident and outgoing angular modes have been found to be significant. In

both cases, the truncation of the angular terms has been shown to be frequency

dependent. In addition, it has been checked that angular modes m = −1, 0, 1

are sufficient to represent the radiated waves of a truncated vertical circular

cylinder in surge (odd terms) and heave (even term) for all frequencies. At the445

same time, it has been observed that higher modes are required, particularly at

the high frequency zone, to represent the radiated wave in surge by a square

box.

Radiation hydrodynamic coefficients computed with the IT by Kagemoto H.

and Yue (1986) have been verified against direct BEM computations for a small450

array of two truncated vertical circular cylinders and a very good match of re-

sults has been observed. For closely spaced configurations, it is well known that

the effect of hydrodynamic interactions and the evanescent modes truncation

on the radiation coefficients is significant, and both are well-represented in our

results. In addition, the free surface elevation of an array of four freely floating455

truncated vertical circular cylinders computed with the IT has been verified

with direct BEM calculations. The effect of the evanescent modes truncation

has been clearly shown to be significant only at the vicinity of the bodies as

expected.

Finally, excitation forces computed with the IT for a 4 cylinder array con-460

figuration prone to trapped-modes have been verified against semi-analytical

results by Siddorn P. and Eatock Taylor (2008) and a very good agreement has

been found. In contrast to the radiation coefficients, it has been observed that

in this case the influence of the evanescent modes truncation is negligible.

The numerical tool that we have described and verified in this study can be465

used for the frequency domain simulation of large arrays of floating bodies, such

as wave energy converters. The gain in computational speed when compared to
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direct calculations using standard BEM codes makes it suitable for optimization

purposes.
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