N
N

N

HAL

open science

Reliability and probability of first occurred failure for
discrete-time semi-Markov systems

Stylianos Georgiadis, N. Limnios, I. Votsi

» To cite this version:

Stylianos Georgiadis, N. Limnios, I. Votsi. Reliability and probability of first occurred failure for
discrete-time semi-Markov systems. Applied Reliability Engineering and Risk Analysis: Probabilistic

Models and Statistical Inference, Wiley, 2013, 10.1002/9781118701881.ch12 . hal-01635222

HAL Id: hal-01635222
https://hal.science/hal-01635222
Submitted on 7 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01635222
https://hal.archives-ouvertes.fr

Reliability and probability of first occurred failure for
discrete-time semi-Markov systems

Stylianos Georgiadis'* Nikolaos Limnios' and Irene Votsi!
! Laboratoire de Mathématiques Appliquées de Compiégne, Université de Technologie de Compiégne,
Centre de Recherches de Royallieu BP20529, 60205, Compiégne, France

November 5, 2012

Abstract

In this chapter, we present the empirical estimation of some reliability measures, such as
the rate of occurrence of failures and the steady-state availability, for a discrete-time semi-
Markov system. The probability of first occurred failure is introduced and estimated. A
numerical application is given to illustrate the strong consistency of these estimators.

Keywords: Semi-Markov chain, empirical estimation, rate of occurrence of failures, steady-
state availability, first occurred failure

1 Introduction

Semi-Markov chains constitute a generalization of Markov chains and renewal chains. For a
Markov chain, the sojourn time in each state is geometrically distributed, whereas for the semi-
Markov case, the sojourn time distribution can be any distribution on N. An introduction to
homogeneous semi-Markov chains is given by Howard (1971) as well as by Mode and Pickens
(1998) and Mode and Sleeman (2000). For non-homogeneous discrete-time semi-Markov systems
see Vassiliou and Papadopoulou (1992, 1994), whereas for ergodic theory of semi-Markov chains
see Anselone (1960). Moreover, for semi-Markov replacement chains see Gerontidis (1994). Barbu
and Limnios (2006) study an empirical estimator of the discrete-time semi-Markov kernel and
its asymptotic properties, with application to reliability. Chryssaphinou et al. (2011) establish
a discrete-time reliability system with multiple components under semi-Markov hypothesis. An
overview in the theory on semi-Markov chains oriented toward applications in modeling and
estimation is presented in Barbu and Limnios (2008).

In this work, the investigation of the rate of occurrence of failures (ROCOF) is addressed
for the first time for semi-Markov chains. The ROCOF may be interpreted as the expected
number of transitions of a semi-Markov chain to a subset of its state space at a specific moment.
Firstly, a simple formula for evaluating the ROCOF is derived. As a consequence of this result, a
statistical estimator of this function is proposed. The continuous-time version of the ROCOF is
calculated in a wide range of scientific fields including reliability (Lam, 1997; Ouhbi and Limnios,
2002) and seismology (Votsi et al., 2012).

Afterwards, we examine the steady-state (or asymptotic) availability by two different aspects.
At first, we consider the pointwise availability and we take its limit as the time tends to infinity.
Substituting with the empirical estimator for the pointwise availability, we obtain an estimator
for the asymptotic measure. Alternatively, the steady-state availability is written as the sum of
the stationary distribution of the semi-Markov chain in the working states of the system (see
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Barbu and Limnios, 2008). Two different proposed nonparametric estimators of the stationary
distribution are presented and the estimator of the availability is expressed in terms of them.
As a sequence, we derive the empirical estimation of the steady-state availability through three
different approaches.

Finally, we introduce the measure of the probability of the first occurred failure. Consider
a sequence of disjoint subsets of the failure states of a semi-Markov system. Given the initial
state of the system, the probability of first occurred failure expresses the probability to entry for
first time into a failure subset before any other one. An empirical estimator for the probability
of first occurred failure is then proposed. The asymptotic property of the strong consistency is
presented for the estimators of ROCOF, steady-state availability and probability of first occurred
failure.

In Section 2, the necessary preliminaries of a semi-Markov model are introduced and, in the
next one, the definitions of the reliability measures studied in this chapter are given. Section 4
depicts their empirical estimation and their strong consistency. Finally, we apply these results
to a numerical example in Section 5.

2 Discrete-time semi-Markov model

Let us firstly introduce some preliminaries from the theory of semi-Markov chains absolutely
necessary for our purposes. Let N be the set of nonnegative integers and N* = N\{0}. Consider
a stochastic system with finite state space . We suppose that the evolution in time of the
system is described by the following chains :

1. The chain J := (J,)nen with state space E, where J,, is the system state at the n-th jump
time;

2. The chain S := (S, )nen with state space N, where S, is the n-th jump time. We suppose
that Sy =0and 0 < S1 < Se < ... <S5, < Spe1 <...;

3. The chain X := (X,,),en* with state space N, with X, := S,, — S,,_1 for all n € N*. Thus,
for all n € N*, X,, is the sojourn time in state J,_1, before the n-th jump.

The chain (J,S) := (Jy, Sp)nen is said to be a Markov renewal chain (MRC) with state space
E x N, ifforallne N, j e F and k € N, it satisfies almost surely (a.s.)

P(Jn+1 = .j: Sn+1 - Sn = k“]07 ) Jnv SO; cee 7Sn) = IP)(Jn—',-l = j7 Sn+1 - Sn = k’Jn)

If the above equation is independent of n, then (J,.S) is said to be homogeneous.

The process J is the embedded Markov chain (EMC) of the MRC (J, S) with initial distri-
bution a := («ay; i € E), where o; := P(Jy = i), and stationary distribution v = (v;; i € E). The
transition matrix P := (P(i,7); i,j € F) of J is given by

P(i,5) :=P(Jps1 = j|lJn =1), neN. (1)

Moreover, for all k € N, we define the discrete-time counting process of the number of jumps
in [1,k] € N by N(k) := max{n € N: S,, < k}. The semi-Markov chain (SMC) Z := (Zj)ken is
defined as Zy = Jy(), k € N, and it gives the system’s state at time k. We have also J, = Zg,
and S, = min{k > S,_1: Zy # Zx_1}, n € N. We note that the initial distribution of the SMC
Z coincides with that of J.

The evolution of the discrete-time semi-Markov system is governed by the semi-Markov kernel
q(k) := (¢ij(k); i,5 € E), k € N, defined by

¢ij(k) := P(Jns1 = J, Xnt1 = k[ =), nelN. (2)



For all £ € N*| the entries of the semi-Markov kernel g(k) are written as
aij (k) = pij fij(k), i,j€E,

where fij(k) := P(Xp41 = k|Jp =i, Jp41 = J) i,j € E, k € N, is the conditional distribution of
the sojourn time in state ¢ given that the next visited state is j. In this case the sojourn times
are attached to transitions and when a sojourn time in a state ¢ expires, we can determine the
next visited state j by using the probability of the EMC as well as the duration of this time.

Let us denote by H;(k), k € N, the sojourn time cumulative distribution function in any state
1e FE, ie.

k
Hi(k) := P(Xnp1 < k|Jn =) = > > qi(1)

jeE =0

and by H;(k), k € N, the survival function in any state i, i.e.

k
Hi(k) i= P(Xns1 > klJu =) = 1= Hi(k) = 1= Y 3 a55()
JeE =0

Also, consider the matrices H (k) := diag(H;(k); i € E) and H (k) := diag(H;(k); i€ E), k e N.
The transition function P(k) := (P;;(k); i,j € E), k € N, of the SMC Z is defined by

Byj(k) :==P(Zy = j|Zo = i).

Let 4 (k) := (vi;(k); 4,5 € E) be the Markov renewal function given by
: (n)
Vij(k) = Z a;; (k)
n=0

where q@(k) :=P(Jp = J,Sn = k|Jo = 1) is the n-fold discrete-time convolution of ¢;;(k) (see
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Barbu et al., 2004). Then, the transition function P(k) of the SMC Z can be written as
P(k) == (I — H)(k).

Also, the stationary distribution 7 := (m;;7 € E) k € N, of the SMC Z is defined, when it
exists, by
= lim Py(k), leE.

k—o0

In addition, we denote by m := (m;;i € E)' the mean sojourn times of the SMC Z in any state
1 defined by
my; Sl|J0 = Z Z H
neN
and, then, the stationary distribution of the SMC is expressed in terms of the stationary distri-

bution of the EMC :
vimy;

Zk;eE Vgmy '

We assume that the MRC (J, S) is irreducible and aperiodic, with finite mean sojourn times.
Let U := (Ug)ken be the sequence of the backward recurrence times for the SMC Z defined

as follows :

T, =

k‘, ifk<51,
Uy := ]
k—SN(k), if k> 51,



where, since Sy = 0, we have that Uy = 0. We note that, for all k € N, U, < k. The stochastic
process (Z,U) := (Zy, Uy )ken is @ Markov chain with values in £ x N (Limnios and Oprisan,
2001). A study of this process is given by Chryssaphinou et al. (2008). It is worth noticing that
the Markov chain (Z,U) is time-homogeneous.

We denote by & the initial distribution of the Markov chain (Z,U), whereas its transition
matrix P := (ﬁ((i,tl), (4, t2)); (i,t1), (j, t2) € E x N) can be written as :

f’((iatl)a (jit2)) :=P(Zps1 = §,Ups1 = ta| Zp = i, Uy, = t1)
@ij(ty + 1)/H;(t1), ifi+# j,ta =0,
= Hi(tl—l-l)/Hi(tl), ifiZj,tQ—tl =1, (3)

0, otherwise,

~k—1
for every k € N such that P(Zy = ¢,Uy = t;1) > 0. Let us further denote by (&P )(i,m) the
~k—1
(i,m) element of the vector &P
After introducing the basic notation and giving a brief description of the model under study,
we proceed to the calculation of the ROCOF along with steady-state availability and the prob-

ability of first occurred failure for the semi-Markov case.

3 Reliability and probability of first occurred failure

Let us consider that the possible states of the semi-Markov chain Z belong to the set £ =
{1,...,s}, se N*. Let U :={1,...,r} and D := {r + 1,..., s} be the subsets of the state space
E of the working states and the down states of the system, respectively, with U u D = E and
Un D= . We present now the reliability measures under consideration in this work.

3.1 Rate of occurrence of failures

We further consider an arbitrary subset B of the state space F/, with B # ¢ and B # E. Initially,
we are concentrated on the study of an important parameter in semi-Markov chains, the ROCOF.
Before providing a formula for the evaluation of the ROCOF, let us clarify its meaning. For all
k € N, we denote by Np(k) the counting process, up to time k, of the transitions of the SMC Z

from B to B, namely
k

Np(k) := Z 1z eBt zieB)-
=1

The ROCOF is interpreted as the expected number of transitions of the SMC to the set B
at time k, i.e.

78(k) := E[Np(k) — Np(k —1)].
The following proposition gives a simple formula of the ROCOF for semi-Markov chains.
Proposition 1. The ROCOF of the SMC Z at time k is given by

=2 Z @P*1) (i, m)1P ((i,m), (4.0)). (@)

ieBC ]EB m=0



3.2 Steady-state availability

Another interesting measure concerning the asymptotic reliability theory is the steady-state
availability of a system. Firstly, let us define the pointwise availability A of a system at time
k € N as the probability that the system is operational at time k, independently of the fact that
the system has failed or not in [0, k), i.e

A(k) == B(Z), € U).

Proposition 2. Given a stochastic system described by a SMC Z, the pointwise availability is
given by
A(k) = aP(k)1,,, (5)

where 15, is a s-column vector whose the r first elements are 1’s and the last s —r ones are 0’s.

The steady-state availability A, of a system is defined as the limit of the pointwise availabil-
ity, when the limit exists, as the time tends to infinity, i.e.

Ay := lim A(k).

k—o0

Proposition 3. For a semi-Markov system, the steady-state availability is given by

Aoo = Zﬂ'i. (6)

e’
3.3 Probability of first occurred failure

The measure of the probability of first occurred failure is introduced here. We consider the subset
U of the working states, as defined in the previous subsection. We further consider the partition
of the subset D to k subsets of failure states (Ci)reny with D = UxCy and Cp, N C; = &, k # L.

Let Tp := min{n € N : Z, € D} be the first hitting time of the subset D. We consider the
process Z' := (Z})pen defined by

y Zk, t < TD,
Zk) =
A, t=Tp,

where A is an additional absorbing state .

Denote by T, := min{n € N : Z] e C} the first hitting time of the subset Cj} and
pc, = (pc,(i); i€ U)T the column-vector of probabilities defined below. If, j € N*, To, < oo,
then T¢, = +o0 for any k£ # j. Under this notation, for any ¢ € U, we define the probability of
first occurred failure and get

pcy (@) =PI, < oofJo = i)

PZ(TCk )

Pi(J1 € Cy,Tc, <) +Pi(J1 € U, T, < )
Py (

i(J1 € Ck) +ZP1]PCk()
Jjeu

Let Pgyy be the restriction on the subset U x U of the transition matrix P of the EMC J
and Py the column-vector defined as Py, := (P(i,Cy); i € U)" with P(i,Cy) := Yjec, Pi, 7).
Then, we have

¢, = Pox + Poopc, -

Consequently, we obtain the following proposition :



Proposition 4. For a stochastic system governed by the modified process Z' and given a failure
class Cy, if the matrix I — Py is nonsingular, the probability of first occurred failure is given by

pc, = (I — Poo) ' Pog. (7)

Zka =1,
k

where 1 is a column-vector with all entries equal to 1.

Note that

4 Nonparametric estimation of reliability measures

In this section, we follow the next observational procedure concerning the statistical inference of
stochastic processes : a single realization of the process is observed over the fixed time interval
[0, M], M € N*. The asymptotic property of strong consistency is obtained as the censoring
time M tends to infinity (practically, when it becomes large). We consider an observation H s
of the ergodic MRC (J, S), censored at a fixed arbitrary time M € N*  defined by

{(Jo, Uy = M}, if N (M)

— {{Jo,Xl,Jl,...,XN<M>,JN(M),UM}, it N(M) >0,
: N

where N (M) is the discrete-time counting process of the number of jumps in [1, M] and Uy :=
M — Sy(n) is the censored sojourn time in the last visited state Jy (). Let us consider the
following set : Ths := {0,..., M}.

Additionally, for all states 7, j € E, let us define the counting processes :

1. Ny(M) := ZN(M) 1¢,_,—4 is the number of visits to state ¢ of the EMC, up to time M;

n=1

2. Nij(M) := Z;V:(]l\/[) 1¢j,_1=i,J,—j} is the number of transitions of the EMC from i to j, up
to time M.

The proposed empirical estimator q(k, M) := (Gi;j(k,M); i,j € E), k € Tpr, M € N*, of the
semi-Markov kernel (2) is defined by the following equation

| NOn

@ (kM) o= G 2 Ynor=idumiomhy

For further study of the asymptotic properties of the proposed empirical estimator, see Barbu
and Limnios (2006). Once the estimator of the semi-Markov kernel is obtained, any measure
conserning the SMC can be estimated, after having been expressed as a function of the semi-
Markov kernel.

4.1 Estimation of ROCOF

The estimators fIl(kz, M) and H;(k, M), k € Ty, M € N*, i € B, for the sojourn time cumulative
distribution functions H;(k, M) and the survival function H;(k), respectively, are given by

k R k
Hi(k, M) := Y'Y Gi;(1, M) and H(k,M):=1- > > G;;(1,M).
jeE1=0

JEE1=0

Consider also the estimators ﬁ(k, M) = diag(ﬁ[i(k, M);ie E)and H(k, M) := dz’ag(ﬁi(k, M);ie



The empirical estimator Py := 13( (1,t1), (4, t2 ) (1,t1), (j,t2) € E x N) of the transition
matrix (3) of the Markov chain (Z,U) has entries defined by

~

R Qij(ty + 1, M)/H;(t1, M), ifi# jta =0,
PM((iatl)a (jat2)> = Fi(tl + 1,M)/Fi(t1,M), ifi = j, to —t1 = 1,
0

otherwise.

On the basis of Proposition 1, we propose the following estimator ?B(k,M ), k € Ty, for the
ROCOF (4) of the semi-Markov system,

~

ZZE]lﬂlwm%wmmm» (8)

i€BL jeB m=0
(31”3’;;1)(¢, m) is the (7, m)-th element of the vector 813’]“\/[_1 The following proposition gives the
uniform strong consistency of the ROCOF’s estimator.

Proposition 5. For any arbitrary k € N fized, the estimator (8) of the ROCOF (4) at instant k
is strongly consistent in the sense that

(k M) 225 #5(k), as M — oo.

4.2 Estimation of the steady-state availability

Concerning the stationary distribution 7 of the SMC, we consider two empirical estimators
(M) := (7;(M); i € E) and #(M) := (7;(M); i € E), defined as follows :

1 M
=— 31 it 9
) MI;I {Zr_1=1} 9)
~  pi(M)m; (M)
O S B () o

where 7;(M) and m;(M) are the empirical estimators of the stationary distribution v; of the
EMC J and the mean sojourn time m;, respectively, given by

and (M) = Y Hi(n, M).

n=0

For any censoring time M € N*, we consider the estimators 9 (k, M) := (@ij(k, M); i,je E)
and P(k,M) := (P;(k,M), i,j € E), k € Ty, of the Markov renewal function 4 (k) and the
transition function P(k) of the SMC Z, respectively, taking the form

k
2 J(k,M) and P(k,M) =« (I —H)(k,M).

Then, the empirical estimator ﬁ(k},M ) of the steady-state availability A(k), k € Ty, can be
written as

A(k, M) = &Pk, M)1,,. (11)



Remark 1. Formally, the estimator of the initial distribution « is defined as & := dz,. In our
case, as one trajectory is taken into account, the estimation of the initial distributions o and &
is trivial.

From equation (6), we may obtain two different estimators for the steady-state availability :

A (M) = Y 7:(M), (12)
€U

A (M) = > #(M), (13)
€U

where A(k, M), %;(M) and 7;(M) are given in (11), (9) and (10), respectively.

Proposition 6. For any fized k € N, the estimator (11) of the pointwise availability A(k), and
the estimators (7?7), (12) and (13) of the steady-state availability A, are strongly consistent,
i.e.
Al M) =2 A(k),
KOO E'_) AOOv

N a.s.
AOO ? AOO7

as M — oo.

4.3 Estimation of the probability of first occurred failure

The empirical estimator Py = (f’M(i,j); i,j € E), M € N*  of the transition matrix (1) of the
EMC J is given by
o Nii(M
PM(Zvj) = ZJ( )

Based on the estimation P of the transition matrix (1), we obtain the estimators Pgo(M) and
P (M) of Py and Py, respectively. For any failure subset Cy, the estimator pg, (M) :=
(pc, (i, M); i € U)T of the probability of first occurred failure (7) takes the form

pe, (M) = (I — Poo(M)) ™ Poi(M). (14)

Proposition 7. For any M € N*, the estimator (14) of the probability of first occurred failure
(7) of the failure subset Cy, is strongly consistent, i.e.

a.s.

ﬁck(M)*—)ka, as M — oo.

5 Numerical application

In this section, we apply the previous results to a four-state semi-Markov system, as described
in Figure 1.

The state space of the system E = {1,2,3,4} is partitioned into the up-state set U = {1, 2}
and the down-state set D = {3,4}. Since B is arbitrary chosen, for sake of simplicity, we set
B =D and B® = U. The initial law o and the transition matrix P of the EMC are given by

0 08 02 0
a=(1 00 0) and P= 0i9 8 8 0(')1

0 1 0 0
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Figure 1: Four-state discrete-time semi-Markov system.
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Figure 2: ROCOF plot.

We suppose that the conditional sojourn-time distributions fi3(-) and fo4(-) are geometric
ones defined by
p(1 —p)F=t ifk>1,
T
0, if k=0,

with p = 0.8 and p = 0.8, respectively. The distributions f12(+), f21(+), f31() and fyo(:) are
discrete-time Weibull ones with

(k—l)l7 kb ifk>1
q q , 1 = 1,

f(k) = .
0, if k=0,

where (¢,b) = (0.8,1.6) for the transition 1 — 2, (¢,b) = (0.7,1.6) for the transition 2 — 1,
(g,b) = (0.4,0.7) for the transition 3 — 1 and (gq,b) = (0.3,0.7) for the transition 4 — 2.

Three independent trajectories of the SMC up to fixed censoring times M = 500, M = 1000
and M = 2000 are obtained by means of a Monte Carlo method. In the following figures, we
present the plots of the theoretical and estimation values for the ROCOF and the availability of
the system for the first 100 time units. In Table 1, the estimation of the steady-state availability
is depicted.

Remark 2. Note that, since M — o© and k — o0, the estimation of the point-wise availability
converges to the steady-state availability. Thus, we may derive an alternative estimation for the
steady-state availability through the availability function.
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Figure 3: Availability plot.

| | M =500 | M = 3000 | M = 5000
Ay 0.9024

Ap(M) || 08760 | 0.8830 0.8955

Ap(M) | 08795 | 0.8829 0.8954

Table 1: Estimation values of the steady-state availability.

To investigate the estimation of the probability of first occurred failure, we consider two
failure subsets C; = {3} and Cy = {4} with C; U Cy = D. The probability of first occurred
failure and its estimation, given the subsets C'y and Cs, is presented in Table 2.

| | M=50 | M=1000 | M=2000 @|

0.7143,0.6429)7

0.2857,0.3571) "
)
)

Pcy

Pc,
Pc, (M) || (0.6813,0.5772)7

P, (M) | (0.3187,0.4028) "

0.8227,0.7635) " | (0.7267,0.6528)
0.1773,0.2365) " | (0.2733,0.3472) "

—~= ||

Table 2: Estimation values of the probability of first occurred failure.

The consistency of the estimators of the ROCOF, the steady-state availability and the prob-
ability of first occurred failure seems to be verified by the results of the preceding plots and
tables and, the estimation values approach the true ones as the length of the trajectory becomes
larger. Also, we see that two proposed estimators of A, tend to coincide, with a slightly better
estimator to be Ay (M).
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